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In this paper we describe the efficient solution of a P&astrained optimization problem subject to the
time-periodic heat equation. We propose a space-time flation for which we develop a monolithic
solver. We present preconditioners well suited to appraténthe Schur-complement of the saddle point
system associated with the first order conditions. This melaat in addition to a Richardson iteration
based preconditioner we also introduce a preconditionsedan the tensor product structure of the
PDE discretization, which allows the use of a FFT based mprditioner. We also consider additional
bound constraints that can be treated using a semi-smoathioNanethod. Moreover, we introduce
robust preconditioners with respect to the regularizaparameter. Numerical results will illustrate the
competitiveness and flexibility of our approach.

Keywords

PDE-constrained optimization, Saddle point systems, Tdewendent PDE-constrained optimization,
Preconditioning, Krylov subspace solver

1. Introduction

For many years the solution of so-called forward partidedéntial equations (PDE) problems has been
in the focus of the numerical analysis and scientific conmmuéommunity. Although, there are many
challenges left the progress made over the last decadenéisled the search for, in some sense, optimal
solutions of PDEs. The task in the field often labeled PDEstramed optimization is to minimize an
objective function subject to constraints given by PDEstroductions to the field can be found in
Troltzsch (2005, 2010); Hinzet al. (2009); Ito & Kunisch (2008).

A typical example will look like the following

min  J(y,u) (1.1)
s.t.Z(y,u) =0, (1.2)

whereJ(y,u) is the function we want to minimize ané’(y,u) = 0 represents a differential operator,
typically a PDE, that links the stageand the controll. We assume that suitable boundary conditions are
given and in the case of time-dependent problems initiadiitioms are specified. Often the introduction
of additional constraints, such as bound constraints orctimerol and/or the state poses additional
challenges (cf. Troltzsch (2005, 2010); Hireteal. (2009); Ito & Kunisch (2008) for suitable methods
to deal with this).
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Our focus in this paper is to solve a problem of the above tyjperesthe PDE constraint is equipped
with appropriate boundary conditions and the stagxhibits time-periodicity, i.e.y(0,;) = y(T,:)
whereT is the final time we are interested in. Problems of this typeehacently been analyzed in
Potschkeet al. (2010); Abbeloost al. (2011), where the motivation for the optimal control prable
was a chemical engineering application such as the one giyeawajiri & Biegler (2006).

The paper is organized as follows. In the next section, wénareducing the problem formulation
and the PDE constraint with time-periodicity. We will dissuthe discretization and then give the first
order optimality system. In Section 3 we introduce the seméoth Newton method developed in
Bergouniouxet al. (1999); Hintermulleret al. (2002) that will allow us to handle box constraints on
the control. We will then briefly motivate our choice of Krylsubspace solver. In Section 5, we
discuss the preconditioners that are suitable for our ambro Namely, a Richardson iteration based
preconditioner and also a preconditioner using the cirduid&ructure of the discretized PDE. We will
discuss issues that arise when boundary control is emplayedhe dependency on the regularization
parameter. Numerical results in Section 6 illustrate tlieiehcy of our approach.

2. Problem and discretization

In this paper, we will analyze tracking type functionals jggbto a time-periodic partial differential
equation. The functional that we want to minimize is given by

y,u) = 2/'/ (x,t) xxt(mm+ﬁ/’/ u(x, t))2dxdt 2.1)

whereQq > C Q are domains ifRd with d = {2,3}, y is the state, y the desired state and u the control.
We want to minimize this functional subject to the time-péic heat equation that links the state and
the control and is hence called the state equation. In mdedl dbe equation now reads as

“—Ay=u (2.2)

defined oveQ x [0, T], with Dirichlet boundary conditioy = 0 on the spatial boundag® and time-
periodic conditiorny(x,0) = y(x,T). In addition, we will allow for variations of this problem he first
is the so-called boundary control problem given by

Jond(Y, U) : 2/ / (X, 1) =YX, 1)) 2 dxdt+ B/ / dxdt (2.3)
subject to
w—Ay=f (2.4)
with Neumann boundary condition
oy
o=

and some forcing terrfi, that we assume to be zero. Additionally, the introductiobaind constraints
on control and/or state pose additional challenges to nigaielgorithms. Bounds such as

Ua <US Up andya <Y< VYp

have to be accounted for by more sophisticated algorithm3t¢Ech (2005, 2010); Ito & Kunisch
(2008); Hinzeet al. (2009).) We will discuss the necessary approaches for @ocinstraints in later
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parts of this paper (see Section 3). There are two ways teeptbfrom the above problems. First, one
can write down the infinite dimensional first order condi@and then discretize them, this is the so-
calledOptimize-then-Discretizapproach. The other approach is to discretize first and thi@ down
the first order or KKT conditions, this is the so-callB@scretize-then-Optimizapproach. It is desired
for many problems that these two approaches coincide, wiBitaken into account when devising
discretization schemes such as the ones derived in Hihak (2008). We will follow the Discretize-
then-Optimize approach. Hence, we discretize both thetiiumal and the PDE using standard Galerkin
finite elements, rectangular in our case because of the lyimteuse of deal.ll (cf. Bangertkt al.
(2007)), which does not use triangular elements.

For the time-discretization of the PDE we use a backwardriadeeme that leads to the following
semi-discretized form of (2.2)

k-1
w YNV T (2.5)
with T being the time-step and the number of grid points in time isotied byNy. And similarly for

the second PDE (2.4). The finite element discretization atsps straightforward and putting all time
steps into one system, a so-called one-shot approach teads

M+ 1K —M Y1
—M M+ 1K Y2
M M+K Y3 | —tA4u=d,
. . (2.6)
-M M+1K YN
H

whereM andK are the finite element (lumped) mass and stiffness matrixdatite right-hand side
representing the boundary conditions and forcing termse Mat.2” exhibits circulant structure, which
we will discuss in more detail later. Further, we have thermat” = blkdiag(N, N, ...,N), whereN can
be a rectangular matrix depending on the nature of the optiordrol problem and its discretization.
N is a square mass matrixyfandu are discretized using the same finite elementsiargpresents a
distributed control. In the case obeing discretized using a different finite element than tatey, e.g.,
piecewise constant elements for the control and lineaefgl#ments for the state, onifis a boundary
control, thenN is a rectangular matrix. In the case of boundary coritralill consist of entries coming
from the integralf,, utr(v), whereu is the boundary control and tr is the trace operator actinthen
test functionv from the test space used for the discretization of the gtate

We now need to discretize the objective functitiy,u) and for this we use the trapezoidal rule to
get the discretized objective function as

B

J(y,u) = %(y—‘)&T///y(y—_)bJr?uT///uu (2.7)

where.#, = blkdiag'1/2M,M, ..., 1/2M) whereM is the mass matrix over the domah and.#, =
blkdiag'1/2M, M, ..., 1/2M) whereM represents the mass matrix for the dom@in

Once all these ingredients are available, we can combime ithi® a Lagrangian and write down the
first order conditions, which can be written as the followii§T system

tH#y O =T y Myy
0 Bty tHT u | = o |. (2.8)
- TN 0 p d
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Note that 2.8 represents a saddle point system with a syntnagil positive semi-definitel, 1) block
given by blkdiagt.#y,B1.#,) and a full rank block—-¢" 1.4"]. Here, p represents the discrete
Lagrange multiplier or equivalently the solution to theaidf PDE. These conditions are sufficient for
the invertibility of the saddle point system. Note that i§iead of the trapezoidal rule we would have
used a rectangular rule for the discretization of the objedtinction the block blkdiag.#y, Bt.#,)
would contain zero blocks. Note that in the case of only a fina¢ observation id(y,u), i.e. , the first

termin (2.1) changes to
1- (y(va) - S(XaT))ZdX
2Ja,

and in this case thgl, 1) block of the saddle point system will be highly singular ($2ell & Wathen
(2010, 2011); Benzet al. (2010); Simoncini (2011)). Note that the above linear gystdll typically
be of very large dimension, i.e., the dimension is given b3 wheren is the number of the degrees
of freedom of the PDE discretization ahg the number of grid points in time.

Note that a reduction of the dimensionality of the aboveesyst possible by eliminating the control
u a technique that is also discussed in Simoncini (2011); &{@005). In case that th@, 1) block is
positive definite, we can also only work with the Schur-coenpént reduction as also the mass matrices
are lumped and hence the evaluation%g,”l and.#, 1 is trivial. This case would enable the use of the
classicalCG method Hestenes & Stiefel (1952) but the challenge in d@ietpgood preconditioners
for the Schur-complement stays intact. Note this does nply&ap.#, and.#, are not invertible, e.g.,
Q¢ Q.

3. Bound constraints

For the treatment of bound constraints on the control we Wwaose a semi-smooth Newton method.
This method was first derived in Bergounioebal.(1999) under the name primal-dual active set method
and it was later shown (cf. Hintermullet al.(2002)) that the method is a non-smooth (also called semi-
smooth) Newton method. For an introduction to semi-smoaviidn methods we refer to Hinzss al.
(2009); Qi & Sun (1993); Ito & Kunisch (2008); Ulbrich (201The minimization problem mid(u, y)

can be identified with the discrete optimality system

{min F(u) st (3.1)

ga<u<ub inQ7

where we used the state equation to remove the state via tiw@kivom the functional(y,u). In our
case, the optimality condition fdt(u) becomes

®(u) := Py, u,](Uu—D(B.AwW+H'(u))) —u=0

whereD is a diagonal matrix with positive entrigdthe projection onto the interval,, Uy], andH’(u) =
N T =Tty =2V u— AT T s, y(see Theorem 5.2.4 in Kelley (1999)). Note that the gradient
of F(u) is given by[F (u) = B.#yu + H’'(u) and with the choic® = .#;* we get

®(u) =Py, gy (U—Bu—.2, "H'(u)) —u=0.
As @(u) is a non-smooth functional the Newton system is given by

Mist? = — @ (ulD) (3.2)
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where the generalized differential is defined as
My =G—BG— G, /T Tty =t —1

with

1 otherwise

©); = {0 U= ¢ (Un, o)

andu = Bu+ . *H'(u). Without loss of generality, we can assume that the varszdnie ordered such

that
0 0
e-[90]

Note that solving the system (3.2) wilii, can be achieved by solving

M, 0 T S 0
0 —14+G-BG -G N7 SO | =] —oukD)y |. (3.3)
- N 0 s 0

We could stop here for the implementation of a semi-smoothtbie method but as we want to obtain
the implementation of the active set method presentedeeasiwell as obtain a symmetric linear system
that can be solved much more efficiently than the one giveB.B)(we use the definition

(D(u(kfl)) _ P[ga,Ub](u(kil) - (Bu(kfl) +l/{ule/(u(kfl))) _ L'I(kfl)
= Py Ub](u“"l) —puy gD
with &1 = guk=b 1 7, tH/(uk=D). We now use the above to rewrite (3.3) to get
My 0 -7 y® —yk=) 0
0 —1+G-BG Gu#tsT u® k=D | = | —ouDy | (3.4)
- N 0
which is also equivalent to
My 0 — T y®
0 —14+G-BG -GN uk | =
- N 0

(3.5)
,{%/T p(kfl) + %yy(k*l) ]

Uk V) 4 (-1 +G-BGUKY — Gz Ly TpkD
,(%/y(kfl) +</Vu(k*1)

We now have to take care of the part in (3.5) that correspantteetcontrolu. For that we are splitting
the control in its parts corresponding to the active setedasu*~1, and consider the following three
cases

= (Uy — u); foralli e A

ouk ) = (kD — D _ylDy forallie ARY (3.6)

= (Tp— uD); foralli e A%
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whereA*™Y = {i (ke — )y < (ga)i}, Ak = {i s (ueD) — )y s (Ub)i} andA*

for the free variables at stdp- 1. For convenience we neglect the indices of the active setsilinear
systems. We can equivalently split upp(uk D) + (=1 + G — BG)uk—Y — G.#z; t 4T pk=D using
(3.6) and the definition off to get

=—u, forallic A*™Y

—ou )+ (—1+G-peu N -G TR N =0 forallie AV (37)

= -0, forallie Aﬂ“l).

Putting this together into a linear system now gives

(K) _
My 0 0 0 — AT Yo MY
(R 0 0 0 Up, -
0 0 1 0 0 u ol =1y |- (3.8)
0 0 0 Bl GALaINT G 0
—K A R A 0 N d

We now eliminate the rows corresponding.tﬁi and ugki and also multiply the row corresponding to

uﬂ? by .#"A | a diagonal matrix, and using the fact that?" ' (GA.#; 1/ T) = (#/A1)T to get

y®
My 0 AT uy) Y
0 BN (AT ] ul | = [ 0 : (3.9)
KA 0 o d— A ATy — N Ay
A

Note that this system can be solved similarly to the oned#®unconstrained case (see Stoll & Wathen
(2009)) as we implicitly work with the system matrix defined(B.9) and use a preconditioner for
the problem without bound-constraints. The advantageisfapproach is that the preconditioner only
needs to be constructed once. We will discuss this furth8eirtion 6. For the convergence properties
of the active set or equivalently semi-smooth Netwon methedefer to Bergouniougt al. (1999);
Hintermulleret al. (2002). Note that the semi-smooth Newton method convengesrbnearly if the
initial guess is sufficiently close to the solution of theipglity system (see Hinzet al. (2009); Ito &
Kunisch (2008) for more details).

4. Choice of Krylov solver

As the dimensionality of the linear system is very large amel applications are likely to be three-
dimensional, direct methods based on a factorization ofdldelle point system (cf. Davis (2005); Duff
(1996)) will not be applicable for realistic scenarios oé thbove described problem. Therefore, we
apply iterative Krylov solvers. These methods build up aaled Krylov subspace

(A ,10) = span{ro,dro, . ,%kflro}
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and then construct an approximation to the solution of tiedi system based upon some optimality cri-
teria for the current iteration. In the case of a symmetrit jaositive definite left-upper block conjugate
gradient CG) methods (see Hestenes & Stiefel (1952)) can be appliei;alyp with a non-standard
inner product. There are a number of candidates based upea tton-standard inner product, which
usually employ different preconditioners and hence difféinner products. The Bramble-Pascia®
introduced in Bramble & Pasciak (1988) is a very successtthod coming from finite element so-
lutions of the Stokes problem and has recently been usedptimal control problems (see Rees &
Stoll (2010)). Schoberl and Zulehner proposed anothehatein Schoberl & Zulehner (2007) that
also has been used successfully for optimal control probleyrHerzog & Sachs (2010). Our method
of choice here will be the minimal residual methddINRES) Paige & Saunders (1975) which mini-
mizes the residual over the current Krylov space. This ntetleeds a symmetric and positive definite
preconditioner, which typically would look like

32’[%0 go], (4.1)

whereAq approximates the left-upper block aBglapproximates the Schur-complement of the saddle
point system. These choices withi# are motivated by a result given in Murpley al. (2000), where

it is shown that the choices &g as the unchanged left-upper block aBgas the negative Schur-
complement lead to three distinct eigenvalues in the pmitioned system. Our goal is hence to find
good approximations to both the Schur-complement and tperdpft block.

The problem of solving time-periodic PDE problems is not & reme and a variety of methods
have been proposed to solve the forward problem, see Validetv®iessens (1992) for a multigrid
approach or Bomhof & van der Vorst (2001); Bomhof (2001) faB8 MIRES technique applicable to
cyclic systems. The method given in Vandewalle & Piesse@9Z)1 has been used for the optimal
control problem studied in Abbelo@s al. (2011). In Ernst (2000) an overview of iterative methods tha
apply top-cyclic matrices is presented.

5. Preconditioners

As we have seen in the previous section the choice of appedions for thg1, 1)-block of our system
and the Schur-complement
U M+ BTIN M, (5.1)

where we assume tha#, and.#,, are both invertible, is crucial. Note that this is not thesciig2, ¢ Q

or a rectangular rule is used for the approximation of theetintegral but even in that case we can
get good preconditioners that somewhat approximate antiequaat resembles (5.1). Note that we
initially follow a strategy used in Reext al.(2010b) to drop the second tem8 ~1.4".#; 1.+ but we
will later comment on and introduce alternatives.

5.1 (1,1)-block

Our goal in this section is to derive effective approximasido the upper left block and the Schur-
complement. The left upper block is given by blkdiag#,, Bt.#,). This leaves us with the problem
of efficiently approximating mass matrices. This is a tiitésk once the mass matrices are lumped.
In the case of consistent mass matrices the Chebyshev szatian (see Algorithm 1) is a viable tool
for preconditioning and has been used successfully fom@tcontrol applications (see Reesal.
(2010b,a)).
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: SetD = diag(M)
. Set relaxation parametey
Computeg = wD b
SetS= (I — wD~!M) (this can be used implicitly)
Setz_;=0andz =Sz ;1+9
Ck_1 =2 andcy = w
fork=2,...,1 do
Cit+1 = ka - Ckfl

P11 = w@

Zer1 = 1 (S&+9— % 1) + %1
: end for

© N RONR

.
o

[any
[N

Algorithm 1: Chebyshev semi-iterative method for a numbdrsieps

5.2 Schur-complement: Richardson iteration

In Stoll & Wathen (2010) we studied all-at-once approactoeste heat equation. In contrast to our
previous results where the matrix representing the onéedikoretization was a lower block-triangular
matrix, we now have an additional term in the upper right eomwf .2~ coming from the periodicity

cond|t|on Our goal is to derlve preconditioners that de#hwhe Schur-complement apprOX|mat|0n

S=xu" T, where 7 represents a symmetric positive definite approximation#s,, e.g.,

the case of the trapezoidal rule at = Q this will simply be r.#,. We now approxmaté?l by
approximating# —! and.# ~T using the Richardson iteration. The idea of a Richardsaatitn is
rather simple as we can use a trivial identity

HX=Ix+(H —1)x=b

and rearranging the last part we get
=(l-2X)x+hb.

We can now turn this into an iterative method in the followinay
XD = (1 — )X +b.
It is well known Saad (2003) that this method converges ifdigenvalues of the matrix” lie within

the unit disk. To improve the convergence of this approacheagnditioners? can be introduced as
follows

P I x=x+ (2L —1)x=2"1b
resulting in the following iteration
X(k+1) — (I _ f@flK)X(k) + 971b

or equivalently



ONE-SHOT SOLUTION 9 of 22

with ry = J£'x — b the residual. Many well known methods fit into this scheme waedefer to Saad
(2003) for details. For our problem we decide to use the Wahg preconditioner
L
-M L
p_ -M L

-M L

for the forward PDE, wherk is an approximation to the matrix= 1K + M. We will use a fixed number

of algebraic multigrid cycles (AMG) as 1. This approach is feasible as we are not interested in the
solution of the PDE problem but only in an approximation ag pathe preconditioner. Note that for

L = L this simply is the Gauss-Seidel method. Similarly, we peatfor the adjoint PDE represented
by .# T with the preconditioner

-M
L

In our experiments we performed two steps of the Richardsoation scheme given in for both forward

and adjoint problem as an approximation to the Schur-comgie.
Note that it would also be possible to use other preconditi®such as the one used in Jacobi's
method, i.e., a block diagonal with the blocks givenlby

5.3 Schur-complement: Circulant approach

We will now focus on a different approximation of the Schomplement. For this we study the struc-
ture of the discretized forward problem defined by the ona-sherator

M+ 1K -M
-M M+ 1K
-M M+ K
-M M+1K
which can be written as
H =ITK+CeM (5.2)
with
1 0O 0 0 -1
-1 1 0 O 0
C— O -1 1 o0 0
0 0 0
0 0O 0 -1 1
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a circulant matrix. It is well known from Chen (1987) that timatrix C can be diagonalized using the
Fourier matrixF, i.e.,
C =FdiagA1,A2,..., ANy )F .

Note that ifC is non-singular we have
Ct=FdiagA; A, L AR
If we apply the FFT to the matrix'y = c we get
(FM@in) o (Foln) (FH@in)y= (FT@In) g

and using the definition of¢” this becomes

(Frel)# (Foly)=(F'ely) 12 TK+CoM) (FIn) (5.3)
=FAF@1K+FYCFaMm (5.4)
=1 @K+ diagA1,Az,...,Anp ) @ M. (5.5)

The eigenvaluea; can be determined via Chen (1987) as

Aj = Co+[C1+Cn-1] COS(W) +i[c1 —cn_q]sin (#T)

for j=1,...,Ny. In our case we get = 0, cp = 1 andc,_; = —1 and hence
j—1)2 j—1)2
Aj= 1cos<¥) +isin (%T)

All of this results in a block-diagonal matrix with the diaggd elements in the following form
W = TK +AjM = 1K + (1cos<(1%1>)M +isin<w> M.

W, represents one of the blocks of the block-diagonal mateke have to solve for. First, we have to
point out that the application of the Fourier transform wilgeneral result in complex valued systems.
In more detail, the diagonal blocks mentioned above reptésecomplex valued linear systems, i.e.,

(TK +(1- cos(%) M +isin (W) M) (Yr +iye) = (Or +i9c)Vj (5.6)

v oo -LE] -

U=1K+ (1—cos(¢))M andV = sin (M> M.

or equivalently

using

k
The linear system can also be written in symmetric form t@ giv

[UV H[H:{gg} (5.8)
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Once, the solution to the system (5.11) is computed we hatramsform the solution back using the
Fourier transfornf. Note that the same has to be done for the adjoint PDE as wethaygproximate
the solution of both forward and adjoint PDE in order to apiirate the Schur-complement. Note that
the one-shot discretization of the adjoint PDE is char&ddrby

M+ K -M
M+ 1K -M
M+ K
—-M M+ 1K
which can be written as .
H =11TK+CeM (5.9
with
1 -1 0 0 O
0 1 -1 0 O
¢c=| 0o o0 1
0 0 o . -1

-1 0 0 0 1

Similar to the forward PDE we see this a circulant matrix, which means we can diagonalize itgisin
the Fourier matrix to get
| @ TK +diagA1,A2, ..., AN ) @M

where the eigenvaluésare determined from

Aj=co+[C1+Cn1) COS(W) +ilc —cn-g]sin (%ﬁ

with co =1, c; = —1, andc,_1 = 0 to give

Aj= 1003(%-[) isin<%) .

These are simply the complex conjugates of the eigenvalitee dorward circulant matrix. Again, we
have to solve a complex linear system and we use the abovenpeesapproach to get

(TK+ (1cos<%))M isin<w> M) (Yr +iyc) = (or +igc) (5.10)

or equivalently
u Vv Yr Or
= . 5.11
v 611

Again, the solution to the complex linear system has to hesframed back using via the FFT. We
will now discuss how to solve the linear systems associaitfutive complex valued system. Note that
preconditioning a matrix of block-circulant type was alsgently studied for the solution of a forward
time-periodic PDE (see Greidanus (2010)).
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5.4 Solving the complex linear system

As we have already seen in the previous section, the cirtalgproach to both the forward and the
adjoint problem leads to a complex-valued linear systemw&fet to solve the complex systems in their
real form shown in (5.8) and (5.11). As these systems ari@man outeMINRES iteration we need
the iterative solver for both systems to represent a linparator. This would not be achieved in case
a Krylov solver is used due to its nonlinearity. Instead wepmse to use a fixed number of steps of an
inexact Uzawa-type method as was already proposed for Stakdrol in both the steady (cf. Rees &
Wathen (2010)) and the unsteady (cf. Stoll & Wathen (201&¥ec The main iteration of the inexact
Uzawa method can be cast in the following form

Xer1 =X+ 02y,

which means we need to multiply with the system matrices

H M ] and{ S } (5.12)

with U = TK 4 (1 —c)M andV = sM wheres andc are abbreviations for the sine and cosine values
used before. Matrices that resemble the ones used in (5abh)e found in the numerical solution of
the bidomain equations (see Pennacchio & Simoncini (200d9p. There we have a two by two block
matrix that has mass matrix plus stiffness matrix terms agatial blocks and the off-diagonals are
mass matrices. We want to use a preconditioes blkdiag(Ag, A1), whereAq approximates théel, 1)
block of (5.8) or (5.11) and\; the corresponding Schur-complement. For the bidomaintemsathe
choice ofA; approximating th€2, 2)-block also gives good results as the Schur-complementtiera
complicated and one way could be to w$e-VdiagU)VT as an approximation. Here we will stay
with the choice of an algebraic multigrid method for both tfiel) and the(2,2) block. In fact, in
our computations we simply use the algebraic multigrid thatheed for the. = TK + M block as an
approximation ofJ. This is due to the fact that otherwise we would négddifferent preconditioners
for one space-time solve as all the diagonal blocks in threutant approach are different, which would
be infeasible.

5.5 Singular constraints

As we also consider boundary control, it has to be noted thiatrheans for the stiffness matrix of
the Laplace part to be only positive semi-definite. The operand hence the matriX have a one-
dimensional kernel, that for the matrik is written asl, the vector of all ones of the appropriately
chosen dimension, i.eK1 = 0. It can easily be seen that the vec@th, (LI 1T]T is in the nullspace
of the one-shot discretizatia#” of the time-dependent PDE (cf. (2.2) (2.4)). Problems ofilsintype
occur in applications such as the treatment of the hydiogtegssure in the solution of Stokes flow (see
Elmanet al. (2005)). Hence, for the singular problems we refer to Sac@® in EImanet al. (2005),
where it is stated that iterative methods will be able to tatite singularity as any Richardson method
will converge as long as all non-zero eigenvalues of thaiien matrix are inside the unit disk.

In the case of the circulant approach we note that the firsteofltagonal blocks will become a pure
Neumann problem for both the real and the complex part. Heheesystem we want to solve is given

by
K O Vr O
AR 619



ONE-SHOT SOLUTION 13 of 22

with K a Neumann Laplacian. As a consequence we have to solve twaupled pure Neumann
problems. The solution of pure Neumann problems is a fundéhproblem in many application and
has to be treated carefully as the system mati>has a one dimensional kernel spanned bBochev
and Lehoucg present a review of techniques to overcome ileisicha in Bochev & Lehoucq (2005).
We now solve the system

MTKMx=M"b

wherell is the following projection operator

Mn=1-—==—
c'w
with ¢ being in the span of andw € R" is chosen such that' w > 0. For more details we refer to
Bochev & Lehoucq (2005).

5.6 Dependence on the regularization parameter

There has recently been a surge in the development of prigsimmads that show not only mesh-independent
convergence behaviour but also have independence witkeaesp the regularization parametgr
Zulehneret al. (cf. Takacs & Zulehner (2011); Schoberl & Zulehner (200ioduce a symmetric pos-
itive definite preconditioner/inner product matrix thatémporates the regularization paramegeand
the resulting iteration numbers are independerfi.ofin the case of distributed control, the dependence
on 3 for many values of the parameter could be observed to be \emigh for the Schur-complement
approximation given by

S=t A AT

For boundary control this observation is no longer true.
Pearson and Wathen (see Pearson & Wathen (2010)) recemtigliced a different approximation
of the Schur-complement of a non-time-dependent, digiibaontrol problem by

. 1 1
S=[K+—=M|M I [K+—=M]|, 5.14
( Y ) < VB ) o

which can be obtained by dropping the term%K from the Schur-complement

VB

1 1 2
S=|K+—%=M|M K+ —=M |- —=K.
(e o) -

Note that for our problem given in (2.8) we cannot simply e technique but rather use an extension
to the time-dependent, boundary control case that will ladyaed in a different publication ( cf. Pearson
etal.(2011)) and hence we only motivate it here. The Schur comgteof the time-dependent problem
is given by

S=1 M AT+ BN N

and this will now be approximated by

S=tv YA+ M) M (A + M), (5.15)
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where .7 = blkdiag 0, T %///u) if we assume that the degrees of freedoms correspondingd®sno

on the boundary are ordered so they appear in the last comfzorote thah is the mesh-size and
this scaling has to be introduced to compensate for therdiffeorder of the boundary mass matrix
and the mass matrix over the whole domain. We remember asthie that/.#; 14T will be a
diagonal matrix with.#,, a block-diagonal matrix consisting of lumped boundary nrassrices. A
second alternative that can also be found in Peagsah (2011) is given by

S=tv YA+ M) M (AT + M) (5.16)

where./# as defined before and/ = hblkdiaghl,./,) in 2D and.# = hblkdiagh?l,.#,) in 2D again
assuming the degrees of freedom would be such that the bpunddes correspond to the right lower
entries in the matrix/ .

One important fact about these new Schur-complement appabions is that the preconditioning
strategies mentioned earlier, i.e., Richardson iteragiod circulant approach, apply with almost no
changes to this case. Hence, we will not discuss how to imgéthese new approximations efficiently.

6. Numerical Experiments
6.1 Setup and implementation details

In this section we provide numerical experiments for thelrods presented above. For the discretization
we used the deal.ll library (cf. Bangemthal.(2007)), which is implemented in C++ using quadrilateral
elements. As deal.ll provides easy access to the TrilinosAWIG package our multigrid approxima-
tions were performed using Trilinos’ smoothed aggregati@tonditioners (see Getal. (2006)). We
approximated the blocks involvirigas the sum of a mass matrix and stiffness matrix, also thaaeaatr
possibly involving scalar factors in front & or K, by 2 steps of an AMG V-cycle and 10 steps of a
Chebyshev smoother. The Richardson iteration based piléimrer uses 2 steps for both the adjoint
and the forward problem. The circulant based preconditiases 3 steps of the inexact Uzawa method
for every complex linear system. The application of the FIEEded for the circulant approach was
provided by employing FFTW (see Frigo & Johnson (1998, 208 use a relative tolerance of 10

for the pseudo-residual ard= 0.05 with T = 1, i.e.,Nt = 20 unless mentioned otherwise. All experi-
ments are performed on a Centos Linux machine with Intel@&mn{R) CPU X5650 @ 2.67GHz CPUs
and 48GB of RAM. Note that no parallelism is exploited in thgplementation of our algorithms. If we
mention the degrees of freedom in the Tables further on, tsenally refer to the degrees of freedom
needed for one grid point in time. So the dimensionality Far dverall system is much larger. To give
an example, Table 5 mentions 274625 degrees of freedomntimger needs to be multiplied by 3
and the number of grid points in time (20) to give the dimengibthe system that is solved implicitly
16 477 500

6.2 Distributed control
The first example is a distributed control example with zenagcblet condition. The desired state is
given by

“os X0 > 0.5,

which together with the computed state is depicted in Fidufer different time-steps. The compu-
tations in Figure 1 are done wii = 10-“. Note that the Dirichlet boundary conditign= 0 ondQ

_ {0.5(2.0+sin(0.5tnxo)+cos(0.5trr(1xl))) X <05
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(a) Yo andyo

(b) y10 andyio (c) y1o andyig

Figure 1: Desired (solid) and computed (mesh) state atrdifftgpoints in time.

forces the state to differ drastically from the desiredestat the boundary. A remedy could be to set
the desired state to zero on the boundary or to the Diricldetbdary to match the desired state. These
choices clearly depend on the underlying problem and theirements coming from an application.

In Table 1 we show the FFT preconditioned method for two déffé values of3 to illustrate that
the dependence on the regularization paranfgisrather benign.

Table 2 shows the comparison of the Richardson iteratiortiws.circulant approach for a three-
dimensional example. The desired state in this case is giyen

Wt) = 2 %%pxoxa (X0 — 1) (%1 — 1) (2 — 1),

which for 'yig is depicted in Figure 2a. Figure 2b shows a spherical slicgh@ftomputed state that
approximatesyo. The rather significant difference in timings might be duéhte fact that we perform
2 Richardson iterations vs. 3 inexact Uzawa for every comgjstem of which we have to solr
with the each system of system dimension 2

| | B=1le-2 B=1le—4
DoF MINRES(T) MINRES(T)
4225 12(20) 38(61)
16641 12(74) 38(216)
66049 12(313) 38(889)
263169 12(1390) 38(4180)

Table 1: Different values fof: Number of MINRES iterations (CPU time).

6.3 Boundary control

Our next task is to illustrate the performance of the predaers proposed for the boundary control
problem presented earlier. In the case of boundary conteoheticed that the approximation for the
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| FFT [ R
DoF MINRES(T) MINRES(T)
729 10(7) 6(2)
4913 10(35) 6(8)
35937 10(267) 6(58)
274625 10(2780) 6(681)

Table 2: Different preconditioners: FFT (left) vs. Richsod (right) and number dflINRES iterations
(CPU time) forB = le—4.

0.0
-0.18

-0.35
-0.53
-0.71

Max: 0.0
Min: -0.71

0.0
--0.17

'-0.34
l~-0.51

-0.68
Max: 0.0
Min: -0.68

() Y10

Figure 2: Desired and computed state at different pointsrie.t

@)y

Schur-complement given by
vt
did not seem to suffice to guarantee convergence within @neéte number of iterations. Hence, we
developed the preconditioners presented in Section 5téctrause all the techniques presented for
the original approximation as both the structure for thehBidson iteration as well as the circulant
structure remain untouched. We will now illustrate the perfance of the new Schur-complement
approximation. We first compare the two different approxiores forSgiven in (5.15) and (5.16) for a
two-dimensional example defined by the following desiredest
—_Jsin(t)+xo X >0.5andx; <0.5
)1 otherwise.

Table 3 shows the results for (5.15) and different mesh-aizevell as different values fg8. Table
4 shows the results for a similar setup with the approxinmetiiothe Schur-complement coming from



(5.16). We can see that both methods perform very simildr slightly fewer iterations for the second
approximations.

ONE-SHOT SOLUTION

| B=1le-2 B=1le—4 B=1e—6
DoF MINRES(T) MINRES(T) MINRES(T)
289 24(3) 32(3) 34(4)
1089 30(10) 42(14) 46(15)
4225 32(25) 54(41) 60(45)
16641 34(92) 70(186) 76(202)
66049 38(406) 88(921) 100(1065)

Table 3: Different values foB with approximatior defined in (5.15)

B=1e-2 B=1e—4 B=1e—6
DoF MINRES(T) MINRES(T) MINRES(T)
289 22(3) 30(3) 32(3)
1089 24(9) 38(13) 42(14)
4225 30(24) 50(38) 58(44)
16641 32(90) 62(167) 72(193)
66049 36(400) 82(868) 96(1008)

Table 4: Different values fof with approximatiorS defined in (5.16).
We next want to illustrate the performance of our approach three-dimensional boundary control
problem. The desired state is given by
Y= (2+ cogxot11/2) + cog (1 — x1)t77/2.0) + exp(xz1))/ (t 4 0.05).

Figure 3a shows the desired stajg, Figure 3b and 3c shows the computed stateand controluyg,
respectively. The results for this example are shown indalibr 3 = 1le— 4 and different mesh-sizes.

| | B=1le—4 |
DoF MINRES(T)
729 32(18)
4913 44(130)
35937 56(1378)
274625 74(19560)

Table 5: 3D results for different mesh-sizes.
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(a) Yo (b) y10 () u1o

Figure 3: Desired state, computed state, and computedotontr

6.4 Boundary control with box-constraints

We finally want to present results for the case of boundaryrobm the presence of box constraints.
The desired statgis defined by
{sin(t(l—t)) +XoX1 X2 forxg > 0.5 andx; < 0.5 6.1)

1 otherwise.

In Figure 4c we show the computed results for this problerhevit any box constraints on the control.
In Figure 5 the results are shown in the presence of the upperdset to AL5. The results fof = 1e—2
and the boundy, = 0.15 are shown in Table 6. It can be seen that the growth initeraimbers is rather
benign similar to the case when no box constraints are predivertheless, the individual iteration
numbers for one Newton system are slightly higher than irutteonstrained case, which might be due
to the fact that the same preconditioner is used in evergtitar of the active set method not taking the
structure of (3.9) into account. It would be possible to mpavate the structure of the Newton system
into the preconditioner by construction a new precondéidior every Newton step. This should be
done in the future for more realistic scenarios.

DoF AS Total numbeMINRES(Total time)
729 5 346(194)

4913 5 407(1225)

35937 6 584(16232)

Table 6: 3D results for active set method wth= 1e— 2 and different mesh-sizes.

7. Conclusions

In this paper we presented a monolithic solver for the spmee-discretization of an optimal control
problem subject to the time-periodic heat equation. We dated a one-shot approach that resulted in a
huge linear system in saddle point form. With our choic®®NRES as the Krylov subspace solver we
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--0,008507
-0.3458

l—rn 6830
-1.020

Max: 0.328;
Min: -1.02

(@ u1s (b)y1s (©) Vis

Figure 4: Desired state, computed state, and computedotontr

(@uss () y1s () s

Figure 5: Desired state, computed state, and computedotimthe presence of bound constraints.



20 of 22 MARTIN STOLL

were focusing on the task of devising good preconditioners$sthur-complement of the saddle point
matrix. We proposed two techniques, one based on a Richait#gation and the other one circulant
formulation that allowed the use of the FFT. Both method$quared competitive for distributed control.
In the case of boundary control, we introduced a new Schompéement approximation that allowed
more flexibility with respect to the regularization paraerg®. The efficient solution of the control
problem also enabled the fast solution of the minimizatidremw control constraints are present. We
showed the results for boundary control with box consteaamtthe control and illustrated the flexibility
of our approach.
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