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In this paper we describe the efficient solution of a PDE-constrained optimization problem subject to the
time-periodic heat equation. We propose a space-time formulation for which we develop a monolithic
solver. We present preconditioners well suited to approximate the Schur-complement of the saddle point
system associated with the first order conditions. This means that in addition to a Richardson iteration
based preconditioner we also introduce a preconditioner based on the tensor product structure of the
PDE discretization, which allows the use of a FFT based preconditioner. We also consider additional
bound constraints that can be treated using a semi-smooth Newton method. Moreover, we introduce
robust preconditioners with respect to the regularizationparameter. Numerical results will illustrate the
competitiveness and flexibility of our approach.

Keywords:
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1. Introduction

For many years the solution of so-called forward partial differential equations (PDE) problems has been
in the focus of the numerical analysis and scientific computing community. Although, there are many
challenges left the progress made over the last decades has enabled the search for, in some sense, optimal
solutions of PDEs. The task in the field often labeled PDE-constrained optimization is to minimize an
objective function subject to constraints given by PDEs. Introductions to the field can be found in
Tröltzsch (2005, 2010); Hinzeet al. (2009); Ito & Kunisch (2008).

A typical example will look like the following

min J(y,u) (1.1)

s.tL (y,u) = 0, (1.2)

whereJ(y,u) is the function we want to minimize andL (y,u) = 0 represents a differential operator,
typically a PDE, that links the statey and the controlu. We assume that suitable boundary conditions are
given and in the case of time-dependent problems initial conditions are specified. Often the introduction
of additional constraints, such as bound constraints on thecontrol and/or the state poses additional
challenges (cf. Tröltzsch (2005, 2010); Hinzeet al. (2009); Ito & Kunisch (2008) for suitable methods
to deal with this).
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Our focus in this paper is to solve a problem of the above type where the PDE constraint is equipped
with appropriate boundary conditions and the statey exhibits time-periodicity, i.e.,y(0, ;) = y(T, :)
whereT is the final time we are interested in. Problems of this type have recently been analyzed in
Potschkaet al. (2010); Abbelooset al. (2011), where the motivation for the optimal control problem
was a chemical engineering application such as the one givenin Kawajiri & Biegler (2006).

The paper is organized as follows. In the next section, we areintroducing the problem formulation
and the PDE constraint with time-periodicity. We will discuss the discretization and then give the first
order optimality system. In Section 3 we introduce the semi-smooth Newton method developed in
Bergouniouxet al. (1999); Hintermülleret al. (2002) that will allow us to handle box constraints on
the control. We will then briefly motivate our choice of Krylov subspace solver. In Section 5, we
discuss the preconditioners that are suitable for our approach. Namely, a Richardson iteration based
preconditioner and also a preconditioner using the circulant structure of the discretized PDE. We will
discuss issues that arise when boundary control is employedand the dependency on the regularization
parameter. Numerical results in Section 6 illustrate the efficiency of our approach.

2. Problem and discretization

In this paper, we will analyze tracking type functionals subject to a time-periodic partial differential
equation. The functional that we want to minimize is given by

J1(y,u) :=
1
2

∫ T

0

∫

Ω1

(y(x, t)− ȳ(x, t))2dxdt+
β
2

∫ T

0

∫

Ω2

(u(x, t))2dxdt. (2.1)

whereΩ1,2 ⊆ Ω are domains inRd with d = {2,3} , y is the state, ȳ the desired state and u the control.
We want to minimize this functional subject to the time-periodic heat equation that links the state and
the control and is hence called the state equation. In more detail, the equation now reads as

yt −△y= u (2.2)

defined overΩ × [0,T], with Dirichlet boundary conditiony= 0 on the spatial boundary∂Ω and time-
periodic conditiony(x,0) = y(x,T). In addition, we will allow for variations of this problem. The first
is the so-called boundary control problem given by

Jbnd(y,u) :=
1
2

∫ T

0

∫

Ω1

(y(x, t)− ȳ(x, t))2dxdt+
β
2

∫ T

0

∫

∂Ω
(u(x, t))2dxdt. (2.3)

subject to
yt −△y= f (2.4)

with Neumann boundary condition
∂y
∂n

= u

and some forcing termf , that we assume to be zero. Additionally, the introduction ofbound constraints
on control and/or state pose additional challenges to numerical algorithms. Bounds such as

ua 6 u6 ub andya 6 y6 yb

have to be accounted for by more sophisticated algorithms (Tröltzsch (2005, 2010); Ito & Kunisch
(2008); Hinzeet al. (2009).) We will discuss the necessary approaches for control constraints in later
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parts of this paper (see Section 3). There are two ways to proceed from the above problems. First, one
can write down the infinite dimensional first order conditions and then discretize them, this is the so-
calledOptimize-then-Discretizeapproach. The other approach is to discretize first and then write down
the first order or KKT conditions, this is the so-calledDiscretize-then-Optimizeapproach. It is desired
for many problems that these two approaches coincide, whichis taken into account when devising
discretization schemes such as the ones derived in Hinzeet al. (2008). We will follow the Discretize-
then-Optimize approach. Hence, we discretize both the functional and the PDE using standard Galerkin
finite elements, rectangular in our case because of the underlying use of deal.II (cf. Bangerthet al.
(2007)), which does not use triangular elements.

For the time-discretization of the PDE we use a backward Euler scheme that leads to the following
semi-discretized form of (2.2)

yk− yk−1

τ
−△yk = uk (2.5)

with τ being the time-step and the number of grid points in time is denoted byNT . And similarly for
the second PDE (2.4). The finite element discretization in space is straightforward and putting all time
steps into one system, a so-called one-shot approach, leadsto




M+ τK −M
−M M+ τK

−M M+ τK
. . .

. . .
−M M+ τK




︸ ︷︷ ︸




y1

y2

y3
...

yN



− τN u = d,

K

(2.6)

whereM andK are the finite element (lumped) mass and stiffness matrix andd the right-hand side
representing the boundary conditions and forcing terms. Note thatK exhibits circulant structure, which
we will discuss in more detail later. Further, we have the matrix N = blkdiag(N,N, . . . ,N), whereN can
be a rectangular matrix depending on the nature of the optimal control problem and its discretization.
N is a square mass matrix ify andu are discretized using the same finite elements andu represents a
distributed control. In the case ofu being discretized using a different finite element than the statey, e.g.,
piecewise constant elements for the control and linear finite elements for the state, or ifu is a boundary
control, thenN is a rectangular matrix. In the case of boundary controlN will consist of entries coming
from the integral

∫
∂Ω utr(v), whereu is the boundary control and tr is the trace operator acting onthe

test functionv from the test space used for the discretization of the statey.
We now need to discretize the objective functionJ(y,u) and for this we use the trapezoidal rule to

get the discretized objective function as

J(y,u) =
τ
2
(y− ȳ)T

My(y− ȳ)+
τβ
2

uT
Muu (2.7)

whereMy = blkdiag(1/2M̃,M̃, . . . ,1/2M̃) whereM̃ is the mass matrix over the domainΩ1 andMu =
blkdiag(1/2M̂,M̂, . . . ,1/2M̂) whereM̂ represents the mass matrix for the domainΩ2.

Once all these ingredients are available, we can combine them into a Lagrangian and write down the
first order conditions, which can be written as the followingKKT system




τMy 0 −K T

0 βτMu τN T

−K τN 0






y
u
p


=




My ȳ
0
d


 . (2.8)



4 of 22 MARTIN STOLL

Note that 2.8 represents a saddle point system with a symmetric and positive semi-definite(1,1) block
given by blkdiag(τMy,βτMu) and a full rank block[−K τN ]. Here, p represents the discrete
Lagrange multiplier or equivalently the solution to the adjoint PDE. These conditions are sufficient for
the invertibility of the saddle point system. Note that if instead of the trapezoidal rule we would have
used a rectangular rule for the discretization of the objective function the block blkdiag(τMy,βτMu)
would contain zero blocks. Note that in the case of only a finaltime observation inJ(y,u), i.e. , the first
term in (2.1) changes to

1
2

∫

Ω1

(y(x,T)− ȳ(x,T))2dx

and in this case the(1,1) block of the saddle point system will be highly singular (seeStoll & Wathen
(2010, 2011); Benziet al. (2010); Simoncini (2011)). Note that the above linear system will typically
be of very large dimension, i.e., the dimension is given by 3nNT , wheren is the number of the degrees
of freedom of the PDE discretization andNT the number of grid points in time.

Note that a reduction of the dimensionality of the above system is possible by eliminating the control
u a technique that is also discussed in Simoncini (2011); Hinze (2005). In case that the(1,1) block is
positive definite, we can also only work with the Schur-complement reduction as also the mass matrices
are lumped and hence the evaluation ofM−1

y andMu
−1 is trivial. This case would enable the use of the

classicalCG method Hestenes & Stiefel (1952) but the challenge in developing good preconditioners
for the Schur-complement stays intact. Note this does not apply if My andMu are not invertible, e.g.,
Ω1(Ω .

3. Bound constraints

For the treatment of bound constraints on the control we wantto use a semi-smooth Newton method.
This method was first derived in Bergouniouxet al.(1999) under the name primal-dual active set method
and it was later shown (cf. Hintermülleret al.(2002)) that the method is a non-smooth (also called semi-
smooth) Newton method. For an introduction to semi-smooth Newton methods we refer to Hinzeet al.
(2009); Qi & Sun (1993); Ito & Kunisch (2008); Ulbrich (2011). The minimization problem minJ(u,y)
can be identified with the discrete optimality system

{
min F(u) s.t.

ua 6 u 6 ub in Ω ,
(3.1)

where we used the state equation to remove the state via the control from the functionalJ(y,u). In our
case, the optimality condition forF(u) becomes

Φ(u) := P[ua,ub]
(u−D(βMuu+H ′(u)))−u = 0

whereD is a diagonal matrix with positive entries,P the projection onto the interval[ua,ub], andH ′(u) =
N TK −TMyK

−1N u−N TK −TMy ȳ(see Theorem 5.2.4 in Kelley (1999)). Note that the gradient
of F(u) is given by∇ F(u) = βMuu+H ′(u) and with the choiceD = M−1

u we get

Φ(u) := P[ua,ub](u−βu−M
−1
u H ′(u))−u = 0.

As Φ(u) is a non-smooth functional the Newton system is given by

Mks
(k)
u =−Φ(u(k−1)) (3.2)
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where the generalized differential is defined as

Mk = G−βG−GM
−1
u N

T
K

−T
MyK

−1
N − I

with

(G) j j =

{
0 u− µ /∈ (ua,ub)

1 otherwise

andµ = βu+M−1
u H ′(u). Without loss of generality, we can assume that the variables are ordered such

that

G=

[
0 0
0 I

]
.

Note that solving the system (3.2) withMk can be achieved by solving




My 0 −K T

0 −I +G−βG −GM−1
u N T

−K N 0







s(k)y

s(k)u

s(k)p


=




0
−Φ(u(k−1))

0


 . (3.3)

We could stop here for the implementation of a semi-smooth Newton method but as we want to obtain
the implementation of the active set method presented earlier as well as obtain a symmetric linear system
that can be solved much more efficiently than the one given in (3.3), we use the definition

Φ(u(k−1)) = P[ua,ub]
(u(k−1)− (βu(k−1)+M

−1
u H ′(u(k−1)))−u(k−1)

= P[ua,ub]
(u(k−1)− µ (k−1))−u(k−1)

with µ (k−1) = βu(k−1)+M−1
u H ′(u(k−1)). We now use the above to rewrite (3.3) to get




My 0 −K T

0 −I +G−βG GM−1
u N T

−K N 0






y(k)− y(k−1)

u(k)−u(k−1)

p(k)− p(k−1)


=




0
−Φ(u(k−1))

0


 , (3.4)

which is also equivalent to



My 0 −K T

0 −I +G−βG −GM−1
u N T

−K N 0






y(k)

u(k)

p(k)


=




−K T p(k−1)+Myy(k−1)

−Φ(u(k−1))+ (−I +G−βG)u(k−1)−GM−1
u N T p(k−1)

−K y(k−1)+N u(k−1)


 .

(3.5)

We now have to take care of the part in (3.5) that corresponds to the controlu. For that we are splitting
the control in its parts corresponding to the active sets based inu(k−1), and consider the following three
cases

Φ(u(k−1))





= (ua−u(k−1))i for all i ∈ A(k−1)
−

= (u(k−1)− µ (k−1)−u(k−1))i for all i ∈ A(k−1)
I

= (ub−u(k−1))i for all i ∈ A(k−1)
+

(3.6)
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whereA(k−1)
− =

{
i : (u(k−1)− µ(k−1))i < (ua)i

}
, A(k−1)

+ =
{

i : (u(k−1)− µ(k−1))i > (ub)i

}
andA(k−1)

I

for the free variables at stepk−1. For convenience we neglect the indices of the active sets in the linear
systems. We can equivalently split up−Φ(u(k−1))+ (−I +G−βG)u(k−1)−GM−1

u N T p(k−1) using
(3.6) and the definition ofµ to get

−Φ(u(k−1))+ (−I +G−βG)u(k−1)−GM
−1
u N

T p(k−1)





=−ua for all i ∈ A(k−1)
−

= 0 for all i ∈ A(k−1)
I

=−ub for all i ∈ A(k−1)
+ .

(3.7)

Putting this together into a linear system now gives




My 0 0 0 −K T

0 −I 0 0 0
0 0 −I 0 0
0 0 0 β I GAI ,:M−1

u N T

−K N :,A+ N :,A− N :,AI 0







y(k)

u(k)
A+

u(k)
A−

u(k)
AI

λ (k)



=




M ȳ
−ub

−ua
0
d



. (3.8)

We now eliminate the rows corresponding tou(k)
A+

andu(k)
A− and also multiply the row corresponding to

u(k)
AI

by M AI ,AI , a diagonal matrix, and using the fact thatM
AI ,AI
u

(
GAI ,:M−1

u N T
)
= (N :,AI )T to get




My 0 −K T

0 βM
AI ,AI
u

(
N :,AI

)T

−K N :,AI 0







y(k)

u(k)
A+

u(k)
A−

u(k)
AI

λ (k)



=




My ȳ
0

d−N :,A+ub−N :,A−ua


 . (3.9)

Note that this system can be solved similarly to the ones for the unconstrained case (see Stoll & Wathen
(2009)) as we implicitly work with the system matrix defined in (3.9) and use a preconditioner for
the problem without bound-constraints. The advantage of this approach is that the preconditioner only
needs to be constructed once. We will discuss this further inSection 6. For the convergence properties
of the active set or equivalently semi-smooth Netwon methodwe refer to Bergouniouxet al. (1999);
Hintermülleret al. (2002). Note that the semi-smooth Newton method converges superlinearly if the
initial guess is sufficiently close to the solution of the optimality system (see Hinzeet al. (2009); Ito &
Kunisch (2008) for more details).

4. Choice of Krylov solver

As the dimensionality of the linear system is very large and the applications are likely to be three-
dimensional, direct methods based on a factorization of thesaddle point system (cf. Davis (2005); Duff
(1996)) will not be applicable for realistic scenarios of the above described problem. Therefore, we
apply iterative Krylov solvers. These methods build up a so-called Krylov subspace

Kk(A , r0) = span
{

r0,A r0, . . . ,A
k−1r0

}
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and then construct an approximation to the solution of the linear system based upon some optimality cri-
teria for the current iteration. In the case of a symmetric and positive definite left-upper block conjugate
gradient (CG) methods (see Hestenes & Stiefel (1952)) can be applied; typically with a non-standard
inner product. There are a number of candidates based upon these non-standard inner product, which
usually employ different preconditioners and hence different inner products. The Bramble-PasciakCG
introduced in Bramble & Pasciak (1988) is a very successful method coming from finite element so-
lutions of the Stokes problem and has recently been used for optimal control problems (see Rees &
Stoll (2010)). Schöberl and Zulehner proposed another method in Schöberl & Zulehner (2007) that
also has been used successfully for optimal control problems by Herzog & Sachs (2010). Our method
of choice here will be the minimal residual method (MINRES) Paige & Saunders (1975) which mini-
mizes the residual over the current Krylov space. This method needs a symmetric and positive definite
preconditioner, which typically would look like

P =

[
A0 0
0 S0

]
, (4.1)

whereA0 approximates the left-upper block andS0 approximates the Schur-complement of the saddle
point system. These choices withinP are motivated by a result given in Murphyet al. (2000), where
it is shown that the choices ofA0 as the unchanged left-upper block andS0 as the negative Schur-
complement lead to three distinct eigenvalues in the preconditioned system. Our goal is hence to find
good approximations to both the Schur-complement and the upper left block.

The problem of solving time-periodic PDE problems is not a new one and a variety of methods
have been proposed to solve the forward problem, see Vandewalle & Piessens (1992) for a multigrid
approach or Bomhof & van der Vorst (2001); Bomhof (2001) for aGMRES technique applicable to
cyclic systems. The method given in Vandewalle & Piessens (1992) has been used for the optimal
control problem studied in Abbelooset al.(2011). In Ernst (2000) an overview of iterative methods that
apply top-cyclic matrices is presented.

5. Preconditioners

As we have seen in the previous section the choice of approximations for the(1,1)-block of our system
and the Schur-complement

τ−1
K M

−1
y K

T + τβ−1
N M

−1
u N

T , (5.1)

where we assume thatMy andMu are both invertible, is crucial. Note that this is not the case if Ω1 Ω
or a rectangular rule is used for the approximation of the time integral but even in that case we can
get good preconditioners that somewhat approximate an equation that resembles (5.1). Note that we
initially follow a strategy used in Reeset al.(2010b) to drop the second termτβ−1N M−1

u N T but we
will later comment on and introduce alternatives.

5.1 (1,1)-block

Our goal in this section is to derive effective approximations to the upper left block and the Schur-
complement. The left upper block is given by blkdiag(τMy,βτMu). This leaves us with the problem
of efficiently approximating mass matrices. This is a trivial task once the mass matrices are lumped.
In the case of consistent mass matrices the Chebyshev semi-iteration (see Algorithm 1) is a viable tool
for preconditioning and has been used successfully for optimal control applications (see Reeset al.
(2010b,a)).
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1: SetD = diag(M)
2: Set relaxation parameterω
3: Computeg= ωD−1b̂
4: SetS= (I −ωD−1M) (this can be used implicitly)
5: Setzk−1 = 0 andzk = Szk−1+g
6: ck−1 = 2 andck = ω
7: for k= 2, . . . , l do
8: ck+1 = ωck− 1

4ck−1

9: ϑk+1 = ω ck
ck+1

10: zk+1 = ϑk+1(Szk+g− zk−1)+ zk−1

11: end for

Algorithm 1: Chebyshev semi-iterative method for a number of l steps

5.2 Schur-complement: Richardson iteration

In Stoll & Wathen (2010) we studied all-at-once approaches for the heat equation. In contrast to our
previous results where the matrix representing the one-shot discretization was a lower block-triangular
matrix, we now have an additional term in the upper right corner of K coming from the periodicity
condition. Our goal is to derive preconditioners that deal with the Schur-complement approximation
Ŝ= K M̂−1K T , whereM̂ represents a symmetric positive definite approximation toτMy, e.g., in
the case of the trapezoidal rule andΩ1 = Ω this will simply beτMy. We now approximatêS−1 by
approximatingK −1 andK −T using the Richardson iteration. The idea of a Richardson iteration is
rather simple as we can use a trivial identity

K x= Ix+(K − I)x= b

and rearranging the last part we get

x= (I −K )x+b.

We can now turn this into an iterative method in the followingway

x(k+1) = (I −K )x(k)+b.

It is well known Saad (2003) that this method converges if theeigenvalues of the matrixK lie within
the unit disk. To improve the convergence of this approach a preconditionerP can be introduced as
follows

P
−1

K x= Ix+(P−1
K − I)x= P

−1b

resulting in the following iteration

x(k+1) = (I −P
−1K)x(k)+P

−1b

or equivalently

x(k+1) = x(k)−P
−1rk
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with rk = K xk −b the residual. Many well known methods fit into this scheme andwe refer to Saad
(2003) for details. For our problem we decide to use the following preconditioner

P=




L̂
−M L̂

−M L̂
. . .

. . .

−M L̂




for the forward PDE, wherêL is an approximation to the matrixL= τK+M. We will use a fixed number
of algebraic multigrid cycles (AMG) aŝL−1. This approach is feasible as we are not interested in the
solution of the PDE problem but only in an approximation as part of the preconditioner. Note that for
L̂ = L this simply is the Gauss-Seidel method. Similarly, we proceed for the adjoint PDE represented
by K T with the preconditioner

P=




L̂ −M
L̂ −M

L̂
. . .
. . . −M

L̂



.

In our experiments we performed two steps of the Richardson iteration scheme given in for both forward
and adjoint problem as an approximation to the Schur-complement.

Note that it would also be possible to use other preconditioners such as the one used in Jacobi’s
method, i.e., a block diagonal with the blocks given byL̂.

5.3 Schur-complement: Circulant approach

We will now focus on a different approximation of the Schur-complement. For this we study the struc-
ture of the discretized forward problem defined by the one-shot operator




M+ τK −M
−M M+ τK

−M M+ τK
. . .

. . .
−M M+ τK



,

which can be written as
K = I ⊗ τK+C⊗M (5.2)

with

C=




1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0

0 0
...

... 0
0 0 0 −1 1
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a circulant matrix. It is well known from Chen (1987) that thematrixC can be diagonalized using the
Fourier matrixF, i.e.,

C= Fdiag(λ1,λ2, . . . ,λNT )F
H .

Note that ifC is non-singular we have

C−1 = Fdiag(λ −1
1 ,λ −1

2 , . . . ,λ −1
NT

)FH .

If we apply the FFT to the matrixK y= c we get
(
FH ⊗ INT

)
K (F ⊗ INT )

(
FH ⊗ INT

)
y=

(
FH ⊗ INT

)
g

and using the definition ofK this becomes
(
FH ⊗ INT

)
K (F ⊗ INT ) =

(
FH ⊗ INT

)
(I ⊗ τK+C⊗M)(F ⊗ INT ) (5.3)

= FHF ⊗ τK+FHCF⊗M (5.4)

= I ⊗ τK+diag(λ1,λ2, . . . ,λNT )⊗M. (5.5)

The eigenvaluesλ j can be determined via Chen (1987) as

λ j = c0+[c1+ cn−1]cos

(
( j −1)2π

k

)
+ i[c1− cn−1]sin

(
( j −1)2π

k

)

for j = 1, . . . ,NT . In our case we getc1 = 0, c0 = 1 andcn−1 =−1 and hence

λ j = 1− cos

(
( j −1)2π

k

)
+ i sin

(
( j −1)2π

k

)

All of this results in a block-diagonal matrix with the diagonal elements in the following form

Wj = τK + λ jM = τK +(1− cos

(
( j −1)2π

k

)
)M+ i sin

(
( j −1)2π

k

)
M.

Wj represents one of the blocks of the block-diagonal matrix that we have to solve for. First, we have to
point out that the application of the Fourier transform willin general result in complex valued systems.
In more detail, the diagonal blocks mentioned above represent NT complex valued linear systems, i.e.,

(
τK +(1− cos

(
( j −1)2π

k

)
)M+ i sin

(
( j −1)2π

k

)
M

)
(yr + iyc) = (gr + igc)∀ j (5.6)

or equivalently [
U −V
V U

][
yr

yc

]
=

[
gr

gc

]
(5.7)

using

U = τK +(1− cos

(
( j −1)2π

k

)
)M andV = sin

(
( j −1)2π

k

)
M.

The linear system can also be written in symmetric form to give
[

U −V
−V −U

][
yr

yc

]
=

[
gr

−gc

]
. (5.8)
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Once, the solution to the system (5.11) is computed we have totransform the solution back using the
Fourier transformF . Note that the same has to be done for the adjoint PDE as we haveto approximate
the solution of both forward and adjoint PDE in order to approximate the Schur-complement. Note that
the one-shot discretization of the adjoint PDE is characterized by




M+ τK −M
M+ τK −M

M+ τK
. . .
. . . −M

−M M+ τK




which can be written as
K = I ⊗ τK+C̃⊗M (5.9)

with

C̃=




1 −1 0 0 0
0 1 −1 0 0

0 0 1
...

0 0 0
... −1

−1 0 0 0 1



.

Similar to the forward PDE we see thatC̃ is a circulant matrix, which means we can diagonalize it using
the Fourier matrix to get

I ⊗ τK+diag(λ1,λ2, . . . ,λNT )⊗M

where the eigenvaluesλ are determined from

λ j = c0+[c1+ cn−1]cos

(
( j −1)2π

k

)
+ i[c1− cn−1]sin

(
( j −1)2π

k

)

with c0 = 1, c1 =−1, andcn−1 = 0 to give

λ j = 1− cos

(
( j −1)2π

k

)
− i sin

(
( j −1)2π

k

)
.

These are simply the complex conjugates of the eigenvalues of the forward circulant matrix. Again, we
have to solve a complex linear system and we use the above presented approach to get

(
τK +(1− cos

(
( j −1)2π

k

)
)M− i sin

(
( j −1)2π

k

)
M

)
(yr + iyc) = (gr + igc) (5.10)

or equivalently [
U V
V −U

][
yr

yc

]
=

[
gr

−gc

]
. (5.11)

Again, the solution to the complex linear system has to be transformed back usingF via the FFT. We
will now discuss how to solve the linear systems associated with the complex valued system. Note that
preconditioning a matrix of block-circulant type was also recently studied for the solution of a forward
time-periodic PDE (see Greidanus (2010)).
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5.4 Solving the complex linear system

As we have already seen in the previous section, the circulant approach to both the forward and the
adjoint problem leads to a complex-valued linear system. Wewant to solve the complex systems in their
real form shown in (5.8) and (5.11). As these systems arise within an outerMINRES iteration we need
the iterative solver for both systems to represent a linear operator. This would not be achieved in case
a Krylov solver is used due to its nonlinearity. Instead we propose to use a fixed number of steps of an
inexact Uzawa-type method as was already proposed for Stokes control in both the steady (cf. Rees &
Wathen (2010)) and the unsteady (cf. Stoll & Wathen (2011)) case. The main iteration of the inexact
Uzawa method can be cast in the following form

xk+1 = xk+ωP
−1rk,

which means we need to multiply with the system matrices
[

U V
V −U

]
and

[
U −V
−V −U

]
, (5.12)

with U = τK +(1− c)M andV = sM wheres andc are abbreviations for the sine and cosine values
used before. Matrices that resemble the ones used in (5.12) can be found in the numerical solution of
the bidomain equations (see Pennacchio & Simoncini (2011, 2009)). There we have a two by two block
matrix that has mass matrix plus stiffness matrix terms as diagonal blocks and the off-diagonals are
mass matrices. We want to use a preconditionerP = blkdiag(A0,A1), whereA0 approximates the(1,1)
block of (5.8) or (5.11) andA1 the corresponding Schur-complement. For the bidomain equations the
choice ofA1 approximating the(2,2)-block also gives good results as the Schur-complement is rather
complicated and one way could be to useU +Vdiag(U)VT as an approximation. Here we will stay
with the choice of an algebraic multigrid method for both the(1,1) and the(2,2) block. In fact, in
our computations we simply use the algebraic multigrid thatwe need for theL = τK +M block as an
approximation ofU . This is due to the fact that otherwise we would needNT different preconditioners
for one space-time solve as all the diagonal blocks in the circulant approach are different, which would
be infeasible.

5.5 Singular constraints

As we also consider boundary control, it has to be noted that this means for the stiffness matrix of
the Laplace part to be only positive semi-definite. The operator and hence the matrixK have a one-
dimensional kernel, that for the matrixK is written as1, the vector of all ones of the appropriately
chosen dimension, i.e.,K1= 0. It can easily be seen that the vector

[
1T ,1T , . . . ,1T

]T
is in the nullspace

of the one-shot discretizationK of the time-dependent PDE (cf. (2.2) (2.4)). Problems of similar type
occur in applications such as the treatment of the hydrostatic pressure in the solution of Stokes flow (see
Elmanet al. (2005)). Hence, for the singular problems we refer to Section 2.3 in Elmanet al. (2005),
where it is stated that iterative methods will be able to handle the singularity as any Richardson method
will converge as long as all non-zero eigenvalues of the iteration matrix are inside the unit disk.

In the case of the circulant approach we note that the first of the diagonal blocks will become a pure
Neumann problem for both the real and the complex part. Hence, the system we want to solve is given
by [

τK 0
0 τK

][
yr

yc

]
=

[
gr

gc

]
, (5.13)
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with K a Neumann Laplacian. As a consequence we have to solve two uncoupled pure Neumann
problems. The solution of pure Neumann problems is a fundamental problem in many application and
has to be treated carefully as the system matrixτK has a one dimensional kernel spanned by1. Bochev
and Lehoucg present a review of techniques to overcome this dilemma in Bochev & Lehoucq (2005).
We now solve the system

Π TKΠ x= Π Tb

whereΠ is the following projection operator

Π = I − wcT

cTw

with c being in the span of1 andw ∈ Rn is chosen such thatcTw > 0. For more details we refer to
Bochev & Lehoucq (2005).

5.6 Dependence on the regularization parameter

There has recently been a surge in the development of preconditioners that show not only mesh-independent
convergence behaviour but also have independence with respect to the regularization parameterβ .
Zulehneret al. (cf. Takacs & Zulehner (2011); Schöberl & Zulehner (2007))introduce a symmetric pos-
itive definite preconditioner/inner product matrix that incorporates the regularization parameterβ and
the resulting iteration numbers are independent ofβ . In the case of distributed control, the dependence
on β for many values of the parameter could be observed to be very benign for the Schur-complement
approximation given by

Ŝ= τ−1 ˆK M ˆK
T .

For boundary control this observation is no longer true.
Pearson and Wathen (see Pearson & Wathen (2010)) recently introduced a different approximation

of the Schur-complement of a non-time-dependent, distributed control problem by

Ŝ=

(
K +

1√
β

M

)
M−1

(
K +

1√
β

M

)
, (5.14)

which can be obtained by dropping the term− 2√
β

K from the Schur-complement

S=

(
K+

1√
β

M

)
M−1

(
K+

1√
β

M

)
− 2√

β
K.

Note that for our problem given in (2.8) we cannot simply use this technique but rather use an extension
to the time-dependent, boundary control case that will be analyzed in a different publication ( cf. Pearson
et al.(2011)) and hence we only motivate it here. The Schur complement of the time-dependent problem
is given by

S= τ−1
K M

−1
y K

T + τβ−1
N M

−1
u N

T

and this will now be approximated by

Ŝ= τ−1(
K +M̂

)
M

−1
y

(
K

T +M̂
)
, (5.15)
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whereM̂ = blkdiag(0,τ
√

h
β Mu) if we assume that the degrees of freedoms corresponding to nodes

on the boundary are ordered so they appear in the last components. Note thath is the mesh-size and
this scaling has to be introduced to compensate for the different order of the boundary mass matrix
and the mass matrix over the whole domain. We remember at thisstage thatN M−1

u N T will be a
diagonal matrix withMu a block-diagonal matrix consisting of lumped boundary massmatrices. A
second alternative that can also be found in Pearsonet al. (2011) is given by

Ŝ= τ−1(
K +M̂

)
M̆

−1(
K

T +M̂
)

(5.16)

whereM̂ as defined before andM̆ = hblkdiag(hI,Mu) in 2D andM̆ = hblkdiag(h2I ,Mu) in 2D again
assuming the degrees of freedom would be such that the boundary nodes correspond to the right lower
entries in the matrixM̆ .

One important fact about these new Schur-complement approximations is that the preconditioning
strategies mentioned earlier, i.e., Richardson iterationand circulant approach, apply with almost no
changes to this case. Hence, we will not discuss how to implement these new approximations efficiently.

6. Numerical Experiments

6.1 Setup and implementation details

In this section we provide numerical experiments for the methods presented above. For the discretization
we used the deal.II library (cf. Bangerthet al.(2007)), which is implemented in C++ using quadrilateral
elements. As deal.II provides easy access to the Trilinos MLAMG package our multigrid approxima-
tions were performed using Trilinos’ smoothed aggregationpreconditioners (see Geeet al.(2006)). We
approximated the blocks involvingL as the sum of a mass matrix and stiffness matrix, also the matrices
possibly involving scalar factors in front ofM or K, by 2 steps of an AMG V-cycle and 10 steps of a
Chebyshev smoother. The Richardson iteration based preconditioner uses 2 steps for both the adjoint
and the forward problem. The circulant based preconditioner uses 3 steps of the inexact Uzawa method
for every complex linear system. The application of the FFT needed for the circulant approach was
provided by employing FFTW (see Frigo & Johnson (1998, 2005)). We use a relative tolerance of 10−4

for the pseudo-residual andτ = 0.05 with T = 1, i.e.,NT = 20 unless mentioned otherwise. All experi-
ments are performed on a Centos Linux machine with Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs
and 48GB of RAM. Note that no parallelism is exploited in the implementation of our algorithms. If we
mention the degrees of freedom in the Tables further on, theyusually refer to the degrees of freedom
needed for one grid point in time. So the dimensionality for the overall system is much larger. To give
an example, Table 5 mentions 274625 degrees of freedom; thisnumber needs to be multiplied by 3
and the number of grid points in time (20) to give the dimension of the system that is solved implicitly
16 477 500.

6.2 Distributed control

The first example is a distributed control example with zero Dirichlet condition. The desired state is
given by

ȳ=

{
0.5(2.0+ sin(0.5tπx0)+ cos(0.5tπ(1− x1))) x0 < 0.5

0.5 x0 > 0.5,

which together with the computed state is depicted in Figure1 for different time-steps. The compu-
tations in Figure 1 are done withβ = 10−4. Note that the Dirichlet boundary conditiony = 0 on∂Ω
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(a) ȳ0 andy0 (b) ȳ10 andy10 (c) ȳ19 andy19

Figure 1: Desired (solid) and computed (mesh) state at different points in time.

forces the state to differ drastically from the desired state on the boundary. A remedy could be to set
the desired state to zero on the boundary or to the Dirichlet boundary to match the desired state. These
choices clearly depend on the underlying problem and the requirements coming from an application.

In Table 1 we show the FFT preconditioned method for two different values ofβ to illustrate that
the dependence on the regularization parameterβ is rather benign.

Table 2 shows the comparison of the Richardson iteration vs.the circulant approach for a three-
dimensional example. The desired state in this case is givenby

ȳ(t) = 210tx0x2x1(x0−1)(x1−1)(x2−1),

which for ȳ10 is depicted in Figure 2a. Figure 2b shows a spherical slice ofthe computed state that
approximates̄y10. The rather significant difference in timings might be due tothe fact that we perform
2 Richardson iterations vs. 3 inexact Uzawa for every complex system of which we have to solveNT

with the each system of system dimension 2n.

β = 1e−2 β = 1e−4

DoF MINRES(T) MINRES(T)
4225 12(20) 38(61)
16641 12(74) 38(216)
66049 12(313) 38(889)
263169 12(1390) 38(4180)

Table 1: Different values forβ : Number ofMINRES iterations (CPU time).

6.3 Boundary control

Our next task is to illustrate the performance of the preconditioners proposed for the boundary control
problem presented earlier. In the case of boundary control we noticed that the approximation for the
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FFT RI

DoF MINRES(T) MINRES(T)
729 10(7) 6(2)
4913 10(35) 6(8)
35937 10(267) 6(58)
274625 10(2780) 6(681)

Table 2: Different preconditioners: FFT (left) vs. Richardson (right) and number ofMINRES iterations
(CPU time) forβ = 1e−4.

(a) ȳ10 (b) y10

Figure 2: Desired and computed state at different points in time.

Schur-complement given by
τ−1

K M
−1

K
T

did not seem to suffice to guarantee convergence within a reasonable number of iterations. Hence, we
developed the preconditioners presented in Section 5.6 that can use all the techniques presented for
the original approximation as both the structure for the Richardson iteration as well as the circulant
structure remain untouched. We will now illustrate the performance of the new Schur-complement
approximation. We first compare the two different approximations forSgiven in (5.15) and (5.16) for a
two-dimensional example defined by the following desired state

ȳ=

{
sin(t)+ x0 x0 > 0.5 andx1 < 0.5

1 otherwise.

Table 3 shows the results for (5.15) and different mesh-sizeas well as different values forβ . Table
4 shows the results for a similar setup with the approximation to the Schur-complement coming from
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(5.16). We can see that both methods perform very similar with slightly fewer iterations for the second
approximations.

β = 1e−2 β = 1e−4 β = 1e−6

DoF MINRES(T) MINRES(T) MINRES(T)
289 24(3) 32(3) 34(4)
1089 30(10) 42(14) 46(15)
4225 32(25) 54(41) 60(45)
16641 34(92) 70(186) 76(202)
66049 38(406) 88(921) 100(1065)

Table 3: Different values forβ with approximationŜdefined in (5.15)

β = 1e−2 β = 1e−4 β = 1e−6

DoF MINRES(T) MINRES(T) MINRES(T)
289 22(3) 30(3) 32(3)
1089 24(9) 38(13) 42(14)
4225 30(24) 50(38) 58(44)
16641 32(90) 62(167) 72(193)
66049 36(400) 82(868) 96(1008)

Table 4: Different values forβ with approximationŜdefined in (5.16).

We next want to illustrate the performance of our approach for a three-dimensional boundary control
problem. The desired state is given by

ȳ= (2+ cos(x0tπ/2)+ cos((1− x1)tπ/2.0)+exp(x2π))/(t +0.05).

Figure 3a shows the desired stateȳ10, Figure 3b and 3c shows the computed statey10 and controlu10,
respectively. The results for this example are shown in Table 5 forβ = 1e−4 and different mesh-sizes.

β = 1e−4

DoF MINRES(T)
729 32(18)
4913 44(130)
35937 56(1378)
274625 74(19560)

Table 5: 3D results for different mesh-sizes.
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(a) ȳ10 (b) y10 (c) u10

Figure 3: Desired state, computed state, and computed control.

6.4 Boundary control with box-constraints

We finally want to present results for the case of boundary control in the presence of box constraints.
The desired statēyis defined by

{
sin(t(1− t))+ x0x1x2 for x0 > 0.5 andx1 < 0.5

1 otherwise.
(6.1)

In Figure 4c we show the computed results for this problem without any box constraints on the control.
In Figure 5 the results are shown in the presence of the upper bound set to 0.15.The results forβ =1e−2
and the boundub= 0.15 are shown in Table 6. It can be seen that the growth in iteration numbers is rather
benign similar to the case when no box constraints are present. Nevertheless, the individual iteration
numbers for one Newton system are slightly higher than in theunconstrained case, which might be due
to the fact that the same preconditioner is used in every iteration of the active set method not taking the
structure of (3.9) into account. It would be possible to incorporate the structure of the Newton system
into the preconditioner by construction a new preconditioner for every Newton step. This should be
done in the future for more realistic scenarios.

DoF AS Total numberMINRES(Total time)
729 5 346(194)
4913 5 407(1225)
35937 6 584(16232)

Table 6: 3D results for active set method withβ = 1e−2 and different mesh-sizes.

7. Conclusions

In this paper we presented a monolithic solver for the space-time discretization of an optimal control
problem subject to the time-periodic heat equation. We formulated a one-shot approach that resulted in a
huge linear system in saddle point form. With our choice ofMINRES as the Krylov subspace solver we
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(a) u15 (b) y15 (c) ȳ15

Figure 4: Desired state, computed state, and computed control.

(a) u15 (b) y15 (c) ȳ15

Figure 5: Desired state, computed state, and computed control in the presence of bound constraints.
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were focusing on the task of devising good preconditioners for Schur-complement of the saddle point
matrix. We proposed two techniques, one based on a Richardson iteration and the other one circulant
formulation that allowed the use of the FFT. Both methods performed competitive for distributed control.
In the case of boundary control, we introduced a new Schur-complement approximation that allowed
more flexibility with respect to the regularization parameter β . The efficient solution of the control
problem also enabled the fast solution of the minimization when control constraints are present. We
showed the results for boundary control with box constraints on the control and illustrated the flexibility
of our approach.
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TRÖLTZSCH, F. (2010) Optimal Control of Partial Differential Equations: Theory, Methods and Applications.

Amer Mathematical Society.
ULBRICH, M. (2011) Semismooth Newton Methods for Variational Inequalities and Constrained Optimization

Problems. SIAM Philadelphia.
VANDEWALLE , S. & PIESSENS, R. (1992) Efficient parallel algorithms for solving initial-boundary value and

time-periodic parabolic partial differential equations.SIAM J. Sci. Statist. Comput, 13, 1330.


