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Computing Inner Eigenvalues of Matrices in

Tensor Train Matrix Format

Thomas Mach

Abstract The computation of eigenvalues is one of the core topics of numerical

mathematics. We will discuss an eigenvalue algorithm for the computation of in-

ner eigenvalues of a large, symmetric, and positive definite matrix M based on the

preconditioned inverse iteration

xi+1 = xi −B−1 (Mxi −µ(xi)xi) ,

and the folded spectrum method (replace M by (M −σ I)2). We assume that M is

given in the tensor train matrix format and use the TT-toolbox from I.V. Oseledets

(see http://spring.inm.ras.ru/osel/) for the numerical computations. We will present

first numerical results and discuss the numerical difficulties.

1 Introduction

Let M ∈ R
m×m be a matrix. If the pair (λ ,v) fulfills

Mv = λv, (1)

then λ is called an eigenvalue and v an eigenvector of M. They are computed in

several applications like structural and vibrational analysis or quantum molecular

dynamics. If M is small and dense, then this problem is almost solved. There are

good algorithms for the computation of all eigenvalues, for instance the implicit,

multi-shift QR algorithm with aggressive early deflation [2]. For large sparse matri-

ces the Jacobi-Davidson algorithm [20] or the preconditioned inverse iteration [6],

PINVIT for short, can be used to compute some eigenvalues.
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2 Thomas Mach

For large matrices the dense approach is not feasible, since it requires m2 storage

entries and O(m3) flops. Sparse matrices require only O(m) storage such that large

matrices can be handle using sparse matrix arithmetic. But even O(m) may become

too expensive for large m. The tensor-trains, see Section 1.1, are one way out, since

the storage complexity is in O(log2 m).
The main feature of PINVIT is the matrix dimension independent convergence.

This makes preconditioned inverse iteration a preferable method for the computation

of the smallest eigenvalues of a matrix given in a compressed storage scheme like

the tensor train matrix format. The combination with the folded spectrum method

permits also the computation of inner eigenvalues. In [1], this was investigated for

the data-sparse hierarchical matrices by the author.

1.1 Tensor Trains

The concept of tensor trains, TT for short, as described in [17] permits the compu-

tation of a data-sparse approximation of tensors. Therefore, the tensor T ∈ R
nd

is

approximated by

T =
r1,...,rd

∑
α1,...,αd=1

T1(i1,α1)T2(α1, i2,α2) · · ·Td−1(αd−2, id−1,αd−1)Td(αd−1, id). (2)

The ranks ri of the summations are called the local ranks of the approximation. The

smallest r with r ≥ ri ∀i is the local rank of the tensor train. The TT decomposition

for d = 2 is the low rank factorization

R
n2

∋ T = vec
(

ABT
)

, A,B ∈ R
n×r.

For the full tensor we have to store nd entries, but for the approximation in the

tensor train format (d − 2)nr2 + 2nr entries are sufficient. The main advantage is

that the storage complexity grows only linearly with d in the tensor train format.

The Tucker decomposition of tensors

T =
r1,...,rd

∑
α1,...,αd=1

C(α1, . . . ,αd)T1(i1,α1) · · ·Td(id ,αd)

is another format to handle tensors, but here the core tensor C is a d-dimensional

object requiring O(rd) storage entries. In [17] it is also described, how to compute a

TT approximation to a given tensor. This is an advantage compared to the canonical

format, which can only be computed by solving an NP-hard problem, as shown

in [4].

There are arithmetic operations with tensor trains available in the tensor train

toolbox [16] for MATLAB®. We will use here the TT dot product, the addition of

two tensor trains, and the rounding of a tensor train, which are all described in [15].
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The addition of two tensor trains A+B can be performed within the TT format by

Ck(ik) =

[

Ak(ik) 0

0 Bk(ik)

]

, for k = 2, . . . ,d −1

C1(i1) =
[

A1(i1) B1(i1)
]

, Cd(id) =

[

Ad(id)
Bd(id)

]

,

for details see [15], where the complexity is given with O(dnr3). The local ranks of

C are the sum of the local ranks of A and B. After the addition one should do a trun-

cation to get a result of smaller local rank. If one omit the truncation, then a series

of addition would lead to a growing local rank, destroying the good complexity of

the TT format.

The dot product of two tensor carriages to the same index ik is

∑
ik

Ak(αk−1, ik,αk)Bk(βk−1, ik,βk) = v2(αk−1,αk,βk−1,βk).

We start with k = 1 and get v(α1,β1). Together with v2(α1,β1,α2,β2) for k = 2 we

compute

∑
α1,β1

v(α1,β1)v2(α1,β1,α2,β2)⇒ v(α2,β2).

We repeat this for all k and get the dot product (A,B). This procedure requires also

O(dnr3) flop, see [15]. The rounding of tensor trains is also in O(dnr3) and is also

described in [15].

1.2 Tensor Train Matrix Format

If we have given a vector v ∈ R
n2

representing the values of a function over a 2D

regular grid, then we can regard v as a vector over the product index set (i1, i2), with

i1 ∈ I1 and i2 ∈ I2, where I1 is the index set for the points in the one direction and

I2 for the points in the other direction. The generalization of this concept leads to a

tensor.

A matrix over the same grid would be described by ((i1, i2) ,( j1, j2)), with (i1, i2)
as row index and ( j1, j2) as column index. The generalization leads to a tensor with

the structure

T (i1, . . . , id ; j1, . . . , jd),

where the semicolon separates the row and the column indices. Of cause one can use

again a tensor train approximation, but now with two indices per tensor carriage:
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M = ∑
α1,...,αd

M1(i1, j1,α1)M2(α1, i2, j2,α2) · · ·Md(αd−1, id , jd). (3)

This data-sparse matrix format was recently invented by Oseledets, see [15]. A ma-

trix in this format is called a TTM matrix or a matrix in tensor train matrix format.

If one regards (ik, jk) as one long index of length n2, then the same data structure

as in the tensor train case can be used. This immediately permits us to perform ad-

ditions and rounding with in the TTM matrices. Further the dot product can be used

to compute the Frobenius norm of a TTM matrix. The complexity of this operations

is due to the indices of length n2 instead of n:

O(dn2r3).

We will further use the TTM-TT matrix-vector product, which is defined by

W (i1, i2, . . . , id) = ∑
j1, j2,..., jd

M(i1, j1, i2, j2, . . . , id , jd)T ( j1, j2, . . . , jd).

This product can be computed carriage-wise by

Wk((αk−1,βk−1), ik,(αk,βk)) = ∑
jk

Mk(αk−1, ik, jk,αk)Tk(βk−1, jk,βk).

This procedure squares the local rank. So one should truncate afterwards. The n is

often chosen to be 2 and the tensor trains are then called QTT.

1.3 Problem Setting

We assume the matrix M ∈ R
2d×2d

is given in tensor train matrix format. The task

is to compute an eigenvector v of M. Since 2d might be large we are satisfied with

an approximation to v in the tensor train format.

We will use preconditioned inverse iteration (PINVIT) to compute the smallest

eigenvalue and the corresponding eigenvector of M. A similar approach was already

investigated by O. Lebedeva in [10], but not for TTM matrices. Here we will extend

this to the computation of inner eigenvalues by using the folded spectrum method.

In [9] Christine Tobler and Daniel Kressner investigated the usage of LOBPCG

for the solution of eigenvalues problems with matrices in H -Tucker format. The

LOBPCG method is a variant of PINVIT that uses the optimal vector in the space

spanned by the two previous iterates and the preconditioned residual as next iterate.
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2 Preconditioned Inverse Iteration

PINVIT can be motivated as an inexact Newton-method for the minimization of

the Rayleigh quotient. The Rayleigh quotient µ(x) for a vector x and a symmetric,

positive definite matrix M is defined by

µ(x,M) := µ(x) =
xT Mx

xT x
. (4)

The global minimum of µ(x) is reached for x = v1, with λ1 = µ(x). This means that

minimizing the Rayleigh quotient is equal to computing the smallest eigenvalue.

Doing this minimization by the following inexact Newton method:

xi+1 = xi −B−1 (Mxi −µ(xi)xi) , (5)

we get the update equation of preconditioned inverse iteration. The preconditioner

B−1 for M have to fulfill

∥

∥I −B−1M
∥

∥

M
≤ c < 1. (6)

This method is know for a long time and was, among others, extensively investigated

by Knyazev and Neymeyr, see [6, 12, 13, 8]. The main feature of preconditioned in-

verse iteration is the independence of the convergence from the matrix dimension m.

PINVIT requires positive definiteness.

In [7] Knyazev used the optimal vector in the subspace {xi−1,B
−1ei−1, pi−1} as

next iterate. The resulting method is called linear optimal (block) preconditioned

conjugate method (LOBPCG):

ei−1 = Mxi−1 − xi−1µ(xi−1)

xi = B−1ei−1 + τi−1xi−1 + γi−1 pi−1

pi = B−1ei−1 + γi−1 pi−1, p0 = 0.

3 Preconditioned Inverse Iteration for Matrices in Tensor Train

Matrix Format

Now we apply the preconditioned inverse iteration briefly discussed in the last sec-

tion to a matrix in tensor train matrix format. A subspace version of preconditioned

inverse iteration is listed in Algorithm 1.

First we have to compute the preconditioner. We will use here the Newton-Schulz

iteration [19], which was first used for TTM matrices in [14], see Algorithm 2 that is

based on the modification of the Newton-Schulz method for TTM matrices in [18].

If the iteration does not converge, we reduce the truncation parameter ε and start the

process again.
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Algorithm 1: Subspace Preconditioned Inverse Iteration

Input: M ∈ R
m×m, X0 ∈ R

m×s e. g. randomly chosen

Output: Xp ∈ R
m×s, µ ∈ R

s×s, with ‖MXp −Xpµ‖ ≤ ε

T−1 ≈ (M)−1;

Orthogonalize X0;

µ := XT
0 MX0;

R := round(MX0 −X0µ,ε);
i := 1;

while ‖R‖F > ε do
i := i+1;

Xi := round(Xi−1 −T−1R,ε);
Orthogonalize Xi;

R := round(MXi −Xiµ,ε) with µ := XT
i MXi;

end

Algorithm 2: Newton-Schulz Inversion

Input: M ∈ R
m×m

Output: M−1 ∈ R
m×m

Y = M/‖M‖2;

X = I/‖M‖2;

while ‖Y − I‖> εc do
H = round(2I −Y,ε);
Y = round(Y H,ε);
X = round(HX ,ε);

end

M−1 = X ;

In the remainder of the Algorithm 1 only TT dot products, TTM-TT matrix-

vector products, and additions are used.

4 Computing Inner Eigenvalues by Folded Spectrum Method

Sometimes one is also interested in the inner eigenvalues M. Unfortunately a simple

shifting, M−µI, is not possible, since the preconditioned inverse iteration requires

positive definiteness of M. One way out is the use of the so called folded spectrum

method, [21], which was before also mentioned in [11]. The key observation are the

following facts: First, the matrix Mµ = (M −µI)2 is positive definite. If M is sym-

metric, then Mµ is symmetric, too. Second, an eigenvector v of M to the eigenvalue

λ is also an eigenvector of Mµ , since

Mµ v = (M−µI)2v = M2v−2µMv+µ2v

= λ 2v−2µλv+µ2v = (λ −µ)2v.
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The computation of inner eigenvalues consists of the following steps:

• Choose a shift µ .

• Compute Mµ = (M−µI)2.

• Use PINVIT to compute the smallest eigenpair (v,λ ) of Mµ .

• The sought eigenpair is (v,vT Mv/vT v).

As the numerical experiments in the next section show this procedure can be used

to compute some inner eigenvalues of a TTM matrix. But this algorithm have two

drawbacks. First the condition number of Mµ is approximately the square of the

condition number of M. This means that it is more difficult to invert Mµ . The first

consequence is that the Newton-Schulz iteration takes longer. Second, the approx-

imate inverse has larger local ranks and so more storage is necessary. Third, the

larger local ranks make the application of the preconditioner more expensive, such

that the preconditioning in each step takes also longer. The numerical experiments

confirm this.

The second drawback is that the squaring “fold” the spectrum. It may happen

that two eigenvalues on different sides of µ become (almost) equal after the squar-

ing. In this case the preconditioned inverse iteration will compute an vector in the

invariant subspace spanned by the eigenvectors of both eigenvalues. If we compute

the Rayleigh quotient for this vector, then we may get an arbitrary value between

the two eigenvalues. So one should carefully choose the shift in a way not pro-

ducing new multiple eigenvalues. Further the computation of the whole invariant

subspace lead to good approximations of the sought eigenvalues. In the numerical

experiments the shifts and subspace dimension are chosen by hand, such that these

problems do not occur.

5 Numerical Experiments

In this section we will present some first numerical experiments. The numerical

computation are performed on an compute node with two Intel®Xeon®Westmere

X5650 with 2.66GHz and 48GB DDR3 RAM. We use the preconditioned inverse

iteration as described in Algorithm 1. We implement this algorithm based on the

tensor train toolbox for MATLAB, [16].

The source code used for the following numerical examples is available from

http://www.mpi-magdeburg.mpg.de/preprints/2011/1109/.

As example we use the Laplace-equation over the unit-square in 2, 3 or 4 di-

mensions. We stop the iteration after 100 steps. In [5] it was shown that there is an

explicit QTT representation of the Laplace operator. Tables 1–5 show the results.

The computation of the eigenvalues has two main parts, the computation of the pre-

conditioner and the iteration itself. We choose the preconditioner accuracy c = 0.2,

see Equation 6. We stop the iteration if the Frobenius norm of the residual drops be-

low 10−5. Inside the iteration we truncate each tensor trains to a precision of 10−6.

If the convergence stagnates we reduce the truncation tolerance. We observe that the
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Fig. 1 Memory (left axis, solid line) used for X (i) depending on the truncation error εi (right axis,

dashed line); 2D-Laplace example, d = 6.

local rank of the approximation in the first steps can be very high compared with

the local rank in the final approximation. Therefore it makes sense to start with pre-

cision 10−2 in the first iteration and tighten this by a factor 10 in the first four steps,

so that we reach 10−6. The effect is shown in Figure 1 for the 2D Laplace example

with d = 6. This idea was described in [3] for general truncated iterations.

The tables show the size of the matrix in TTM format in the first column, d in the

second. We have 2d discretization points in each direction. The third column gives

the time for the computation of the approximate inverse, where each ∗ indicates a

failed of the Newton-Schulz iteration, due to too large round-off errors. The fourth

column shows the time for the preconditioned inverse iteration. This is followed by

the number of iterations. The error of the computed eigenvalues, which you found

in the last column, is measured by

∥

∥

∥

∥

∥

(

λi − λ̂i

λi

)s

i=1

∥

∥

∥

∥

∥

∞

.

One can see that the number of iterations is almost independent from the ma-

trix dimension. The relative error is smaller than 10−5. We further observe that the

required CPU time grows slower than the matrix dimension m. This permit the com-

putation of the eigenvalues of large matrices.

The computation for the shifted and squared matrix Mµ is much more expensive

than for M. This confirms the expectations from the last section. The large local

ranks of the approximation of M−1
µ limit the usage of the method to the computation

of inner eigenvalues of comparable small matrices.
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n d tinv in s tPINVIT in s # it error

16 2 0.253 0.557 20 2.1651 e−07

64 3 0.132 0.729 19 2.0918 e−07

256 4 0.408 1.315 24 2.0509 e−07

1 024 5 1.038 1.933 18 2.5084 e−07

4 096 6 2.637 4.371 17 1.8998 e−07

16 384 7 5.174 9.132 19 7.3614 e−08

65 536 8 9.233 25.326 21 6.8874 e−08

262 144 9 16.240 37.645 19 1.5501 e−08

1 048 576 10 27.387 48.643 21 2.5858 e−10

4 194 304 11 99.911 146.910 25 1.5207 e−09

16 777 216 12 140.043 154.761 23 9.9111 e−10

67 108 864 13 528.491∗∗ 348.101 20 2.8968 e−08

268 435 456 14 1 064.433∗∗∗ 767.721 26 1.5802 e−07

1 073 741 824 15 1 919.606∗∗∗ 2 767.084 53 7.4038 e−07

4 294 967 296 16 3 423.903∗∗∗∗ 2 796.697 28 6.8776 e−07

Table 1 Numerical results 2D Laplace, three smallest eigenvalues.

n d tinv in s tPINVIT in s # it error

16 2 0.116 0.486 17 2.4130 e−11

64 3 0.440 0.304 7 2.2533 e−10

256 4 2.832 2.827 47 8.9370 e−09

1 024 5 15.632 3.431 25 5.0051 e−11

4 096 6 47.027 13.979 33 2.5580 e−12

16 384 7 986.699∗∗ 39.519 35 4.8601 e−12

65 536 8 248.160 1 354.844 100 1.4737 e−01

Table 2 Numerical results 2D Laplace, shifted (µ = 203.3139), three eigenvalues.

n d tinv in s tPINVIT in s # it error

64 2 0.304 1.438 24 2.0448 e−07

512 3 0.327 2.710 26 3.1414 e−07

4 096 4 1.310 7.760 22 3.1719 e−07

32 768 5 4.045 40.870 30 2.5526 e−07

262 144 6 10.305 129.937 25 2.4926 e−07

2 097 152 7 18.168 473.681 23 1.4520 e−07

16 777 216 8 37.216 2 084.095 24 3.0187 e−08

134 217 728 9 97.761 14 432.496 100 1.9257 e−06

1 073 741 824 10 93.512 4 425.800 21 1.6571 e−08

Table 3 Numerical results 3D Laplace, four smallest eigenvalues.

n d tinv in s tPINVIT in s # it error

64 2 0.289 11.450 100 5.9918 e−06

512 3 8.174 18.930 30 2.5871 e−07

4 096 4 99.393 117.183 67 2.9559 e−12

32 768 5 2 347.897∗ out of memory

Table 4 Numerical results 3D Laplace, shifted (µ = 230.6195), six eigenvalues.
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n d tinv in s tPINVIT in s # it error

256 2 0.362 3.555 30 1.8569 e−07

4 096 3 0.480 9.519 29 2.4328 e−07

65 536 4 1.885 58.279 28 2.8761 e−07

1 048 576 5 5.719 260.385 28 2.4963 e−07

16 777 216 6 15.194 1 028.412 25 1.6518 e−07

268 435 456 7 29.104 5 282.001 35 2.9061 e−09

Table 5 Numerical results 4D Laplace, five smallest eigenvalues.

6 Conclusions

We have seen that the preconditioned inverse iteration can be used to compute the

smallest eigenvalues of a matrix in tensor train matrix format. Further the folded

spectrum method makes PINVIT also applicable for the computation of inner eigen-

values. The numerical experiments showed that the computation of the smallest

eigenvalues is much cheaper than the computation of inner eigenvalues.

The folded spectrum method leads to bad conditioned problems. The bad con-

dition makes the inversion more expensive and cause higher local ranks in the ap-

proximate inverse, which make the application of the preconditioner expensive. The

choose of adequate shifts and adequate subspace dimensions for the computation of

inner eigenvalues remains a difficult issue that require further investigations.

A shorted version of this preprint was submitted to the Proceedings of the ENU-

MATH 2011 (Leicester).

Acknowledgements The author thanks Peter Benner for suggesting to investigate the combination

of preconditioned inverse iteration and folded spectrum method also for tensor trains.
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