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Motivation

The standard algorithms for dense matrices become expensive for large matrices,
since the number of floating point operations often grows like n3. Therefore it is neces-
sary to have data-sparse algorithms that use the problem-inherent structure to reduce
the computational complexity. Data-sparse means that the matrix can be represented
with much fewer than n2 storage. This is for instance the case for rank or tensor
structured matrices.
We have worked on new highly efficient algorithms for hierarchical matrices and ma-
trices in tensor train matrix format. Here we will focus on one eigenvalue algorithm for
symmetric matrices of both classes of data-sparse matrices.
Let M ∈ Cn×n. Then the pair (λ, v ) is called eigenpair if it fulfills the equation:

Mv = λv .

If M is real and symmetric, i.e., M = MT ∈ Rn×n, then λ ∈ R and v ∈ Rn.

Hierarchical Matrices

Hierarchical (H-)matrices, see [2], are a data-sparse representation of dense matri-
ces. With the help of a hierarchical structure the matrix is partitioned into submatrices.
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Figure 1: H-matrix structure diagram.

Most of these submatrices have good low rank approxima-
tions and are represented by those, but a few do not. These
submatrices have to be stored as dense matrices. This
leads to an efficient hierarchical rank structure:
• adaptive rank k (ε)
• storage NSt ,H(T , k ) = O(n log n k (ε))
• approximate arithmetic operations

MHv O(n log n k (ε))
+H,−H O(n log n k (ε)2)
∗H,HLU(·), (·)−1

H ,HLDLT O(n (log n)2 k (ε)2)

FEM and boundary element matrices and their inverses can be approximated by hier-
archical matrices. In [4] H-matrices are used for modeling population dynamics.

Tensor-Train Matrices

Matrices in tensor-train matrix (ttm) format, see [6], can be represented by

M =
∑

α1,...,αd

M1(i1, j1,α1)M2(α1, i2, j2,α2) · · ·Md(αd−1, id , jd).

If we split the row index i of M into (i1, i2, ... , id) and the column index j into (j1, j2, ... , jd).
The coupling indices αi run from 1 to ri < r , the local ranks of the tensor train.

G1(i1, j1,α1) α1 G2(α1, i2, j2,α2) α2 · · · αd−1 Gd(αd−1, id , jd)

The matrix M ∈ Rn×n, with n = `d can be stored in the ttm format with only
(d − 2)`2r2 + 2 `2r entries, so that the storage complexity is logarithmic in n. Vectors
v ∈ Rn can be stored in the related tensor-train format.

Preconditioned Inverse Iteration

The preconditioned inverse iteration (PINVIT), see [3], is an efficient method for the
computation of the smallest eigenvalue(s) of symmetric, positive definite matrices.
The method needs a number of steps independent of the matrix dimension n.
The smallest eigenpair is also the minimum of the Rayleigh quotient

µ(x) := µ(x , M) :=
xTMx
xTx

.

PINVIT now minimizes this function by applying an inexact Newton method leading to
the update equation

xi+1 := xi − B−1 (Mxi − xiµ(xi)) ,

where B is a preconditioner for M fulfilling

‖I − B−1M‖M ≤ c < 1.

The convergence rate of the method depends on c, so c should be small, say 0.2.
Since one has to compute the residual r (xi) := Mxi − xiµ(xi) in each step anyway,
one can use the norm of the residual ‖r (xi)‖2 as stopping criterion. If the residual is
smaller than ε, then we often have computed the eigenvalue already to an accuracy
of approximately ε2.

Folded Spectrum Method

The computation of inner eigenvalues is usually realized by shifting the matrix M,

(x − σ)2

Λ(M) Λ(Mσ)
so that the sought eigenvalue becomes the smallest
magnitude eigenvalue of M − σI. That is not pos-
sible here, since PINVIT requires M to be positive
definite. So we have to apply the folded spectrum
method, see [7]. We use Mσ = (M − σI)2 instead of
M. The advantage is that Mσ is positive definite and
has the same eigenvectors as M. We then compute
the smallest eigenpairs of Mσ. Finally we get the
sought inner eigenvalues by computing the Rayleigh
quotient for the eigenvectors and M.

PINVIT for Data-Sparse Matrices

The preconditioned inverse iteration is ideal for data-sparse matrix formats, since it
requires only
• the computation of a preconditioner (e.g., Xk = Xk−1(2I −MXk−1), Xk → M−1) and
• matrix-vector products.

Both formats here provide these operations in an efficient way. In the future we will ex-
tend these examinations to other data-sparse matrix formats and to other algorithms.

Numerical Results

H-Matrix 3D Laplace [1]

n tchol in s tPINVIT in s tMATLAB eigs in s

512 0.07 0.03 0.05
4 096 1.92 0 45 0.36

32 768 75.83 7.40 28.43
262 144 2 597.82 194.89 1 932.03

Tensor-Train Matrix 4D Laplace [5]

n tinv in s tPINVIT in s error

4 096 0.873 23.993 1.7104 e−07
65 536 1.436 119.348 5.9876 e−08

1 048 576 5.975 497.812 2.2100 e−08
16 777 216 12.655 1 710.326 7.9299 e−09

268 435 456 23.628 7 898.374 5.1963 e−10
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