
FlexiBLAS - A flexible BLAS library with
runtime exchangeable backends

Martin Köhler and Jens Saak
Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg,

Research Group Computational Methods in Systems and Control Theory

Motivation

The BLAS library is one of the fundamental software packages in Scientific Comput-
ing. Beside the reference implementation from Netlib many optimized variants like
Intel® MKL, AMD ACML, Apple Accelerate, OpenBLAS or ATLAS exist.

We consider an example application which depends on BLAS, LAPACK and UMF-
PACK. LAPACK and UMFPACK depend on BLAS as well. If we link an application
dynamically against a default BLAS implementation named libblas.so we get:

Application

libblas.so

liblapack.so

libumfpack.so

libblas.so

If we now want to exchange the BLAS library for benchmark or debugging pur-
poses and simply relink our application, e.g., against libopenblas.so, but leave
liblapack.so and libumfpack.so untouched we end up with:

Application

libopenblas.so

liblapack.so

libumfpack.so

libblas.so

Symbol Resultion
Conflicts

This conflict yields an unusable application or not all parts of the application use the
desired BLAS variant.

Our Aim: Find a possibility to exchange the BLAS library at runtime without relinking
the application and all its dependencies. Further the mechanism should not require
super user privileges like the update-alternatives or the eselect mechanism.

Key Idea

We introduce a wrapper -library which passes all BLAS function calls to a previously
selected backend library. Our wrapper, i.e. Application Programming Interface (API)
and Application Binary Interface (ABI), exactly looks like the Netlib reference BLAS im-
plementation. The backend is selected via an environment variable or a configuration
tool which works with standard user-privileges.

Now, we only have to link all libraries against the wrapper library libflexiblas.so

and we can switch painlessly between different BLAS implementations

Backends

Netlib

OpenBLAS

Intel MKL

...

Application

liblapack.so

libumfpack.so

libflexiblas.so

Environment Variables

Profiling

Implementation

Our wrapper uses the POSIX dlopen mechanism to load the selected BLAS back-
end. Each BLAS symbol is resolved using dlsym when the application starts. These
symbols are used to call the real BLAS function from the wrapper functions in our
library. Each wrapper function has the same signature as the corresponding Netlib
BLAS function but only passes its arguments to the previously loaded symbol. In the
case of the single precision dot-product sdot this looks like:

Application FlexiBLAS

Backend

d = sdot(...); sdot wrapper

pointer to sdot in
the backend

dlopen
dlsym

float sdot(...)

Eventually existing return values take the path back to the application again.

Octave Interface

Change the number of threads in the backend:
Many BLAS libraries like OpenBLAS, Intel® MKL, or AMD ACML can adjust the num-
ber of threads:

flexiblas_set_num_threads(1);

[L, U, P] = lu(A); % Performed with one thread.

flexiblas_set_num_threads(4);

[Q, R] = qr(A); % Performed with four threads.

Load and switch backends:
Due to different optimizations, debugging, or benchmarks one can load different BLAS
backends and switch between them:

n = 4096;

A = rand(n); B = rand(n); C = zeros(n);

% Load OpenBLAS and Intel MKL

backend(1) = flexiblas_load_backend("OPENBLAS");

backend(2) = flexiblas_load_backend("MKL");

if (any (backend < 0))

error(’Failed to load backends’);

end

for i=1:length(backend)

flexiblas_switch (backend(i));

tic;

C = A * B;

t = toc;

fprintf(1, ’Backend %s took %g seconds.\n’);

end

flexiblas_switch(0); % Restore the default backend.

Profiling

By introducing a wrapper function for each BLAS function, we get the opportunity to
include time measurement and a call counter. The profiling results are printed to the
screen or a file after the application terminates. In this way, we can profile the usage
of the BLAS in arbitrary applications.

Example: Analyze the BLAS usage
during the LU decomposition of a
random matrix in GNU Octave:
A = rand(2000,2000);

[L,U,P] = lu (A);

Function Runtime in s Calls

dgemm 2.6776190e+00 31

dger 7.0498466e-02 1968

dscal 1.4417171e-03 1999

dswap 1.4176369e-03 1996

dtrsm 1.9094133e-01 31

Features

• No super user privileges are required to exchange the BLAS library.
• No need to recompile dependent libraries.
• “Painless” usage of complex BLAS libraries like Intel® MKL.
• No complicated dealing with LD LIBRARY PATH or LD PRELOAD anymore.
• Easy basic profiling without special compiler flags or additional tools.
• Generic interface to the “set-number-of-threads” function (if available).
• BLAS-extensions from OpenBLAS and Intel® MKL are included.
• Automatic adjustment of ifort/g77-like complex return values.

In development:
• LAPACK support (≈ 3800 subroutines, code generator nearly ready).
• Backends for accelerator support in level-2 and level-3 BLAS calls.

Resources

• http://www.mpi-magdeburg.mpg.de/projects/flexiblas/
• M. Köhler and J. Saak, FlexiBLAS - A flexible BLAS library with runtime exchange-
able backends, LAPACK Working Note 284, 2013

