Preconditioning of Large-Scale Saddle Point Systems Arising in Riccati Feedback Stabilization of Coupled Flow Problems

Eberhard Bänsch¹ Peter Benner^{2,3} Jens Saak^{2,3} Martin Stoll² <u>Heiko K. Weichelt³</u> Stephan Weller¹

¹ Friedrich-Alexander-Universität Erlangen-Nürnberg Department of Applied Mathematics III

² Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Research group Computational Methods in Systems and Control Theory

³ Chemnitz University of Technology, Department of Mathematics, Research group Mathematics in Industry and Technology

Preconditioning of Iterative Methods 2013 1 July 2013, Czech Technical University in Prague

Iterative Solver for Saddle Point Systems

1 Introduction

- 2 Discretized Control Systems
- 3 Iterative Solver for Saddle Point Systems

4 Conclusion

• models describe incompressible, instationary flow

- viscosity $\nu \in \mathbb{R}^+$, (NSE: Reynolds number $\operatorname{Re} = \frac{v_{ch} \cdot d_{ch}}{\nu} \in \mathbb{R}^+$)
- initial boundary value problem with additional algebraic constraints

Introduction • O	Discretized System	Iterative Solver for Saddle Point Systems	Conclusion OO
Introduction Model Problems			
Flow Models			
Stokes Equation	ons	Navier-Stokes Equations	
$\frac{\partial \vec{v}}{\partial t} - \nu L$	$\Delta \vec{v} + abla p = \vec{f}$	$rac{\partial ec{v}}{\partial t} - rac{1}{Re} \Delta ec{v} + (ec{v} \cdot abla) ec{v} + abla p =$	$=\vec{f}$
	$\operatorname{div} \vec{v} = 0$	div \vec{v} :	= 0

- models describe diffusion and convection process
- Schmidt number $\mathsf{Sc} \in \mathbb{R}^+$, Prandtl number $\mathsf{Pr} \in \mathbb{R}^+$

• Scenario 1: Feedback stabilization of flow field around stationary trajectory in "von Kármán Vortex Street".

• Scenario 2: Feedback stabilization of coupled flow and diffusion-convection field in a reactor model.

Introduction	Discretized System	Iterative Solver for Saddle Point Systems	Conclusion
00			
Introduc Basic Ideas of	tion Feedback Stabilization		

Motivation:

- \hookrightarrow Stabilize flow profiles.
- $\,\hookrightarrow\,$ Attenuate external perturbations.
- $\,\hookrightarrow\,$ Influence flow via boundary conditions.

Introduction	Discretized System	Iterative Solver for Saddle Point Systems	Conclusion
00	000	0000	
Introduction			M
Basic Ideas of Feedb	ack Stabilization		

- Motivation:
 - \hookrightarrow Stabilize flow profiles.
 - $\,\hookrightarrow\,$ Attenuate external perturbations.
 - $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - \hookrightarrow Influence the model via **boundary control**.
 - \hookrightarrow Stabilize the flow around a desired flow profile (stationary trajectory) that is used as linearization point.

ntroduction	Discretized System	Iterative Solver for Saddle Point Systems	Conclusion
00	000	0000	
Introducti	ion		
Basic Ideas of F	eedback Stabilization		

- Motivation:
 - \hookrightarrow Stabilize flow profiles.
 - $\,\hookrightarrow\,$ Attenuate external perturbations.
 - $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - $\,\hookrightarrow\,$ Influence the model via boundary control.
 - → **Stabilize** the flow around a desired flow profile (stationary trajectory) that is used as **linearization point**.
- Analytical approach by [RAYMOND since 2005].
 - $\,\hookrightarrow\,$ Uses Leray projector to project onto the correct subspace.
 - $\hookrightarrow \text{ Extended to finite dimensional controllers [Raymond/Thevenet '10]}.$

ntroduction	Discretized System	Iterative Solver for Saddle Point Systems	Conclusion	
	000	0000		
Introduct	tion		M	
Basic Ideas of	Feedback Stabilization			

- Motivation:
 - \hookrightarrow Stabilize flow profiles.
 - $\,\hookrightarrow\,$ Attenuate external perturbations.
 - $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - $\,\hookrightarrow\,$ Influence the model via boundary control.
 - → **Stabilize** the flow around a desired flow profile (stationary trajectory) that is used as **linearization point**.
- Analytical approach by [RAYMOND since 2005].
 - $\,\hookrightarrow\,$ Uses Leray projector to project onto the correct subspace.
 - \hookrightarrow Extended to finite dimensional controllers [RAYMOND/THEVENET '10].
- \bullet ldeas for numerical treatment based on [BÄNSCH/BENNER '10].
 - $\,\hookrightarrow\,$ Consider linearized Navier-Stokes equations for 2D.
 - \hookrightarrow Discrete projection idea by [Heinkenschloss/Sorensen/Sun '08].
 - \hookrightarrow Use *Newton-ADI* method to compute **optimal control**.

• Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + \mathbf{f}(t),$$
$$\mathbf{0} = G^{T}\mathbf{v}(t).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $\tilde{G} = G$ $\tilde{G} = \begin{bmatrix} G \\ 0 \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$

 Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + \mathbf{f}(t),$$

$$\mathbf{0} = G^{T}\mathbf{v}(t),$$

$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $\tilde{G} = G$ $\tilde{G} = \begin{bmatrix} G \\ 0 \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$

 Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + B\mathbf{u}(t),$$

$$\mathbf{0} = G^{T}\mathbf{v}(t),$$

$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $\tilde{G} = G$ $\tilde{G} = \begin{bmatrix} G \\ 0 \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$

• Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$\frac{M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t)}{\mathbf{0} = G^{T}\mathbf{v}(t),}$$
$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if G
 has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

Scenario 1Scenario 2
$$\mathbf{x}(t) = \mathbf{v}(t)$$
 $\mathbf{x}(t) = \begin{bmatrix} \mathbf{v}(t) \\ \mathbf{c}(t) \end{bmatrix}$ $\tilde{G} = G$ $\tilde{G} = \begin{bmatrix} G \\ 0 \end{bmatrix}$ $A = A_v$ $A = \begin{bmatrix} A_v & 0 \\ -R & A_c \end{bmatrix}$

• Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + B\mathbf{u}(t),$$
$$\mathbf{0} = G^{T}\mathbf{v}(t),$$
$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

• Descriptor system with multiple inputs and outputs (MIMO).

 Applying a standard finite element discretization to the linearized flow/coupled flow problems yields

$$M\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t) + G\mathbf{p}(t) + B\mathbf{u}(t),$$

$$\mathbf{0} = G^{T}\mathbf{v}(t),$$

$$\mathbf{y}(t) = C\mathbf{x}(t).$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

- Descriptor system with multiple inputs and outputs (MIMO).
- Index reduction to apply LQR approach [HEINKENSCHLOSS/SORENSEN/SUN '08].

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \; \mathsf{dt},$$

subject to

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{x}}(t) = \mathcal{A}\tilde{\mathbf{x}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{x}}(t).$$
 (1)

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \; \mathsf{dt},$$

subject to

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{x}}(t) = \mathcal{A}\tilde{\mathbf{x}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{x}}(t).$$
 (1)

Riccati Based Feedback Approach

[e.g.,LOCATELLI '01]

- Optimal control: $\mathbf{u}(t) = -\mathcal{K}\tilde{\mathbf{x}}(t)$.
- Feedback: $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$,

where X is the solution of the generalized algebraic Riccati equation

 $\mathcal{R}(X) = \mathcal{C}^{\mathsf{T}} \mathcal{C} + \mathcal{A}^{\mathsf{T}} X \mathcal{M} + \mathcal{M}^{\mathsf{T}} X \mathcal{A} - \mathcal{M}^{\mathsf{T}} X \mathcal{B} \mathcal{B}^{\mathsf{T}} X \mathcal{M} = 0.$

Discretized System

Iterative Solver for Saddle Point Systems

Discretized Control Systems Nested Iteration

M

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

	d		ti	ſ
00				

Iterative Solver for Saddle Point Systems

Discretized Control Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{BK}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{BK}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Newton Kleinman method

low rank ADI method

Int	tro	du	

Iterative Solver for Saddle Point Systems

Discretized Control Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Step m + 1: solve Lyapunov equation

 $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$

Step i: solve the projected linear system

 $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}} X^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)}$

Vewton Kleinman method

low rank ADI method

Krylov solver

(2)

	lu		

Iterative Solver for Saddle Point Systems

Discretized Control Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

> Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}} X^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (2)

Avoid explicit projection using [Heinkenschloss/Sorensen/Sun '08]:

Vewton Kleinman method

ow rank ADI method

Krylov solver

Intr	od	tic	
oc			

Iterative Solver for Saddle Point Systems

Discretized Control Systems Nested Iteration

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}X\mathcal{M} + \mathcal{M}^{\mathsf{T}}X\mathcal{A} - \mathcal{M}^{\mathsf{T}}X\mathcal{B}\mathcal{B}^{\mathsf{T}}X\mathcal{M} = 0$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^{\mathsf{T}} \mathcal{X}^{(m+1)} \mathcal{M} + \mathcal{M}^{\mathsf{T}} \mathcal{X}^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^{\mathsf{T}} \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y} \qquad (2)$

> Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS)

$$\begin{bmatrix} A^{T} - (K^{(m)})^{T}B^{T} + q_{i}M^{T} & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \begin{bmatrix} V_{i} \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$$

Krylov solver for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs Y.

Newton Kleinman method

Int	tro	du	

Iterative Solver for Saddle Point Systems

Discretized Control Systems

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^T \mathcal{C} + \mathcal{A}^T X \mathcal{M} + \mathcal{M}^T X \mathcal{A} - \mathcal{M}^T X \mathcal{B} \mathcal{B}^T X \mathcal{M} = 0$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{BK}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{BK}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (2)

> Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS) (using Sherman Morrison Woodbury formula)

$$\begin{bmatrix} A^{T} - (K^{(m)})^{T}B^{T} + q_{i}M^{T} & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \begin{bmatrix} V_{i} \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$$

lifferent ADI shifts $q_{i} \in \mathbb{C}^{-}$ for a couple of the Y .

heiko.weichelt@mathematik.tu-chemnitz.de Preconditioning of Saddle Point Systems Arising in Coupled Flow Problems

Newton Kleinman method

ow rank ADI method

Krylov solvei

for c

ьd		

Iterative Solver for Saddle Point Systems

Discretized Control Systems Nested Iteration

Compute feedback matrix $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$ with X solves: $\mathcal{R}(X) = \mathcal{C}^{\mathsf{T}}\mathcal{C} + \mathcal{A}^{\mathsf{T}}X\mathcal{M} + \mathcal{M}^{\mathsf{T}}X\mathcal{A} - \mathcal{M}^{\mathsf{T}}X\mathcal{B}\mathcal{B}^{\mathsf{T}}X\mathcal{M} = 0$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y} \qquad (2)$

> Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: **Replace** (2) and **solve instead** the saddle point system (SPS) (using Sherman Morrison Woodbury formula)

> > $\begin{bmatrix} A^{T} + q_{i}M^{T} & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \begin{bmatrix} V_{i} \\ * \end{bmatrix} = \begin{bmatrix} \tilde{Y} \\ 0 \end{bmatrix}$

Krylov solvei for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs \tilde{Y} .

Newton Kleinman method

ow rank ADI method

Preconditioning of Saddle Point Systems Arising in Coupled Flow Problems

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems Block-Preconditioner

Preconditioned GMRES

- [Elman/Silvester/Wathen '05]
- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} A^T + q_i M^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems Block-Preconditioner

Preconditioned GMRES

[Elman/Silvester/Wathen '05]

- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner P.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} F & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems Block-Preconditioner

Preconditioned GMRES

- [Elman/Silvester/Wathen '05]
- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner **P**.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} F & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} P_F & 0 \\ \tilde{G}^T & -P_{SC} \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems Block-Preconditioner

Preconditioned GMRES

- [Elman/Silvester/Wathen '05]
- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner **P**.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} \mathbf{F} & \tilde{\mathbf{G}} \\ \tilde{\mathbf{G}}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} \mathbf{P}_{\mathbf{F}} & \mathbf{0} \\ \tilde{\mathbf{G}}^{\mathsf{T}} & -\mathbf{P}_{SC} \end{bmatrix}$$

Using algebraic multigrid approximation of F for P_F.
 (Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems Block-Preconditioner

Preconditioned GMRES

- [Elman/Silvester/Wathen '05]
- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner **P**.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} F & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} P_F & 0 \\ \tilde{G}^{T} & -P_{SC} \end{bmatrix}$$

- Using algebraic multigrid approximation of F for P_F.
 (Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)
- Using *least-squares commutator* (LSC) approach for Schur complement approximation *P_{SC}*. [Stoll/WATHEN '11]

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems Block-Preconditioner

Preconditioned GMRES

- [Elman/Silvester/Wathen '05]
- Use iterative methods because size becomes quite large.
- Using GMRES for non-symmetric SPS and a block-preconditioner **P**.
- Ideas for NSE can be adapted to coupled flow problems.

$$\mathbf{F} = \begin{bmatrix} A^T + q_i M^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P} = \begin{bmatrix} P_F & 0 \\ \tilde{G}^T & -P_{SC} \end{bmatrix}$$

- Using algebraic multigrid approximation of F for P_F.
 (Yvan Notay, AGMG software, documentation; http://homepages.ulb.ac.be/~ynotay/AGMG)
- Using *least-squares commutator* (LSC) approach for Schur complement approximation *P_{SC}*. [Stoll/WATHEN '11]
- Problems: Preconditioner changes in every ADI step,
 - SPS has to be solved for a number of right hand sides.

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 1 $\begin{bmatrix} A^T + a; M^T & G \end{bmatrix}$

$$\mathbf{F}_{NSE} = \begin{bmatrix} A_{v}^{T} + q_{i} M_{v}^{T} & G \\ G^{T} & 0 \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{v} & G \\ G^{T} & 0 \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 1

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{\nu}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 1

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^{T} & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{\nu}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

$$\mathsf{P}_{NSE} \begin{bmatrix} \mathsf{x}_{v} \\ \mathsf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathsf{b}_{v} \\ \mathsf{b}_{p} \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{\nu}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

To apply preconditioner \mathbf{P}_{NSE} solve:

$$\mathbf{P}_{NSE} \begin{bmatrix} \mathbf{x}_{\nu} \\ \mathbf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\nu} \\ \mathbf{b}_{p} \end{bmatrix}$$

Precondition stepsStep I: $\mathbf{x}_{v} = P_{F_{v}}^{-1} \mathbf{b}_{v}$ Step II: $\mathbf{x}_{p} = P_{SC}^{-1} (G^{T} \mathbf{x}_{v} - \mathbf{b}_{p})$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{\nu}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{NSE} \begin{bmatrix} \mathbf{x}_{\nu} \\ \mathbf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\nu} \\ \mathbf{b}_{p} \end{bmatrix}$$

Precondition steps
Step I:
$$\mathbf{x}_{v} = P_{F_{v}}^{-1}\mathbf{b}_{v}$$

Step II: $\mathbf{x}_{p} = P_{SC}^{-1} (G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{\nu}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

To apply preconditioner \mathbf{P}_{NSE} solve:

$$\mathbf{P}_{NSE} \begin{bmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{v} \\ \mathbf{b}_{p} \end{bmatrix}$$

Precondition steps Step I: $\mathbf{x}_{v} = P_{F_{v}}^{-1}\mathbf{b}_{v}$ Step II: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$ LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

Implemented Solvers

• algebraic *multigrid* approximation (Yvan Notay, AGMG software + documentation)

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{NSE} = \begin{bmatrix} F_{\nu} & G \\ G^{T} & 0 \end{bmatrix} \quad \Rightarrow \quad \mathbf{P}_{NSE} = \begin{bmatrix} P_{F_{\nu}} & 0 \\ G^{T} & -P_{SC} \end{bmatrix}$$

To apply preconditioner \mathbf{P}_{NSE} solve:

$$\mathbf{P}_{NSE} \begin{bmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{v} \\ \mathbf{b}_{p} \end{bmatrix}$$

Precondition steps Step I: $\mathbf{x}_{v} = P_{F_{v}}^{-1}\mathbf{b}_{v}$ Step II: $\mathbf{x}_{p} = P_{SC}^{-1} (G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$ LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

Implemented Solvers

- algebraic *multigrid* approximation (Yvan Notay, AGMG software + documentation)
- Chebyshev semi-iteration [STOLL/WATHEN '11]

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

$$\mathbf{F}_{DCE} = \begin{bmatrix} A_{v}^{T} + q_{i}M_{v} & -R^{T} & G \\ 0 & A_{c}^{T} + q_{i}M_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix}$$

Iterative Solver for Saddle Point Systems 0000

Iterative Solver for Saddle Point Systems NSE+DCE

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_v & -R^T & G \\ 0 & F_c & 0 \\ G^T & 0 & 0 \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 2

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE} \begin{bmatrix} \mathbf{x}_{v} \\ \mathbf{x}_{c} \\ \mathbf{x}_{p} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{v} \\ \mathbf{b}_{c} \\ \mathbf{b}_{p} \end{bmatrix}$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
Step I: $\mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c}$
Step II: $\mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 2

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
Step I: $\mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c}$
Step II: $\mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 2

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

$$\mathbf{P}_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
Step I: $\mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c}$
Step II: $\mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v})$
Step III: $\mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p})$
LSC: $P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1}$

$$\mathbf{P}_{SC} = \mathbf{F}_{SC}^{-1}(\mathbf{x}_{v} - \mathbf{b}_{p})$$

Discretized System

Iterative Solver for Saddle Point Systems

Conclusion 00

Iterative Solver for Saddle Point Systems

Preconditioner for Scenario 2

$$\mathbf{F}_{DCE} = \begin{bmatrix} F_{v} & -R^{T} & G \\ 0 & F_{c} & 0 \\ G^{T} & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{P}_{DCE} = \begin{bmatrix} P_{F_{v}} & -R^{T} & 0 \\ 0 & P_{F_{c}} & 0 \\ G^{T} & 0 & -P_{SC} \end{bmatrix}$$

To apply preconditioner $\boldsymbol{P}_{\textit{DCE}}$ solve:

$$\mathbf{P}_{DCE}\begin{bmatrix}\mathbf{x}_{v}\\\mathbf{x}_{c}\\\mathbf{x}_{p}\end{bmatrix} = \begin{bmatrix}\mathbf{b}_{v}\\\mathbf{b}_{c}\\\mathbf{b}_{p}\end{bmatrix}$$
Precondition steps
$$\begin{array}{l} \text{Step I:} \quad \mathbf{x}_{c} = P_{F_{c}}^{-1}\mathbf{b}_{c} \\ \text{Step II:} \quad \mathbf{x}_{v} = P_{F_{v}}^{-1}(R^{T}\mathbf{x}_{c} + \mathbf{b}_{v}) \\ \text{Step III:} \quad \mathbf{x}_{p} = P_{SC}^{-1}(G^{T}\mathbf{x}_{v} - \mathbf{b}_{p}) \\ \text{LSC:} \quad P_{SC}^{-1} \approx M_{p}^{-1}F_{p}S_{p}^{-1} \end{array}$$

$$\begin{array}{l} \text{Implemented Solvers} \\ \bullet \text{ algebraic multigrid approximation} \\ (Yvan Notay, AGMG software + documentation) \\ \bullet \text{ Chebyshev semi-iteration} \\ [\text{STOLL/WATHEN '11]} \end{array}$$

	Discretized System	Iterative Solver for Saddle Point Systems	Conclusio
			•0
Conclusion			M

Review

- Showed flow problems and coupled systems.
- Applied boundary feedback stabilization approach to DAE.
- Newton-ADI of projected system leads to nested iteration with SPS in the innermost loop.
- Investigated block-preconditioner depending on problem structure.

	Discretized System	Iterative Solver for Saddle Point Systems	Coi
			00
Conclusion			

clusion

Review

- Showed flow problems and coupled systems.
- Applied boundary feedback stabilization approach to DAE.
- Newton-ADI of projected system leads to nested iteration with SPS in the innermost loop.
- Investigated block-preconditioner depending on problem structure.

Outlook

- Improve *multigrid* solver for complex ADI shifts q_i.
- Improve Krylov solver via the use of recycling or block techniques.
- Investigated the relations inside the threefold nested iteration.

d		ti	

Iterative Solver for Saddle Point Systems

Conclusion

Review

- Applied boundary feedback stabilization approact entry
 Newton-ADI of projected system leads to neather ation with SF in the innermost loop.
 Investigated block-preconditionar North ration with SPS
 - Nany thanks for

Outlook

- Improve for complex ADI shifts q_i .
- wher via the use of recycling or block techniques.
 - the relations inside the threefold nested iteration.

ntroduction 00	Discretized System	Iterative Solver for Saddle Point Systems	Conclusion ⊙●
Liter	rature		M
	E. BÄNSCH AND P. BENNER, <i>Stabi</i> <i>Riccati-Based Feedback</i> , in Constra Differential Equations, G. Leugering Series of Numerical Mathematics, E	lization of Incompressible Flow Problems by ined Optimization and Optimal Control for Par and S. Engell et al., eds., vol. 160 of Internati irkhäuser, 2012, pp. 5–20.	tial onal
	P. BENNER AND J. SAAK, A Galeri Algebraic Riccati Equations, Preprir	in-Newton-ADI Method for Solving Large-Scal ht DFG-SPP1253-090, SPP1253, 2010.	e
	P. BENNER, J. SAAK, M. STOLL, A Saddle Point Systems Arising in Rid Incompressible Stokes Flow, Preprin	NND H. K. WEICHELT, <i>Efficient Solution of La</i> <i>ccati-Based Boundary Feedback Stabilization of</i> t DFG-SPP1253-130, SPP1253, 2012.	rge-Scale

H. ELMAN, D. SILVESTER, AND A. WATHEN, *Finite Elements and Fast Iterative Solvers:* with applications in incompressible fluid dynamics, Oxford University Press, Oxford, 2005.

J. RAYMOND, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), pp. 790–828.

00	000	00	00	00
Appendix Scenario 1: NSE or	n "von Kármán Vort	ex Street"		
PDE: NSE Goal: $\vec{z} = \vec{v} - \vec{w} - \vec{w}$ \rightarrow Linearized Navie $\frac{\partial \vec{z}}{\partial t} - \frac{1}{\text{Re}}\Delta \vec{z} + (\vec{z} + \vec{z})$ defined on $(0, \infty)$ = + boundary and in	ightarrow 0 er-Stokes equation $(\cdot abla \cdot abla) ec w + (ec w \cdot abla) ec z$ $ imes \Omega$ itial conditions	s: + $\nabla p = 0$ div $\vec{z} = 0$	LQR Minimize $\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda \mathbf{y} ^2 + \mathbf{u} ^2$ s.t. $\begin{bmatrix} M_z & 0\\ 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z}\\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_z & G\\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z}\\ \mathbf{p} \end{bmatrix}$ $\mathbf{y}(t) = C_z \mathbf{z}(t)$	$ ^2 dt + \begin{bmatrix} B_z \\ 0 \end{bmatrix} \mathbf{u}$

Minimize

$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \, \mathrm{dt}$$
s.t.

$$\begin{bmatrix} M_z & 0 & 0 \\ 0 & M_c & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_z & 0 & G \\ R & A_c & 0 \\ G^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} B_z \\ 0 \\ 0 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y}(t) = C_c \mathbf{c}$$

$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \, \mathrm{dt}$$

s.t.
$$\begin{bmatrix} M_z & 0 & 0\\ 0 & M_c & 0\\ 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z}\\ \mathbf{c}\\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_z & 0 & G\\ R & A_c & 0\\ G^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z}\\ \mathbf{c}\\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} B_z\\ 0\\ 0 \end{bmatrix} \mathbf{u}$$
$$\mathbf{y}(t) = C_c \mathbf{c}$$

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_{0}^{\infty}\lambda||\mathbf{y}||^{2}+||\mathbf{u}||^{2}\,\mathrm{d}\mathbf{x}$$

s.t.

$$\mathcal{M}\frac{d}{dt}\begin{bmatrix}\tilde{\mathbf{z}}\\\mathbf{c}\end{bmatrix} = \mathcal{A}\begin{bmatrix}\tilde{\mathbf{z}}\\\mathbf{c}\end{bmatrix} + \begin{bmatrix}\mathcal{B}\\\mathbf{0}\end{bmatrix}\mathbf{u}$$
$$\mathbf{y}(t) = C_c\mathbf{c}$$

[Heinkenschloss/Sorensen/Sun '08]

6 Newton step m 7

8

9

10

 10^{-8}

 10^{-10}

 10^{-12}

1

2

3

4

5

Relative change of feedback matrix K for different Reynolds numbers $(\lambda = \rho = 1, n = 5468, \text{ direct solver}, tol_{NM} = 10^{-8}, \text{ tol}_{ADI} = 10^{-4}).$

