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Abstract

The solution of time-dependent PDE-constrained optimization problems sub-
ject to unsteady flow equations presents a challenge to both algorithms and
computers. In this paper we present an all-at-once approach where we solve for
all time-steps of the discretized unsteady Stokes problem at once. The most
desirable feature of this approach is that for all steps of an iterative scheme we
only need approximate solutions of the discretized Stokes operator. This leads
to an efficient scheme which exhibits mesh-independent behaviour.

Keywords: Saddle point problems, Unsteady Stokes equation,
PDE-constrained optimization, Preconditioning

1. Introduction

The solution of complex flow problems is one of the most interesting and
demanding problems in applied mathematics and scientific computing. Over the
last decades the numerical solution of problems such as Stokes flow has received
a lot of attention both from applied scientist and mathematicians alike. The
discretization of the Stokes equation via finite elements [13, 1, 10] as well the
efficient solution of the corresponding linear systems in saddle point form [13,
47, 40, 3] are well established. In recent years, with the advances of computing
power and algorithms, the solution of optimal control problems with partial
differential equation (PDE) constraints such as Stokes or Navier-Stokes flow
problems have become a topic of great interest [22, 25, 35, 7, 12].

In this paper, we want to address the issue of efficiently solving the linear
systems that arise when the optimal control of the time-dependent Stokes prob-
lem is considered. We here want to employ the so-called one-shot approach,
which is a technique previously used in [23, 24, 5, 43]. In detail, the discretiza-
tion of the problem is constructed in the space-time domain and then solved for
all time-steps at once. We will come back to this later.

The paper is organized as follows, we first discuss the control problem and
how it can be discretized. In Section 3 we discuss the choice of the Krylov solver
that should be employed. We then discuss the preconditioners for the various
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parts of the saddle point problem. This is followed by numerical experiments
for two different objective functions in both two and three space dimensions and
time.

2. Problem and discretization

In the following we consider the tracking-type functional

R N e T 2 it .
J(y,u) = 2/0 /Ql (y— %) dmdt+2/0 /Q2 (u) dacdlf—i—Q/Ql (y(T) —g(T))" dx

where € /5 C  are bounded domains in R? with d = 2,3. Additionally, for the
state y and the control u the time-dependent Stokes equation has to be satisfied

Yy —vAy+Vp=uin [0,T] x (2)
~V.y=0in[0,T] x (3)
y(t,.) = g(t) on 9Q,t € [0,T] (4)

y(0,.) = yo in €, (5)

with y the state representing the velocity and p the pressure. Here, ¢ is the
so-called desired state. The goal of the optimization is to compute the control
u in such a way that the state y will be as close as possible to 7. One might
impose additional constraints both on the control u and the state y. One of the
most common constraints in practice are the so-called box constraints given by

Ug <u<upand Yy, < u < yp.

We will discuss these later and for now assume that no-such constraints are
imposed.

There are two techniques used to solve the above problem. The first is the
so-called Discretize-then-Optimize approach and the second is the Optimize-
then-Discretize approach. In the first problem, both the functional and the
PDE are discretized before the optimization typically via a Lagrange multiplier
approach is employed. Optimize-then-Discretize will first build the KKT system
for the infinite dimensional problem. It is desirable to have both approaches lead
to the same discrete optimality system.

We begin by considering the first order conditions of the above problem and
get the forward problem described in (2) to (5), the relation

Bu+A=0 (6)

referred to as the gradient equation as well as the adjoint PDE

AN —VAAN+VE=y—gin [0,T] x Q (7)
VA=0in[0,T] x © 8)
y(t,.) =0 on 9N, t € [0,T] 9)
y(0,.) =~ (y(T) - y(T)) in Q, (10)



(for more information see [46, 45, 23, 24]).

The question is now whether we can find a discretization-scheme such that
the Discretize-then-Optimize and the Optimize-then-Discretize approach coin-
cide. One central question is how to discretize the above problem. We start by
using a backward Euler scheme in time to obtain for the forward Stokes problem

ko k=1
Ch - vAy* + VP =¥ (11)
-
~V-y¥ =0 (12)
and similarly for the adjoint PDE we get

)\k - >\k+1
— vANE 4 VER =k — gk (13)

~V- A" =0 (14)

and for those two relations, after a finite element space discretization, the matrix
representations look like the following

M k - M k—1
% +vKy" + BTpF = Mu* (15)
By" =0 (16)
and
MA]C - MAkJrl
— vKX" + BT¢" = My" — My* (17)
BA* =0, (18)

with M being the mass matrix (for the sake of simplicity we assume M to be
the lumped mass matrix) and K the finite element stiffness matrix. We will
later use M, for the mass matrix on the pressure space but refrain from adding
the index y to the mass matrix on the velocity space.



The appropriate one-shot form for the forward PDE is now given by

- [ yO |
c O 0 0 0 p°
My £ 0 0 0 vl
0 *MO L 0 0 pl (19)
0 0 .0 :
0 0 0 My L ] yN
L PV
(M 0 0 T [ Ly° T
0 0 0 0 | - 0
u
0O M 0 0 " 0
—T 0 0 0 0 ) — 0 (20)
0 0 . 0 v :
o 0 o o [L" 0
L 0 0 0 M| | 0 ]
T —rtNut =d, (21)
L BT . o
where £ = L L=7""M+ K and M, = blkdiag(r~" M, 0).

The scheme presented by (15) and (19) represents a discretization of the
forward PDE, as already pointed out in [43] the adjoint of (19) will represent
the time-evolution described by (17) but the initial condition for the adjoint
PDE might make for a difference between the Discretize-then-Optimize and
Optimize-then-Discretize approaches.

In more detail, the discretization of the functional J(y,u) (using y;, u;, ¥;
fori =0,..., N at the different time-steps) via a rectangle rule for the time and
finite elements for the space leads to

N By &
(vi —5:)" M(y; —5:) + 5 Z u; M,u;
1 i=1 (22)

(Y~ )TMu(yN_yN)-

J(u,y) =

N)|~2 wlﬂ

Note that N denotes the number of time-steps. In fact, we are using a slightly
different approximation

N
J(“vY)*%Z(Yz*}_’z)TM( z %ZUTM u;
1=0 (23)
+% YN — )TMu(yN_b_’N)a

which will later give that the approaches optimize-then-discretize and discretize-
then-optimize coincide. Note that this changes the functional J(y,u) only by



constant terms involving the initial values for yg, 7o and ug but the location of
the minimum will not be changed.
The Lagrangian of the discrete problem can now be written as

LyT,u,A") = J(y,u) + ()\+)T (-Kyt 4+ 7Nu+d) (24)
where we use yt = [yo, Po, - - ., yn, Pn] and similarly for AT = [Xo, &g, ..., An, &x]-

The first order or KKT conditions for L(y™,u, A™) are now given by the fol-
lowing system

TM 0 -KT y*t Myt
0 BrM, TNT ut | = 0 : (25)
-K N 0 At d

We will discuss appropriate solvers and possible preconditioners for system (25)
in Section 3.

Our aim now is to discuss the Optimize-then-Discretize approach and how
to ensure it coincides with the Discretize-then-Optimize. Here we follow the
results presented in [23] for the Stokes equation (see [24] for Navier-Stokes).
Hinze et al. start with the infinite-dimensional KKT system. A straightforward
discretization of the infinite dimensional problems will in general not result
in agreement of both optimization-discretization approaches. The technique
introduced in [23] starts with a time-discretization of the forward problem as
done in (11) and adjusting the initial condition to be

Yo — 7AYo = yo — TAYo.

Writing down the Lagrangian for the semi-discretized problem we obtain the
following system

ko k—1

Chin - vAy* + VP = u” (26)
-

—V-y¥ =0 (27)
Yo — 7AYo = yo — 7AYo (28)
Buk + N =0 (29)

)\k o )\kJrl
— vANE 4 VER =k — gk (30)
—V- A =0 (31)
)\Nf’TA)\N:(T#*’}/)(yN*gN). (32)

Using standard mixed finite elements to discretize in space we obtain the same
discrete first order system for the Optimize-then-Discretize approach as for the
Discretize-then-Optimize procedure. Note that with the changes we made earlier
to the discretization of the cost functional J(y,u), we get agreement of the
initial values of the Optimize-then-Discretize approach and the Discretize-then-
Optimize procedure.



In addition to the above considered problem, we will also discuss the nu-
merical solution of a PDE-constrained optimization problem that has an added
pressure term in the functional J(y,u), i.e.,

1 T T
o) =5 [ [ w0t g [ [ -2 doa

: (33)
+§A(Awaﬁ+%AfMH—Mﬂfw

subject to the unsteady Stokes equation as shown above. Here p is the pressure
and p is the desired pressure. The discretization follows the above procedure and
the first order conditions L(y™,u, )\Jr) are now given by the following system

™M 0 —-KT

y© My*
0 prM, TNT ut | = 0 , (34)
-K N 0 AT d

where the only difference to the system given in (25) is the matrix M =
blkdiag(M. ..., M, M,,...,M,). Note that for reasons of convenience we will
always use M as a notation for the (1, 1) block whether positive definite or not.
We will specify when it is important to consider the two cases separately.

3. Krylov solver and preconditioning

After having derived the linear system corresponding to the solution of the
optimal control problem, we now want to discuss how to solve this system
efficiently. For a reasonable sized spatial discretization even in two dimensions
a direct solver might run out of memory fairly quickly as the dimensionality
of the overall system crucially depends on the temporal discretization. Hence,
we dismiss the possibility of using a direct solver for the overall system and
rather decide to employ Krylov-subspace solvers. Because of the nature of the
problem, A being symmetric and indefinite, we will use MINRES [31] as it is
often the method of choice for saddle point problems. In more detail, MINRES
(and also other Krylov subspace solvers) will build up a Krylov subspace

2 k—1
span {ro, Arg, A%rg, ..., A ro}

by multiplying with the system matrix at each step. The approximation to the
solution of the linear system will then be computed such that the 2-norm (in
the unpreconditioned case) of the residual |||, is minimized over the current
Krylov subspace. Naturally, MINRES will only be used with a preconditioner
and we refer to [13] for implementation details. In order for the preconditioned
system to maintain the symmetric and indefinite nature of the problem, we need
the preconditioner to be symmetric and positive definite. Hence, our choice will
be a symmetric block-diagonal preconditioner. Before we mention the details of
the preconditioner we will discuss alternative choices for the iterative scheme.



In case the upper-left block (blkdiag(T.M, 87.M,,) is positive-definite, as is the
case for the added pressure term or the forward Stokes problem, we could em-
ploy a non-standard CG method also known as the Bramble-Pasciak CG [§],
which also has been successfully used for optimal control problems [42, 34]. It is
also possible to use the projected CG method [19] with the so-called constraint
preconditioners [26], which was demonstrated to also work well for control prob-
lems [32, 39, 20, 49]. For the use of indefinite preconditioners we would have
to use non-symmetric methods such as GMRES [38], BICG [14] or SQMR [15]
but we will refrain from using these methods in the course of this paper. Benzi
et al. use Krylov methods within the preconditioner, which means that as an
outer method a flexible method such as FGMRES [37] has to be employed.
We will now discuss the choice of preconditioner best suited to be used with
MINRES. Our choice is a block-diagonal preconditioner of the following form

Ay O 0
P=|0 A o0 |, (35)
0 0 So

where Aj is an approximation to 7M, A; approximates the (2,2)-block of the
saddle point system, which we can afford to invert in case the mass matrices
are lumped, and Sy is a Schur-complement approximation. First, we want to
comment on the blocks involving mass matrices. If we decide to use a consis-
tent mass matrix, good preconditioners are available; Namely, the Chebyshev
semi-iteration [17, 18], which is an easy-to-use but nevertheless very efficient
method for systems involving the mass matrix as illustrated in [48]. The blocks
corresponding to the zero-bocks in 7 M, can be approximated by al with o > 0
as was done in [5].

The choice of the Schur-complement approximation is more tricky as the
(1,1)-block of A is semi-definite. Assuming for now that 7M is definite, the
Schur-complement of the system matrix would look like the following

TICMTIKT + 7 BTN M TN (36)

We will now use an approach presented in [32, 33, 34, 35] where we drop the
second term (7 !B7INMINT) in (36). Hence, our approximation to the
Schur-complement at the moment is given by

UM TIET.
We will discuss this now in more detail.

The Schur-complement approximation

Steady Stokes control

In this section we want to put a special emphasis on the approximation of
the Schur-complement of the saddle point system (25). We emphasize the fact
that the expression

KMET



involves two block-triangular matrices, which will be important as a precondi-
tioned Krylov subspace solver will be using the inverse of the Schur-complement
approximation =7 MIC~!. Both expressions K~ and K~! are relatively easy
to evaluate as we can simply apply a backward and a forward substitution, re-
spectively. Recalling the structure of K (see (19)) this means to “simply” solve
an unsteady Stokes-system, which in itself poses a significant computational
task. For the simpler problem of the state equation being the heat equation the
authors suggest in [43] that one can replace the solution with the discretized
PDE operator by an appropriately chosen algebraic multigrid (AMG) precondi-
tioner. We also want to do this for the Stokes problem but as already pointed
out in [35] the approximation of the Schur-complement in case of the Stokes
problem is more involved than for the simpler heat equation. In [35] the au-
thors show that a preconditioner for the Schur-complement, namely the block-
diagonal preconditioner P = blkdiag(Ay, M}), is a good preconditioner for the
forward Stokes equation but in the case of Stokes control where a fourth-order
operator has to be approximated, the contraction of the block-diagonal precon-
ditioner is not sufficient for the Schur-complement approximation of the control
problem. Hence, Rees and Wathen suggest the use of an inexact Uzawa method
using a block-triangular preconditioner

[4 0
P=|F i |

where Ag is an approximation to the discretized Laplacian, in general a multi-
grid operator and M), the mass matrix on the pressure space (see [13]). A fixed
number of Uzawa steps to approximate the discrete Stokes operator represents
a linear operator and provides a good enough contraction rate such that the
approximation to the Schur-complement will be sufficient to guarantee conver-
gence of the overall outer MINRES iteration. For the unsteady case this was
shown in [35]. Algorithm 1 shows a version of the inexact Uzawa method. Note
that in the case of enclosed flow the Stokes-system matrix will be singular due
to the hydrostatic pressure [13] but a consistent right-hand-side still enables
the use of iterative solvers. As we need to apply a forward and a backward
solve with the inexact Uzawa method a scaling! to make the right-hand-side
sufficiently close to a consistent right-hand-side always worked very well in our
numerical experiments. In the case the Stokes system is invertible these issues
do not arise.

Time-dependent Stokes control

We will now describe how to approximate the Schur-complement in the case
of time-dependent Stokes control. We note that the Schur-complement approx-
imation

KMKT

Tn Matlab notation: Scaling b such that Pb is close to a consistent right hand side, with
P = speye(n) — =ones(n, n) with « close to one, e.g. 0.9.



1: Select x.

2: for k=1,2,... do

3: Tpt1 = Tk +P71(b7¢41'k)
4: end for

Algorithm 1: Inexact Uzawa method

involves a forward and backward substitution where we have to approximate
the inverse of the matrix

B 0 (37)

{ T 'M+K BT }
for the evaluation of K and K7 at each time-step. We propose to use the inexact
Uzawa algorithm (see Algorithm 1) for the matrix (37) with a block-triangular
preconditioner defined as

A 0
P [ : } |

B -S

We can now simply use an algebraic or geometric multigrid for the precondi-
tioner A approximating M + 7K but the choice of S is not so straightforward.
In the case of steady Stokes problem the pressure mass matrix will allow for a
suitable approximation to the Schur-complement. In our case, we have a differ-
ent (1, 1)-block to the steady case and we derive a suitable preconditioner using
a technique for the steady Navier-Stokes equation. We follow [13] by looking at
the commutator
E=(L)V-V(L),

where £ = I +7/A. Using the finite element method we obtain the discretization
of the discrete operators (see [13, Chapter 8.2]) and put this into the discretized
version of the above to get

En=M"L)M'B" — M~'B" (M, L,)

where L = M + 7K. We now pre-multiply the last equation by BL~'M and
post-multiply by LM, to get

BM~'B"L,'M, - BL™'B". (38)
Under the assumption that the commutator is small the last equation gives
BM~'B"L'M, ~ BL™'B", (39)

which will allow us to create a suitable Schur-complement approximation. In
fact, BM ' BT L' M, will be used. The first term BM ~' BT cannot be used as
it is but we rather use the fact that it is spectrally equivalent to the Laplacian
formed on the pressure space to give

S = K,L,' M,. (40)




Note that as we are only interested in the application of S~1 we can further
obtain

s :szleszl :Mgl(Mp+TKP)K;1 :K;1+TM1:1' (41)

We are now able to provide efficient preconditioners for the solution of the time-
dependent Stokes problem within the Uzawa method. The preconditioner St
was first derived in [11] by Cahouet and Chabard and is hence often referred
to as the Cahouet-Chabard preconditioner. It was extensively used, analyzed
and extended to for example the Navier-Stokes case (more information can be
found in [4, 27, 9, 6, 28]). A will in our case be an algebraic multigrid method
applied to 7'M + K and for S=1 we need the approximation to K, 1 which
can be done using an algebraic multigrid as well, and additionally we need to
approximate M, 1 which can be efficiently approximated using the Chebyshev
semi-iteration [17, 18, 48] (see Algorithm 2).

Set D = diag(M,)
Set relaxation parameter w
Compute g = wD b
Set S = (I —wD™!M,) (this can be used implicitly)
Set zx—1 =0and zp = Szp_1+ g9
ch—1 =2 and ¢, = w
for k=2,...,1do
Ck+1 = WCE — ickfl
ﬂk—i_l - wclfil
21 = U1 (Szr + 9 — 2p—1) + 2p—1
: end for

=
= o

Algorithm 2: Chebyshev semi-iterative method for a number of [ steps

3.1. Figenvalue analysis

In this section, we will try and give bounds for the eigenvalues of the pre-
conditioned matrix. We closely follow an earlier analysis presented in [43].

We now want to give bounds on the eigenvalues of the preconditioned case
for a somewhat idealized case. We assume that the preconditioner is given by

M 0 0
P=| 0 BrM, O
0 0 S

with S = KMoKT. A similarity transformation P~1/2AP~1/2 now reveals the
following matrix

D o BT
PAp~t2=1 0 I B] (42)
By By 0

10




where with By = S5 /2 KM=1/2 and By = 7712371252 N M 2. We will
switch to the notation A = blkdiag(D,I) and B = [B1Bs] as for the classical
saddle point problem. It is a well-known result [36] that for such a saddle
point problem with symmetric and positive-definite (1, 1)-block the eigenvalues
of P~1/2 AP~1/2 lie in the intervals

3 () ) 5 (o8 (2) o)

2
)‘éin’ % <)‘51114a)x + ()‘Sfd)x) + 0’12nax>‘| .

This is true for both problems presented here. In the case of the pressure
included in the objective function (33) the resulting saddle point system (34)
has a positive definite (1,1) block, which will lead to A2, > 0. We will now
discuss the bounds for Z* and Z~ in more detail. In both cases, we need bounds
for eigenvalues of A. The structure of A reveals that we have an identity block
and the matrix D = blkdiag(7,0,1,0,...,I,0) for the objective function (1)
and D = blkdiag(l,I,,I,1I,,...,I,1I,) for (33). It is now easy to read off the
eigenvalues of D. The estimation of the singular values of B is a bit more
involved and we use the fact that the eigenvalues of BB” are the square of the

singular values of B. The structure of B now gives

BBT = BB +B,BY = Sy KM KT 5y 2 r 1 g S PN M TN S

—

and

It =

and note that the last matrix is similar to
St (KM 4+ 77 87N MINT).

This indicates that if So_l is chosen to be K=TMK~! the above takes the
following form

(1 n T—lﬂ—lic—TM/c—lNMglNT) . (43)

Similar equations to (43) have be analyzed before for non-time-dependent prob-
lems [32, 44] where we now have to show that for a more refined mesh, smaller
mesh parameter h, the eigenvalues of IC’TMIC%NM;lNT do not change.
We are at this stage not able to prove the mesh-independence of the term
T BT MK N M INT . In general the term M will include a multiplica-
tion by 7 which removes the dependency of the eigenvalue bounds on 7 since no
other matrix involves 7. In Figure 1 we show the largest 100 eigenvalues com-
puted by the MATLAB eigs command of the matrix X~ T MK INM;NT
where M = blkdiag(M, le — 61,...,M,le — 6I) and the Stokes problem is for
simplicity chosen with a Neumann boundary at the bottom and Dirichlet on the
remaining sides of the domain to have an invertible Stokes matrix?. It can be

2Note that in the enclosed flow case we have a one-dimensional kernel and this cannot be
used for the illustration in Figure 1.

11



seen that for two relatively small meshes with the DoF for one Stokes system
given by n = 578, m = 81 and for the second Stokes system n = 162, m = 25,
where n is the number of discrete velocity variables and m the number of discrete
pressure variables. Note that these are the degrees of freedom for one instance
of the unsteady problem. We chose a fixed number of time-steps N = 10 and
see that the eigenvalues for these problems do not depend on h; we expect this
behaviour to continue for smaller A as in our numerical experiments (see Section
4) we do not observe mesh-dependent behaviour.

1.4
1.2%%9%

o eigs of KTMK™'NM, N' n=162, m=25
% o €igs of K~ TMK™"NM N' n=578, m=81

4
©
T

Magnitude

o
=)
T

0.4

0.2

|
50 60 70 80 90 100
Eigenvalue index

Figure 1: Largest 100 eigenvalues of IC_T/\;UC_U\/‘M;U\/'T for two small prob-
lems.

4. Numerical experiments

The numerical tests are all performed using deal.Il [2] with algebraic multi-
grid ML Trilinos preconditioner for the appropriate blocks [16]. We use a
Q2/Q1 discretization of the Stokes problem. We use 4 steps of the Uzawa
method for each approximation of the PDE operator. The various blocks are
approximated as follows the pressure Laplacian is approximated by 2 steps of
an AMG V-cycle and 20 steps of a Chebyshev smoother, the Laplacian plus
mass matrix block is approximated by 20 steps of a Chebyshev smoother and
3 steps of an AMG V-cycle. In general we use a relative tolerance of 10~* for
the pseudo-residual and mention explicitly if any other tolerance is used. All
experiments are performed on a Centos Linux machine with Intel(R) Xeon(R)
CPU X5650 @ 2.67GHz CPUs and 48GB of RAM. The example we look at in

12



this section is taken from the paper by Hinze et al. [23]. The spatial domain
is defined as Q = [0,1]? and the time domain is given as [0,1]. As we have
not used special multigrid methods devised for parameter-dependent problems
it has been observed in [29] that general purpose preconditioners might loose
the independence with respect to 7. This behaviour could not be observed if 7
scaled with the mesh-parameter and hence we are often choosing 7 ~ h. We will
also present results for a fixed 7 = 0.05. We begin describing the target flow
y. The target flow is the solution for the unsteady Stokes equation with Dirich-
let boundary conditions, i.e. y = (1,0) when the second spatial component
29 =1 and y = (0,0) on the remaining boundary for the two-dimensional case
and y = (1,0,0) similar to before in the three-dimensional case. The viscosity
was chosen to be v = 1. Figure 2 shows the desired state at ¢ = 0.5. For the
control problem we now consider the following boundary conditions. For the
top-boundary where x5 = 1 we get y = (143 cos(4nt— ), 0) and zero elsewhere
in two space dimensions. For this example the viscosity is set to 1/100. We also
take v = 0. Figure 3 shows both the computed controlled state and the uncon-
trolled state for the above system at t = 0.5. For the choice of the scaling param-
eter a dealing with the zero-blocks in the (1, 1) block of the saddle point system
we follow a strategy proposed in [41] where a = |37 M, . To illustrate the per-
formance of our preconditioner it is imperative to consider three-dimensional
results and we choose for zo = 1 we get y = (¢t + sin(0.1z1),t + cos(0.5z2),0),
and nu = ﬁ, which is a somewhat arbitrary choice but nevertheless exhibits
all the complications expected in a realistic problem.

4.1. Without pressure term

1.000
-0.7500

0.5000
-0.2500
0.000

Max: 1.000
Min: 0.000

Figure 2: Desired state at ¢t = 0.5.
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0.5655

L -'
-0.4242

0.2828
0.1414
0.000

Max: 0.5655
in: 0.000

05000 ~emm————
-0.3750

0.2500
0.1250
0.000

Max: 0.5000
in: 0.000

(a) State at t = 0.5 (b) Uncontrolled state at t = 0.5

Figure 3: Uncontrolled vs. controlled state

8.781
- 6.586
4.391
2.195
0.000

Max: 8.781
Min: 0.000

Figure 4: Control at t = 0.5.
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We begin our numerical experiments by computing the approximate solution
to the above problems on a variety of meshes. Figure 3 shows the controlled
and the uncontrolled state at the time ¢ = 0.5. The control for this time is
shown in Figure 4. We denote by DoF' the degrees of freedom used for the
discretization of the PDE at one time-step, similar to a steady problem, then
we show the number of time-steps N. This means that for the smallest mesh we
are implicitly solving a linear system of dimension 3 * 37507 % 129 ~ 14 million
unknowns. Timings are given in seconds. Table 1 shows the results for a relative
tolerance of 10~* for the case when 7 ~ h and in Table 2 we show the results for
the same setup just the number of time-steps is now fixed. As can be seen from
the results in Table 1 the iteration numbers do not increase with refinement of
both ¢ and h. The reduction of the iteration numbers might be explained by the
fact that as 7 scales like h, this means that the small eigenvalues of the mass
matrix contribute less and the small eigenvalues look more similar to the small
eigenvalues of the steady problem. The results in Table 2 show that for a fixed
number of time-steps the iteration numbers are more or less constant although
higher than in the case of a time-step that scales with the mesh-parameter.

DoF N | MINRES | Time
2467 | 33 37 251
9539 | 65 14 765
37507 | 129 11 4970

Table 1: Number of MINRES steps with CPU-time 7 ~ h.

DoF | N | MINRES | Time |
2467 | 21 42 179
9539 | 21 27 449
37507 | 21 32 2565

Table 2: Number of MINRES steps with CPU-time 7 = 0.05.

We noted that for the same number of Uzawa steps (chosen as 4-steps) the
convergence to a smaller tolerance was sometimes slower than expected. This
might be due to the fact that the Schur-complement approximation is not of
good enough quality, which can lead to stagnation of MINRES (see [30]). One
possibility would be to use deflated MINRES as proposed in [30], which would
need approximations of some eigenvalues of the Schur-complement. For our
examples it was sufficient to increase the number of Uzawa steps to 6 and the
results are shown in Table 3. The results shown in Table 4 are computed for
a tolerance of le — 4 and the 7 =~ h with the setup as in the above extended
to three dimensions. Again, we see a very moderate number of MINRES iter-
ations for this case. Also here we used an increased number of inexact Uzawa
steps, i.e., 8 steps seemed sufficient for all our tests. We show results for the
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DoF N | MINRES | Time
2467 | 33 34 340

9539 | 65 19 1500
37507 | 129 15 10368

Table 3: Number of MINRES steps with CPU-time 7 ~ h and tol = le — 6.

three-dimensional problem in Figure 5 shows the computed state, Figure 6 the
uncontrolled state and Figure 7 the desired state.

Figure 5: Computed state at ¢t = 0.5.

DoF | N | MINRES | Time
2312 | 9 58 403
15468 | 17 33 4289

Table 4: Number of MINRES steps with CPU-time 7 ~ h in 3D.

Finally, in Table 5 we compute a 2D solution with tolerance le — 4 and the
above setup and only change the viscosity v to be equal to one. Again, the
iteration numbers are very low.

4.2. With pressure term

In this section we are going to show results for the problem including a pres-
sure term in the objective function. The desired state and the desired pressure
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Figure 6: Uncontrolled state at ¢ = 0.5.

Figure 7: Desired state at t = 0.5.
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DoF N | MINRES | Time
2467 | 33 8 89
9539 | 65 10 1161
37507 | 129 15 15699

Table 5: Number of MINRES steps with CPU-time 7 ~ h and v = 1.

are obtained from solving the previously mentioned unsteady flow problem. In
our case we now simply invert the mass matrix coming from the velocity space
(as it is lumped) and use the Chebyshev semi-iteration for the mass matrix
on the pressure space that corresponds to the pressure terms in the objective
function, i.e., 20 steps of this method are typically employed. Table 6 shows
the results for a three-dimensional setup with tolerance at le — 4. The two-
dimensional results are shown in Table 7. In both cases, we have chosen 7 to
scale like the mesh-parameter h and similar to before we observe lower iteration
numbers for finer meshes.

DoF | N [ MINRES | Time |

2312 9 91 408
15468 | 17 72 5952
112724 | 33 38 63291

Table 6: Number of MINRES steps with CPU-time 7~ h in 3D.

DoF N | MINRES | Time

2467 33 25 188

9539 65 14 997
37507 | 129 12 4134

Table 7: Number of MINRES steps with CPU-time 7 = h.

5. Conclusions and future work

We have shown that the discretization of the PDE-constrained optimal con-
trol problem involving unsteady Stokes flow as a PDE constraint can be effi-
ciently cast using a Lagrangian technique into a all-at-once saddle point prob-
lem. As the dimension of these type of problems are vast the use of iterative
solvers is imperative. We proposed to use MINRES as the outer solver and
proposed block preconditioners. The approximation of the Schur-complement
can efficiently be approximated using an inexact Uzawa method for which we
have shown that the well-known Cahouet-Chabard preconditioner can be used
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here. The iteration numbers for the outer MINRES method are always very low
and in some cases even show a benign mesh-dependence, i.e., iteration numbers
were smaller for discrete problems of larger dimension.

We believe that the results for the computation of the Stokes control problem
will be very similar to the ones presented here if control constraints are present.
In that case an outer Newton-type [21] method can be used and the linear
systems that have to be solved at each step of the active set iteration are similar
in nature to the ones for the problem with no bound constraints [42]. Tt might
also be good to apply a nested approach where the solution is first approximated
on a coarse mesh and then transfered to a fine discretization (see [20]). Of course,
these problems should also be analyzed and tested numerically in the future.
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