ESPIRA method for the recovery of exponential sums

Nadiia Derevianko
University of Göttingen

We introduce a new method - ESPIRA (Estimation of Signal Parameters via Iterative Rational Approximation) [1, 2] - for the recovery of complex exponential sums

$$
f(t)=\sum_{j=1}^{M} \gamma_{j} \mathrm{e}^{\lambda_{j} t}
$$

that are determined by a finite number of parameters: the order M, weights $\gamma_{j} \in \mathbb{C} \backslash$ $\{0\}$ and nodes $\mathrm{e}^{\lambda_{j}} \in \mathbb{C}$ for $j=1, \ldots, M$. Our new recovery procedure is based on the observation that Fourier coefficients (or DFT coefficients) of exponential sums have a special rational structure. To reconstruct this structure in a stable way we use the AAA algorithm proposed by Nakatsukasa et al. [3]. We show that ESPIRA can be interpreted as a matrix pencil method applied to Loewner matrices. During the talk we will demonstrate that ESPIRA outperforms Prony-like methods such as ESPRIT for noisy data and for signal approximation by short exponential sums.

References

[1] N. Derevianko, G. Plonka, Exact reconstruction of extended exponential sums using rational approximation of their Fourier coefficients, Anal. Appl., 20(3), 2022, 543-577.
[2] N. Derevianko, G. Plonka, M. Petz, From ESPRIT to ESPIRA: Estimation of signal parameters by iterative rational approximation, IMA J. Numer. Anal., 43(2), 2023, 789827.
[3] Y. Nakatsukasa, O. Sète, L.N. Trefethen, The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 40(3), 2018, A1494-A1522.

