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Job Description
Consider the continuous-time linear time-invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn is the descriptor vector,
u(t) ∈ Rm is the input vector, and y(t) ∈ Rp is the output vector. Here, E is
usually a singular matrix, so we obtain a differential-algebraic system. Systems of
this kind are the natural formulation of many dynamical models arising, e.g., in the
simulation, control and optimization of electrical circuits, constrained multi-body
systems, or certain semidiscretized PDEs.

Of particular interest are questions concerning stability and robustness of such a
system. Assume that the system is asymptotically stable, i.e., the finite eigenvalues
of λE−A, denoted by Λf(E,A), are in the open left halt-plane and all solutions of

Eẋ(t) = Ax(t)

converge to zero for t→∞ and all consistent initial conditions. This thesis project
deals with the question: What is the smallest real perturbation matrix ∆ such that
the system

Eẋ(t) = (A+B∆C)x(t)

will be destabilized (i.e., one of the eigenvalues will move to the right half-plane)?
The norm of the matrix ∆ is then called structured real stability radius and denoted
by rR(E,A,B,C).

For systems with a small state-space dimension n, there already exist formulas and
algorithms relying on dense matrix algebra to compute rR(E,A,B,C). However,
this is not the case if the system consists of large and sparse matrices E, A, B, and
C.



To solve this problem one considers real structured pseudospectra

Λε(E,A,B,C) :=
{
s ∈ C : s ∈ Λf(E,A+B∆C) for some ∆ ∈ Rm×p

with ‖∆‖ < ε
}
.

To obtain rR(E,A,B,C), one has to find the value of ε such that Λε(E,A,B,C)
touches the imaginary axis. This can be done by a nested iteration. The inner
iteration computes the rightmost pseudoeigenvalue for a fixed value of ε. To do
this, some recently developed algorithms should be adapted. These use the fact,
that an optimal perturbation of low rank that gives the rightmost pseudoeigenvalue,
can be efficiently constructed. In the outer iteration, the value of ε is varied by
employing Newton’s algorithm.

Summarizing, the task of this project is to understand the real structured pertur-
bation theory of the matrix pencils λE − A and to adapt the algorithms from the
literature to compute rR(E,A,B,C). Finally, the method should be implemented
in MATLAB and tested using some benchmark examples.
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Recommended: Differential-Algebraic Equations, Numerical Analysis, Systems and
Control Theory.
Desirable: Complex Analysis, Differential Geometry, Numerical Linear Algebra
(Eigenvalue Problems).
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