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What is BLAS?

Basic Linear Algebra Subprograms (BLAS)

“The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard

building blocks for performing basic vector and matrix operations. . . . Because the BLAS

are efficient, portable, and widely available, they are commonly used in the development

of high quality linear algebra software, LAPACK for example.”4

Used in many software packages:

MATLAB®, GNU Octave

NumPy, SciPy

Julia

FEM Packages like FEniCS, DEAL.II, . . .

Libraries like PetSC, Trillinos, Eigen, SuiteSparse, . . .

4From: http://www.netlib.org/blas/faq.html – What and where are the BLAS?
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What is BLAS?

Some important BLAS implementations:

NetLib BLAS: http://www.netlib.org/blas/ (the reference)

OpenBLAS: http://www.openblas.net/ (uses assembler level optimization)

Automatically Tuned Linear Algebra Software (ATLAS):
http://math-atlas.sourceforge.net/ (automatic compile-time tuning)

BLIS (BLAS-like Library Instantiation Software Framework):
https://github.com/flame/blis (alternative approach to BLAS)

Intel® Math kernel library (MKL):
http://software.intel.com/en-us/intel-mkl/ (fastest on Intel CPUs)

Apple Accelerate, IBM ESSL, . . .

FlexiBLAS

Lightweight wrapper library around all BLAS and LAPACK
subroutines using a plugin framework.

Ability to overload all BLAS and LAPACK subroutines.

Developed since 2013.
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Why do we develop FlexiBLAS?
Main Reason: Linker Problems

Application

libblas.so

liblapack.so

libumfpack.so

libblas.so

Figure: A sample application using BLAS

gcc -o application app.o -lumfpack -llapack -lblas

With FlexiBLAS one switches the BLAS library without relinking and
producing such conflicts.
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Why do we develop FlexiBLAS?
Further Reasons

Compatibility: Different interface styles of GNU Fortran, Intel Fortran,. . .

Vendor-added Routines: xAXPBY, xOMATCOPY, . . .

Bad Linking Behavior: e.g. longish linker setups for MKL or ATLAS.

Time consuming rebuilding: Switching BLAS and LAPACK may require
rebuilding a whole project.

Super User Privileges: Most solutions provided by OS vendors require
administrator rights for this.

FlexiBLAS provides easy to use solutions for these problems.
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Profiling

Profiling usually requires additional compiler settings.

Profiling data requires additional (sometimes confusing) tools for evaluation.

Profiling often induce considerable overhead influencing the runtime behavior
of the profiled application.

Hardly possible if only precompiled binaries are available.

However, what is happening behind high-level interfaces like Octave, SciPy, . . . ?

Our Focus

To get an idea of what is going on in the application, we need to collect some
basic statistics.

Basic profiling should:

count the number of calls for each BLAS subroutine

and measure the runtime taken by the BLAS library

without recompiling/patching/modifying the application.
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Inspecting

Similar to profiling but:

works for each function/subroutine call individually

and gathers runtime, function/subroutine arguments, threads-ids, . . .

Inspecting normally requires:

code compiled with debug information or annotations,

tools for dynamic insertion of code into binaries, (e.g.: Dyninst, Score-P)

OS support for various tracing tools, (e.g.: DTrace, FTrace)

modified (wrapper) libraries, (e.g.: eztrace)

or ugly tricks using LD PRELOAD. (e.g.: eztrace)

Our Goal

Collect the meta information of all BLAS calls including scalar function
arguments, starting and finishing times, and the id of the executing thread.
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How is it Implemented?

s = ddot();

Application

ddot wrapper

Backend Selection

pointer to ddot in
the backend

FlexiBLAS

double ddot()

Backend
(OpenBLAS, MKL, . . . )

double hook ddot()
{
...
s=real ddot();
...
return s;
}

Overloaded Function

Beside calling the real BLAS/LAPACK implementation, the
overloaded functions do:

Profiling:

count the function calls

measure time

Inspecting:

collect all arguments

obtain thread-id

measure time

Overloaded Functions:
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How is it Implemented?

We have ≈ 140 BLAS and more than 1 500 LAPACK subroutines.

Python based code-gen

NumPy’s f2py module allows f77/f90 function headers to be parsed:

Extracts all subroutine/function headers.
Provides information about scalar and array arguments.

FlexiBLAS uses the Python template engines to create Fortran-ABI
compatible C functions for all extracted subroutines/functions.

Storing Inspection Data

Everything is stored in a fixed size buffer. (50 000 entries by default)

The buffer is secured using atomic variables or mutexes.

If the buffer is full or the program ends, the buffer is flushed to an SQLite
database.
→ Fast and structured access to the collected data.
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FlexiBLAS Features

Profile Viewer

Extract basic profiling data to a human-readable format or convert it into an
easily processable format.

Function Call Replay

Execute each BLAS/LAPACK call again with random data

to compare against Netlib BLAS for correctness

or to search the fastest BLAS library for this operation.

Trace Generation

Create timelines from all performed BLAS/LAPACK calls including their thread
affinity to visualize parallel workflows.

Alternative Usage of Overloading Capabilities – Automatic Offload

The collected data can help determine if there is a benefit to offloading certain
operations to accelerator devices (GPUs, Xeon Phis, FPGAs). FlexiBLAS allows
this to be done automatically per BLAS/LAPACK function.
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Example Usage
BLAS and GNU Octave 4.2.1

How does GNU Octave use the BLAS library?

function [x] = conjgrad(A, b, x)
r = b - A * x;
p = r;
rsold = r’ * r;
for i = 1:length(b)

Ap = A * p;
alpha = rsold / (p’ * Ap);
x = x + alpha * p;
r = r - alpha * Ap;
rsnew = r’ * r;
if sqrt(rsnew) < 1e-10

break;
end;
p = r + (rsnew / rsold) * p;
rsold = rsnew;

end
end

A = full(sprandsym(1000,1.0));
b = A*ones(1000,1);
x = conjgrad(A,b,zeros(1000,1));
norm(A*x-b)/norm(b)
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Profiling:

Subroutine # Calls acc. Time
ddot 1000 1.11e-03s
dgemv 1003 4.04e-01s
dsyrk 1001 5.61e-03s
dlamch 5 2.69e-05s

Observations

Vector addition/scaling/norms not
mapped to BLAS.

Where does the symmetric rank-k
update come from?
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Inspecting:
DSYRK computes

C := αA · AT + βC if trans=’N’

or

C := αATA + βC , if trans=’T’

with A ∈ Rn×k or A ∈ Rk×n and C ∈ Rn×n.

All 1001 DSYRK calls use:

trans = ’T’

n = 1, k = 1000,

α = 1.0, and β = 0

→ Misuse of DSYRK to compute the
squared 2-norm of a vector.
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Example Usage
OpenBLAS – Issue #1332

Bug Description: (OpenBLAS up to version 0.2.20)

The DTRMV routine computes
x := αTx

with α ∈ R, x ∈ Rn, and T ∈ Rn×n upper or lower triangular.

For example we had production code, where T was stored with leading dimension 64 and
n increased from 1 to 64 during an iterative process:

if n > 16, the result x gets perturbed,

if n > 32, the result x is completely wrong.

Detection through replaying and comparison to Netlib BLAS:
...
Cor. RESULT: DTRMV(U,N,N, 16, A, 64, X, 1) MAXERR = 0.00D+00
Pert. RESULT: DTRMV(U,N,N, 17, A, 64, X, 1) MAXERR = 0.56D-13
...
Pert. RESULT: DTRMV(U,N,N, 32, A, 64, X, 1) MAXERR = 0.58D-10
Wrong RESULT: DTRMV(U,N,N, 33, A, 64, X, 1) MAXERR = 0.59D+06
...

Race-Condition: The error only appears if OpenBLAS uses multi-threading
on highly optimized platforms.

First Workaround: Threading for xTRMV is deactivated.

Current Situation:

Seems to exist more than 10 years.

Longish discussion (more than 60 comments).

Still not clear where the race condition comes from.

Also affects another race condition on the OpenPOWER 8 platform.

The DAXPY operation seems to be involved as well.

FlexiBLAS helps to accelerate the testing of different OpenBLAS
configurations.
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Wrong RESULT: DTRMV(U,N,N, 33, A, 64, X, 1) MAXERR = 0.59D+06
...

Race-Condition: The error only appears if OpenBLAS uses multi-threading
on highly optimized platforms.

First Workaround: Threading for xTRMV is deactivated.

Current Situation:

Seems to exist more than 10 years.

Longish discussion (more than 60 comments).

Still not clear where the race condition comes from.

Also affects another race condition on the OpenPOWER 8 platform.

The DAXPY operation seems to be involved as well.

FlexiBLAS helps to accelerate the testing of different OpenBLAS
configurations.
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Example Usage
Parallel Algorithms – Trace Analysis

TileQR [Buttari et. al. ’09 – ’15]

Reformulation of the Storage Compact QR decomposition parallelized using
Direct-Acylic-Graph(DAG) on top of OpenMP 4.

do k=1, min(mb,nb)
!$omp task depend(inout:a(k,k))
call dgeqrt(a(k,k))
!$omp end task
do j=k+1,nb
!$omp task depend(in:a(k,k)) depend(inout:a(k,j))
call dgemqrt(a(k,k), a(k,j))
!$omp end task

end do
do i=k+1, mb
!$omp task depend(inout:a(k,k), a(i,k))
call dtpqrt(a(k,k), a(i,k))
!$omp end task
do j=k+1, nb

!$omp task depend(in:a(k,k),a(i,k)) &
! & depend(inout:a(k,j),a(i,j))
call dtpmqrt(a(k,k), a(i,k), a(k,j), a(i,j))
!$omp end task

end do
end do

end do

Scales well on
Multi-Core CPU.

No threading support in
BLAS required.

But how are the single
LAPACK calls

executed in parallel?

Use start-time, end-time, and thread-id from the SQLite database to visualize
the program flow directly as TikZ/LATEX:

Visualization:
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Multi-Core CPU.
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executed in parallel?

Thread 0
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Single Thread Execution

Use start-time, end-time, and thread-id from the SQLite database to visualize
the program flow directly as TikZ/LATEX:

Visualization:
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Example Usage
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executed in parallel?

Thread 0
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Two Thread Execution

Use start-time, end-time, and thread-id from the SQLite database to visualize
the program flow directly as TikZ/LATEX:

Visualization:
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Example Usage
Parallel Algorithms – Trace Analysis

TileQR [Buttari et. al. ’09 – ’15]

Reformulation of the Storage Compact QR decomposition parallelized using
Direct-Acylic-Graph(DAG) on top of OpenMP 4.
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end do

Scales well on
Multi-Core CPU.

No threading support in
BLAS required.

But how are the single
LAPACK calls

executed in parallel?

Thread 0

Thread 1

Thread 2

Thread 3

0.0ms 10.0ms 20.0ms 30.0ms 40.0ms

GEQRT GEMQRT TPQRT

TPMQRT

Four Thread Execution

Use start-time, end-time, and thread-id from the SQLite database to visualize
the program flow directly as TikZ/LATEX:

Visualization:
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Conclusions and Outlook

Conclusions

Used FlexiBLAS’s overloaded functions for debugging.

Implemented a profiling/inspection using SQLite as a data store.

Developed analysis tools to assist debugging and performance analysis.

Found some interesting bugs in software packages (ours and others).

Outlook

Develop more analysis tools and continue improving existing ones.

Integrate automatic offloading as overloaded functions.

Details:

M. Köhler and J. Saak, FlexiBLAS - A flexible BLAS library with
runtime exchangeable backends, Tech. Rep. 284, LAPACK Working Note,
Jan. 2014.

Thank you very much for your attention!

for the software package visit:
http://www.mpi-magdeburg.mpg.de/projects/flexiblas

https://doi.org/10.5281/zenodo.569102
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Martin Köhler, koehlerm@mpi-magdeburg.mpg.de FlexiBLAS 14/14

http://www.mpi-magdeburg.mpg.de/projects/flexiblas
https://doi.org/10.5281/zenodo.569102
mailto:koehlerm@mpi-magdeburg.mpg.de

	What is BLAS?
	Why do we develop FlexiBLAS?
	Main Reason: Linker Problems

	Profiling
	Inspecting
	How is it Implemented?
	FlexiBLAS Features
	Example Usage
	BLAS and GNU Octave 4.2.1
	OpenBLAS – Issue #1332
	Parallel Algorithms – Trace Analysis

	Conclusions and Outlook

