Minerva Logo of the MPG

Computational Methods in Systems and Control Theory


DFG-Project

Integrated Simulation of the System "Machine Tool - Actuation - Stock Removal Process" based on Model Order Reduction of the Structural FEM Model


Project Description:

Machine tools today are complex mechatronic production systems, whose development takes place under enormous pressure on innovation, time and rising costs. The simulation technique thereby represents a key technology for the early recognition of product properties. Their employment is the more effective, the earlier in the product development process substantial insight on the behavioral character of the overall system can be achieved. In the ideal case e.g. the feasibility of new functions, quality and performance requirements can be warranted while still in the design phase. A particularly efficient and early applicable technique for the estimation of the attainable efficiency and accuracy of numerical control machine drafts is the coupling of finite element models of the mechanical structure with the regulation-technical simulation of the electrical drive systems. Already first draft models of the mechanical and electrical construction as well as control engineering are integrated into a mechatronic overall model at only slight auxiliary expenditure for the models data processing.

The emphasis of the research project to this method is the employment and the adjustment of new mathematical procedures for the automated model reduction of the finite element models, the efficient modeling of couplings of rotational and ball-type linear drives with the machine tool frame, as well as the implementation of a process model for machining by stock removal, and the verification of the suitability of the developed models for process control.

Runtime:

01-JAN-2006 - 31-DEC-2008

Participating Institutes:

Publications with (co-)authors from Chemnitz:

Presentations and talks by MiIT members:

Links:

©2024, Max Planck Society, Munich
Jens Saak, jens.saak@mathematik.tu-chemnitz.de
02 April 2020