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Abstract

In this paper we study the pratical implementation of a new algorithm
for H2-model order reduction (see, for instance [26, 4, 25, 12]), the so
called two sided iteration algorithm (TSIA). It is based on the work of
Wilson [26] from 1970 and the extensions done by Xu and Zeng in [27].
The main idea behind this algorithm is to ful�ll a classical �rst order
optimality condition. Other approaches for H2-model order reduction are
for example the IRKA algorithm [12] which is based on the interpolation
of the transfer function. The theoretical connection between both ideas
is veri�ed and the numerical behavior of both approaches is compared.
An adaption for generalized state space systems is done, too. In order to
implement the presented algorithm robustly and e�ciently, it is crucial
to overcome some numerical and technical problems. We present a new
idea to compute the oblique projection and a fast solver for the Sylvester
equation. The bene�ts of the algorithmic improvements presented in this
paper are illustrated by several numerical examples.
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1 Introduction

Dealing with large scale dynamical systems is important in many industrial
applications. In design and optimization, it is often impossible to work with the
original large scale systems, since the simulation of a newly designed integrated
circuit or a new mechanical device usually takes more time than the design
cycles of such objects allow. This is economically unacceptable in nearly every
�eld of application. One possible way out of this problem is to use reduced order
models with approximately the same properties as the original system. One of
the most common technique for this task is balanced truncation introduced by
Moore [18] which approximates with respect to the H∞-approximation. In our
case, we use the H2-norm for measuring the error. This is given by

||H||2H2
=

1

2π

+∞∫
−∞

tr
(
H(iω)HH(iω)

)
dω, (1)

where tr (·) denotes the trace of a matrix and H(s) = C(sI − A)−1B) (or
H(s) = C(sE − A)−1B)) is the transfer function of a linear time invariant (or
standard state space) system Σ

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(2)

with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rq×n or a generalized linear time invariant
(or generalized state space) system

Σ :

{
Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(3)

with E ∈ Rn×n. We call t ≥ 0 time variable, x(t) ∈ Rn the state, u ∈ Rp the
input and y ∈ Rm the output of the system Σ. The dimension n of the state is
called order of the system. Further we assume that A and E are invertible and
the matrix pencil (A,E) is regular. The matrix E is assumed to be symmetric
positive de�nite to de�ne a proper inner product.

The biggest problem during the computation of of the H2-norm is the evalu-
ation of the improper integral (1). It can be shown [1, 12] that this is equivalent
to computing the controllability Gramian P solving

AP + PAT +BBT = 0, (4a)

or for the generalized case

APET + EPAT +BBT = 0, (4b)

respectively, and
||H||2H2

= tr
(
CTCP

)
. (4c)

Alternatively we can use the observability Gramian Q solving

ATQ+QA+ CTC = 0, (5a)

Then it holds
||H||2H2

= tr
(
BQBT

)
. (5b)

1



In the following Section 2 we will recall a well known result for H2-model order
reduction and derive the TSIA algorithm [27] based on this. We only review
those conditions and results necessary for the algorithm. There exist other
characterizations and approaches to obtain H2 reduced order models. There
are for example the Bernstein conditions from [4] or the interpolation based
approach of Gugercin, Antoulas and Beattie [12].

In order to get a fast and robust algorithm it is necessary to analyze the
individual steps of the algorithm. We will see that a special solver for Sylvester
equations is needed which we will present in Section 3. The numerical results
for the model order reduction using TSIA and the performance results of the
Sylvester solvers are presented in Section 4.

2 First Order Conditions and the TSIA Algo-

rithm

In this section we will review the H2-model order reduction problem and a �rst
oder condition for an optimal reduced order model. For model order reduction
we are interested in the H2-error between the original system (2) or (3) and a
reduced order model

Σr :

{
ẋr(t) = Arxr(t) +Bru(t)
yr(t) = Cxr(t)

(6)

with Ar ∈ Rr×r, Br ∈ Rr×p, Cr ∈ Rq×r with r � n and its transfer function
Hr(s) = Cr(sI −Ar)−1Br. So we want to minimize the error

J(Ar, Br, Cr) = ||H −Hr||2H2
. (7)

Our goal is to �nd a stable realization for a given dimension r which minimizes
J , i.e., we want to �nd Ar, Br and Cr which satisfy

∇J(Ar, Br, Cr) = 0. (8)

From the corresponding Lyapunov equations (4a) and (5a) of the error func-
tional (7), we get

AerrPerr + PerrA
T
err +BerrB

T
err = 0, (9a)

ATerrQerr +QerrAerr + CTerrCerr = 0, (9b)

J(Ar, Br, Cr) = tr
(
PerrCerrC

T
err

)
= tr

(
BTerrQerrBerr

)
, (9c)

where

Aerr =

[
A 0
0 Ar

]
, Berr =

[
B
Br

]
, Cerr =

[
C −Cr

]
,

and

Perr =

[
P11 P12

PT12 P22

]
, Qerr =

[
Q11 Q12

QT12 Q22

]
.

Already in 1970, Wilson obtained the �rst derivatives of (7) with respect to the
reduced system matrices [26]:

∇JAr = 2
(
Q22P22 +QT12P12

)
,

∇JBr
= 2

(
Q22Br +QT12B

)
,

∇JCr
= 2 (CrP22 − CP12) .
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For the generalized system it can easily be shown that the derivative with
respect to Br and Ar changes to

∇JBr
= 2

Q22Br +QT12E
−1︸ ︷︷ ︸

Q̃T
12

B

 = 2
(
Q22Br + Q̃T12B

)

and

∇JAr
= 2(QT12P12 +Q22P22) = 2(Q̃T12EP12 +Q22P22).

The Q̃12 matrix is introduced because we will see during the implementation
section that we are able to obtain it directly. There is no need to solve with the
E matrix in this way. Setting these three derivatives to zero will lead us to the
so called Wilson conditions for H2-optimality [26]:

Q22P22 +QT12P12 = 0, Q22Br +QT12B = 0, (10a)

or
Q̃T12EP12 +Q22P22 = 0, Q22Br + Q̃T12B = 0, (10b)

and
CrP22 − CP12 = 0. (10c)

From the derivative we can get a left and a right projection matrix to compute
an optimal reduced order system from the original matrices using

Ar = WTAV, Br = WTB and Cr = CV

with V = P12P
−1
22 and WT = −Q−122 Q

T
12 or W = −Q22Q̃12 for the generalized

case. In order to get an oblique projector we have to satisfy

WTV = I (11a)

or

WTEV = I. (11b)

This is satis�ed by construction: From

0 = JAr
= Q22P22 +QT12P12

it follows that

−Q22P22 = QT12P12

and thus (assuming Q22 to be invertible)

I = −Q−122 Q
T
12P12P

−1
22 = WTV.

The same holds for the generalized case (11b). Another problem is that we
can not guarantee that P22 and Q22 are invertible. To assure this, the reduced
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model needs to be completely controllable and observable ([1]) which is a strong
restriction. In the case that they are invertible, the multiplication from the right
is only a transformation of bases and does not change the subspace. The idea
by Xu and Zeng [27] was to satisfy the Wilson conditions by setting

W = Q12 and V = P12,

and using the correction equation

W̃T = (WTV )−1WT . (12)

In case of the generalized system we set

W = Q̃12 and V = P12

and use
W̃T = (WTEV )−1WTE (13)

as correction equation. It is evident that the oblique projection property is sat-
is�ed for W̃TV or W̃TEV by using these correction equations. Xu and Zeng [27]
proved that the Wilson conditions are then ful�lled. On the other hand numer-
ical experiments show that this becomes unstable already for relatively small
original models. We present a solution to this problem in the next subsection.

Another important problem is that if we want to compute the optimal pro-
jection subspace we already need the optimal solution Ar, Br and Cr. But if we
knew them, we would already have solved our problem. A possible solution is
to start with a reduced model, which emerged from an arbitrary projection of
the original model, solve Lyapunov equations (9a) and (9b), compute the pro-
jectors, and restart the process with the newly obtained reduced model until we
are satis�ed. In this way we get a kind of a �xed point iteration. This procedure
is called two sided iteration algorithm (TSIA) by Xu and Zeng in [27]. Another
similar �xed point iteration which needs that Q22 and P22 are invertible was
presented by van Dooren, Gallivan and Absil in [25]. The di�erence in their
approach is the way to ful�ll the oblique projection property. They use the
classical idea by Wilson [26], which is too restrictive because they assume that
P22 and Q22 are invertible.

The Wilson conditions do not give us any information whether we found a
local or a global minimum. Using equivalence results from [12] it can be shown
that we calculate a local minimizer for J .

2.1 Implementation of the TSIA Algorithm

Now that we have discussed the necessary basics ofH2-model order reduction
and mentioned the idea of the �xed point type iteration, we want to derive
a practically usable algorithm. First we have seen that there is a correction
equation which requires a numerically stable solution. A naive approach may
lead to a loss of bi-orthonormality and accuracy. If we want to replace this by
a more robust technique, we have to analyze what WTV = I means from a
geometrical point of view. The columns of W and V form biorthonormal bases
of a subspace in Rn. Therefore we will use a biorthonormal Gram-Schmidt
process to achieve this. Therefore we project every column of V or W onto
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Algorithm 1 [V,W]=biorth(V,W) - biorthonormal Gram-Schmidt process

Input: V ∈ Rn×r, W ∈ Rn×r
Output: V ∈ Rn×r, W ∈ Rn×r with WTV = I
1: for i := 1, . . . , r do
2: v := V (:, i)
3: v := P iV WT v
4: v := v

||v||2
5: w := W (:, i)
6: w := P iWV Tw
7: w := w

||w||2
8: v := v

wT v
9: V (:, i) := v, W (:, i) := w

10: end for

the k already biorthonormalized columns. We can express this by two oblique
projectors VWT or WV T ,

P k(VWT ) :=

k∏
i=1

(
I − V (:, i)W (:, i)T

)
and

P k(WV T ) :=

k∏
i=1

(
I −W (:, i)V (:, i)T

)
.

When we sequentially apply P kVWT to the columns of V and P kWV T to the
columns of W , we obtain Algorithm 1. The projections can be made more
robust by using an iterative re�nement if the norm of the projected vector
changes too much. In the generalized case we have to use the E inner product
in the projection. Therefore our E matrix has to be symmetric positive de�nite.
The projections then change to

P k(VWT ) :=

k∏
i=1

(
I − V (:, i)EW (:, i)T

)
and

P k(WV T ) :=

k∏
i=1

(
I −W (:, i)EV (:, i)T

)
.

We also have to replace Step 8 in Algorithm 1 by

v :=
v

wTEv
.

and the norms in Step 4 and 7 by the energy norm.
In Section 2 we have seen that we only need the P12 and Q12 blocks of the

two error Lyapunov equations (9a) and (9b). These two matrices contain all

5



the subspace information for the projection of the original system Σ. All other
information from Perr and Qerr can be neglected for the projection spaces. We
can reduce the computational costs by extracting the two Sylvester equations
which correspond to P12 and Q12. This leads to

AP12 + P12A
T
r +BBTr = 0 (14)

and

ATQ12 +Q12Ar − CTCr = 0. (15)

These Sylvester equations have a special structure. The coe�cients are one
large and sparse matrix and one small and dense matrix. A Sylvester equation
solver which exploits these special properties is developed in Section 3.

Another e�ciency improving observation is the evaluation of the error (7).
From the properties of the trace and the block structure of the error Lyapunov
equation (9a) and (9b), we can transform equation (9c) into

||H −Hr||2H2
= tr

(
BTerrQerrBerr

)
= tr

(
BTQ11B

)
+ tr

(
BTr Q22Br

)
+ 2 tr

(
BTQ12Br

)
= ||H||2H2

+ ||Hr||2H2
+ 2 tr

(
BTQ12Br

)
. (16)

It is obvious that we need the H2-norm of the original system once. But this
is not possible for large scale systems by solving the Lyapunov equation with
a direct solver like the Bartels-Stewart method [2], Hammarling's method [13]
or 2-Solve by Sorensen and Zhou [24]. In this case we have to use methods like
the ADI ([21, 19]) or rational Arnoldi based [22, 14] algorithms which provide
a good approximate solution of the underlying Lyapunov equation. The only
additional computation in every step is the evaluation of the H2-norm of the
reduced system. For this small and dense system it is no problem to use the
above mentioned classical dense solvers. The information for the remaining term
is available in every step. This seems to be a good and e�cient way to evaluate
the H2-error cheaply. But the accuracy of the H2-norm of the original system
has a strong in�uence. The approximate solution of the Lyapunov equation
causes a small error in the H2-norm. But if the reduced system is a quite
good approximation, this perturbation will a�ect the evaluation of the error
formula (16). For example, if we have ||H −Hr||22 = 0 in exact arithmetics,

||H||22 + ||Hr||22 = −2 tr
(
BTQ12Br

)
,

then it is obvious that 2 tr
(
BTQ12Br

)
< 0 holds. If we now have a perturbation

in ||H||22 such that for the computed quantities, ||H||22 < ||Hr||22, the whole
expression (16) can be smaller than zero. This con�icts with properties of a
norm. Unfortunately, another problem occurs when we use Equation (16). The
computed error is the one of the previous reduced system from the last iteration
step. That is why the algorithm will always iterate one step more than necessary
if this is used as a stopping criterion. Notwithstanding this problem, we derive
Algorithm 2 for the solution of the model order reduction problem.

In case of a generalized system we have to change the biorthonormalization
step, as shown above. The modi�cations for the Sylvester equations are obtained
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Algorithm 2 Two sided iteration algorithm (TSIA) with H2-error computation

Input: A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and initial reduced model Ar ∈ Rr×r,
BrRr×p and Cr ∈ Rm×r

Output: Ar ∈ Rr×r, Br ∈ Rr×p, Cr ∈ Rm×r satisfying the Wilson condi-
tions (10) approximately.

1: h := ||H||22 with H(s) = C(sI −A)−1B
2: i := 1
3: while not converged do
4: Solve AP12 + P12A

T
r +BBTr = 0.

5: Solve ATQ12 +Q12Ar − CTCr = 0.
6: Solve ATr Q22 +Q22Ar + CTr Cr = 0.
7: ei−1 := ||H −Hr||22 = h+ tr

(
BTr Q22Br

)
+ 2 tr

(
BTQ12Br

)
8: [Vi,Wi] := biorth(P12, Q12)
9: Ar := WT

i AVi, Br := WT
i B and Cr := CVi

10: i := i+ 1
11: end while

12: Solve ATQ12 +Q12Ar − CTCr = 0.
13: Solve ATr Q22 +Q22Ar + CTr Cr = 0.
14: emaxit := ||H −Hr||22 = h+ tr

(
BTr Q22Br

)
+ 2 tr

(
BTQ12Br

)
from the corresponding equivalent standard state space representation of our
generalized system (3):

ẋ(t) = E−1A︸ ︷︷ ︸
Ã

x(t) + E−1B︸ ︷︷ ︸
B̃

u.

By inserting Ã and B̃ in Equation (14) we end up with

ÃP12 + P12A
T
r + B̃BTr = 0

⇔ E−1AP12 + P12A
T
r + E−1BBTr = 0

⇔ AP12 + EP12A
T
r +BBTr = 0, (17)

which we call a semi generalized Sylvester equation. For the second equa-
tion (15) we get

ÃTQ12 +Q12Ar − CTCr = 0

⇔ ATE−TQ12 +Q12Ar − CTCr = 0

⇔ AT Q̃12 + ET Q̃12Ar − CTCr = 0, (18)

from which we obtain Q̃12 directly without an extra solve with E.
As we can easily observe, we have to solve two special Sylvester equations in

every step. In order to get a fast algorithm we have to solve these e�ciently. An
exact solution is necessary if we want to use the H2-error formula and obtain the
correct subspace information. Therefore we present what we call a semi-direct
Sylvester solver in Section 3 exploiting these special structures.

Convergence Criteria. So far we did not care about the convergence or
convergence criteria. The convergence can not be guaranteed, like for the

7



IRKA algorithm [12]. But Xu and Zeng showed that if the algorithm con-
verges the optimality conditions are satis�ed. The proof is based on plug-
ging WT = (QT12P12)−1QT12 and V = P12 instead of W = −Q12Q

−1
22 and

V = P12P
−1
22 into the �rst derivatives of J and checking the Wilson conditions.

It is obvious that this proof works for the generalized case as well. In order
to retrieve stopping criteria we will mention a set of di�erent ideas. The �rst
self-evident idea is to use the H2-error which can be computed easily in every
step. Because we want a minimizing solution the change of the H2-error should
be checked for convergence. Therefore we can use for example

|ei−1 − ei−2|
e0

< tol. (19)

If we specify an absolute error bound, the computed solution may not ful�ll
the Wilson conditions because it is not converged at the time the criterion is
satis�ed. Another criterion is that the reduced system be stable. Numerical in-
stabilities can cause an unstable reduced system matrix in one or more iteration
steps. If this happens we have to do at least one step more even if another crite-
rion tells us that the algorithm converged. The check if the system is stable can
be done by computing all eigenvalues of the reduced system matrix. Because
our reduced system is small they can be computed with standard dense meth-
ods like the Francis-QR algorithm [10]. Another idea is to check the subspace
information which is contained in W and V . It is clear that if the algorithm
has converged; the subspaces will not change anymore. This criterion can be
expressed as

rank ([Wi Wi−1]) ≡ rank ([Wi]) (20)

and

rank ([Vi Vi−1]) ≡ rank ([Vi]) . (21)

Due to roundo� errors and other numerical instabilities these conditions sel-
domly hold in our test cases.

Another criterion could be the evaluation of the three gradients ∇JAr
∇JBr

and ∇JCr of J . Nearly all information for these are available in every iteration
step or can be computed cheaply. As we will see in Section 4, this is not a good
criterion because it does not behave as expected in exact arithmetics.

We will �nd another stopping criterion by analyzing the relation between
the IRKA algorithm [12] and the TSIA in the next subsection.

2.2 Equivalence of IRKA and TSIA

The IRKA algorithm was presented by Gugercin, Antoulas and Beattie in [12]
for single-input single-output (SISO) systems, with a possible extension to the
MIMO case brie�y discussed. Their main idea is to interpolate the transfer
function of a standard state space system (2) at a set of interpolation points.
They characterize optimality conditions for this set of interpolation points and
prove that these conditions are equal to the Wilson conditions or the Bernstein-
Hyland conditions [4]. For the projection they construct two subspaces

V = span (V ) = span
(
(σ1I −A)−1B, . . . , (σrI −A)−1B

)
(22)
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and

W = span (W ) = span
(
(σ̄1I −A)−TCT , . . . , (σ̄rI −A)−TCT

)
(23)

with a set of interpolation points σ = {σi}ri=1. The matrices V and W have to
satisfy the condition WTV = I, like in the TSIA algorithm and can be realized
in the same way with a correction equation (12) or a biorthonormalization like
we presented it in Subsection 2.1. It tries to construct an optimal set of interpo-
lation points by projecting the original system and computing new interpolation
points from the reduced order model. The set for the next step is computed as
the mirror image of the poles, i.e., the eigenvalues, of the reduced system matrix
Ar. So the points for the next step will be

σi = −λi(Ar),

where λi(Ar) denotes the i-th eigenvalue of Ar. The convergence check is easily
done by checking that the set of interpolation points does not change anymore.
So this is independent of any expensive H2-norm computation, which makes
this an easy to evaluate criterion.

If we want to use this criterion for the TSIA algorithm we have to prove
that both methods produce comparable subspaces and that TSIA uses the in-
terpolation idea implicitly. The following theorem provides the result for SISO
systems. A similar result is given by Kubali«ska in [17] for H2,α model order
reduction.

Theorem 1. Let A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n de�ne a SISO linear time

invariant system (2) and Ar ∈ Rr×r, Br ∈ Rr×1 and Cr ∈ R1×r de�ning the

corresponding reduced order system (6). Furthermore A and Ar are assumed to
be stable and Ar to be diagonalizeable. Let (Ar, Br) be controllable and (ATr , C

T
r )

be observable. If the interpolation points σi for the IRKA algorithm are given

by the mirror images of the eigenvalues λi of Ar,

σi = −λi(Ar),

then the following holds:

V ≡ span (P12) and W ≡ span (Q12) . (24)

Proof. First we prove equality for the V space in (24). Therefore we need to
insert the eigenvalue decomposition of USU−1 = Ar into Equation (14) and to
multiply from the right by U :

AP12U︸ ︷︷ ︸
P̃

+P12U︸ ︷︷ ︸
P̃

S +BBTr U = 0.

Transforming this equation to

−AP̃ − P̃S = BBTr U︸ ︷︷ ︸
B̃

will lead us to a formula for each column of P̃ . Since S is a diagonal matrix,
every column of P̃ can be written as

(−A− SjjI)P̃ = B̃jB.

9



Using σj = −λj(Ar) = −Sjj we obtain

(σjI −A)P̃ = B̃jB. (25)

Because the pair (Ar, Br) is controllable, B̃j 6= 0 holds for all 1 ≤ j ≤ r. So the
columns of P̃ span the same subspace as (σjI−A)−1B. Because U is invertible

the subspace does not change for P12 = P̃U . The proof forW is analogously.

The theorem shows that both algorithms will produce the same subspaces,
so we can use the interpolation point criterion from the IRKA algorithm in the
TSIA algorithm, too, or we can interpret the TSIA method as an alternative
formulation of IRKA. Thus the convergence theory for IRKA can be used for
TSIA as well.

3 Solving Sparse-Dense Sylvester Equations

As we know from the previous section, the e�cient solution of specially struc-
tured Sylvester equations is a key ingredient for our H2-model order reduction
algorithm. Therefore we will discuss a strategy which exploits the special struc-
ture of these equations. We call a Sylvester equation

AX +XH +M = 0, (26)

with A ∈ Rn×n, H ∈ Rr×r and M ∈ Rn×r, sparse-dense if A is a large and
sparse matrix and H is a small and dense matrix. This de�nition can be used
similarly for the semi generalized Sylvester Equation

AX + EXH +M = 0, (27)

with A ∈ Rn×n, E ∈ Rn×n, H ∈ Rr×r and M ∈ Rn×r, and the generalized

Sylvester equation
AXF + EXH +M = 0, (28)

with A ∈ Rn×n, E ∈ Rn×n, F ∈ Rr×r, H ∈ Rr×r and M ∈ Rn×r. In the next
subsection we assume that all conditions for the unique solvability of Equa-
tions (26), (27) and (28) are ful�lled [9, 1]. At the end of this section we discuss
how we can solve the transposed equation reusing most information from the
standard solve. The generalized equation is considered for the sake of complete-
ness.

3.1 Standard Sylvester Equation

After we have seen that an e�cient solver for sparse-dense Sylvester equations
is necessary, we develop an algorithm which exploits this special structure. We
only want to use two admissible operations on the matrix A, the solution of
shifted linear systems (A+ pI) and the matrix vector product, i.e., an element
wise access is forbidden. The eigenvalues and the eigenvectors are not known.
Details about the direct solution of (A + pI)x = b are presented in [16]. The
main idea of this algorithm was presented by Sorensen and Antoulas in [23]
but rejected because the authors considering the (direct) solution of large scale
linear systems and the complex arithmetics infeasible. Another problem we
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are confronted with is that we are not able to compute a Schur decomposition
of A because of the runtime complexity and the storage requirements of the
QR algorithm [10, Chap. 7]. This prohibits the usage of the classical Bartels-
Stewart method [2] or the Hessenberg-Schur method [11]. On the small and
dense matrix H we will allow arbitrary operations. To derive an algorithm we
have to modify the Sylvester equation (26) in a way that we do not breach our
requirements on the matrix A.

We replace H in equation (26) by its complex Schur decomposition, i.e.,
H = USUH with UHU = UUH = I and get

AX +XUSUH +M = 0.

Multiplying this by U from the right we can rearrange it to a di�erent Sylvester
equation

AXU︸︷︷︸
X̃

+XU︸︷︷︸
X̃

S +MU︸︷︷︸
M̃

= 0. (29)

In contrast to equation (26) we can use the special structure of equation (29) to
formulate a column-by-column solver. The most important observation is that
S is an upper triangular matrix. Using this information we can write down a
formula for the �rst column X̃1 of X̃:

AX̃1 + X̃1S11 + M̃1 = 0

(A+ SiiI)X̃1 = −M̃1. (30)

The second column of X̃ can be written similarly

AX̃2 + S12X̃1 + S22X̃2 + M̃2 = 0

(A+ S22I)X̃2 = −M̃2 − S12X̃1. (31)

As we can see easily by induction we obtain a scheme for each column j of X̃:

(A+ SjjI)X̃j = −M̃j −
j−1∑
i=1

SijX̃i. (32)

To get the solution of the original equation (26) from the now known solution
of Equation (29) we have to multiply X̃ from the right by UT . The whole pro-
cedure is shown in Algorithm 3. Step 4 can be removed if we use an eigenvalue
decomposition H = USU−1 instead of a Schur decomposition because then S
is diagonal. But in that case we have to solve with U in the end. This can
cause stability problems and we will not save computing time because reducing
the cost for the linear combination is compensated by a higher complexity of
the matrix decomposition. A problem of the algorithm is that we need complex
arithmetics. Caused by the inexact arithmetics the solution X will not become
completely real again. Avoiding this we can truncate the imaginary part of X.
In Section 4 we will show that this only causes an error of the order of the ma-
chine precision. The runtime complexity of the overall Algorithm 3 is estimated
as follows:
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Algorithm 3 Solution of the Sparse-Dense Sylvester Equation

Input: A ∈ Rn×n, H ∈ Rr×r, M ∈ Rn×r de�ning (26)
Output: X ∈ Rn×r solving (26)
1: Compute Schur decomposition USUT = H.
2: M̃ := MU
3: for j := 1, . . . , r do

4: M̂ := −M̃j −
j−1∑
i=1

SijX̃i

5: Solve (A+ SjjI)X̃j = M̂ .
6: end for

7: X := X̃U

Step number of calls Complexity per call
1 1 O(25r3)
2 1 O(r2n)
4 r O(rn)
5 r O(S)
7 1 O(r2n)

Overall: r · O(S) +O(r2n) +O(25r3)

where O(S) denotes the runtime complexity of the solver for equation in Step 5.
Because we assume that r � n, we can neglect the dependencies on r. We will
get r ·O(S)+r ·O(n). The complexity for the solution of a linear system O(S) is
at least O(n) (In the case that the matrix is diagonal.) As upper bound for O(S)
we have O(n3) if our large matrix is dense. With modern sparse direct solvers,
like UMFPACK [6] or SuperLU [7, 8], the complexity will be much smaller than
O(n3) for typical sparse matrices that appear in practice. Alternatively we can
use a good iterative solver. That is why the linear solve in Step 5 will dominate
the whole algorithm. We end up with a complexity O(r · S). In contrast to
this the classical solvers for the Sylvester equation [11, 2] are in O(n3) with a
relatively large constant.

3.2 The Generalized Cases

Unfortunately we can not handle the two generalized cases in one step be-
cause the semi generalized equation (27) is nearly the same as the standard
equation (26), but the (complete) generalized equation (28) needs some more
investigation.

The semi generalized equation can be rearranged to

AXU︸︷︷︸
X̃

+E XU︸︷︷︸
X̃

S +MU︸︷︷︸
M̃

= 0

by inserting the Schur decomposition H = USUT and multiplying from the
right by U . For the �rst column of X̃, like in equation (30), we get

(A+ SiiE)X̃1 = −M̃1. (33)

For all other columns we have to take care of the E matrix. If we consider the

12



Algorithm 4 Solution of the Sparse-Dense Generalized Sylvester Equation

Input: A ∈ Rn×n, E ∈ Rn×n, F ∈ Rr×r, H ∈ Rr×r, M ∈ Rn×r de�ning (28)
Output: X ∈ Rn×r solving (28)
1: Compute generalized Schur decomposition (F,H) = (QF̂ZH , QĤZH).
2: M̃ := MZ
3: for j := 1, . . . , r do

4: M̂ := −M̃j −
j−1∑
i=1

(
F̂ijX̂

A
i + ĤijX̂

E
i

)
5: Solve (F̂jjA+ ĤjjE)X̃j = M̂ .
6: if j < p then
7: X̂A

j := AX̃j

8: X̂E
j := EX̃j

9: end if

10: end for

11: X := X̃QH

second column of the solution

AX̃2 + EX̃1S12 + EX̃2S22 + M̃2 = 0

⇔ (A+ S22E)X̃2 = −M̃2 − S12EX̃1, (34)

we can again obtain that formula for all columns as by an induction argument

(A+ SjjE)X̃j = −M̃j − E
j−1∑
i=1

SijX̃i. (35)

Algorithm 3 can easily be adapted to solve this equation.
The generalized case does not work directly in this way because we have the

F matrix to the right of the �rst X in equation (28). To overcome this problem,
we replace F and H by their generalized Schur decomposition (QF̂ZH , QĤZH).
This can be done via the QZ algorithm [10, Chap. 7.7]. Inserting this in (28)
we get

AXQF̂ZH + EQĤZH +M = 0.

By multiplying this from the right with Z we get a similar form like for the
standard equation in (29)

AXQ︸︷︷︸
X̃

F̂ + E XQ︸︷︷︸
X̃

Ĥ +MZ︸︷︷︸
M̃

= 0. (36)

Observing that F̂ and Ĥ are upper triangular matrices leads to a formula for
the �rst column of X̃:

AX̃1F̂11 + EX̃1Ĥ11 + M̃1 = 0

⇔ (F̂11A+ Ĥ11E)X̃1 = −M̃1. (37)

All other columns can be obtained in a substitution scheme like in the standard
case, but we have to take care of the linear combinations with A and F . So for
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an arbitrary column j of X̃ we �nd

A

(
X̃F̂jj +

j−1∑
i=1

F̂ijX̃i

)
+ E

(
X̃Ĥjj +

j−1∑
i=1

ĤijX̃i

)
+ M̃j = 0,

which can be rearranged to

(F̂jjA+ ĤjjE)X̃j = −M̃j −
j−1∑
i=1

F̂ij AX̃i︸︷︷︸
X̂A

i

+Ĥij EX̃i︸︷︷︸
X̂E

i

 . (38)

To obtain the solution of the initial system, we have to multiply X̃ with QH

from the right. We can evaluate the linear combination in the right hand side in
a more e�cient way if we precompute the matrix-vector products X̂A

i and X̂E
i as

soon as we have computed column i of X̃. This will save r2−3r+2 matrix-vector
products, but we consume O (2n(r − 1)) more memory. The whole procedure is
presented in Algorithm 4. The problem with complex arithmetics is the same
as in Algorithm 3 for the standard and the semi generalized equation and can
be solved in the same way. The complexity estimation is the same as in the
standard case. Although we need more operations in general, the solution of
the linear system dominates Algorithm 4.

3.3 Transposed Case

As we have seen in Section 2 we need the solution of the transposed equa-
tions (26) or (27), too. If we have already solved the standard equation, we have
computed the linear solver (LU-decomposition, preconditioner,...) for (A+SjjI)
or (A + SjjE) and the Schur decomposition of Ar, respectively (Ar, Er). The
reuse of this solver will reduce the computational costs for the transposed equa-
tion dramatically. We now check in which steps of the algorithm we have to
change something. First we take a look at the transpose of equation (26)

AHX +XHH +M = 0. (39)

Inserting the complex Schur decomposition USUH = H yields

AHX +XUSHUH +M = 0. (40)

This is nearly the same as the original problem only now SH is a lower triangular
matrix and we have to start with the r−th column of X̃ instead of the �rst. In
the formula (32) for the right hand side of each step we have to modify the sum
and we will get

M̂ = −M̃j −
r∑

i=j+1

SjiX̃i (41)

For the inner linear system we will get (AT +SjjI) = (A+Sjj)
H . This strategy

can easily be modi�ed for the solution of the generalized or the semi generalized
equation.
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problem size r cond2

(
WTV

) corr. equation biorth-correction.

‖I − W̃TV ‖2 ‖I − W̃T Ṽ ‖2
n = 625 5 6.86576 e+06 1.5851 e−10 1.7719 e−15

10 9.11312 e+12 1.0988 e−03 4.2150 e−15
n = 2 500 10 1.40444 e+13 5.8070 e−04 1.6743 e−15

15 5.04833 e+16 1.4482 e+00 8.6232 e−15
n = 40 000 10 3.54464 e+14 1.0580 e−01 9.5054 e−15

15 1.69087 e+16 2.0499 e+00 8.6848 e−15

Table 1: Error of the correction equation after one step of TSIA

4 Numerical Results

In this section we want to present some numerical experiments with the TSIA
algorithm and the underlying sparse-dense Sylvester solvers. The algorithms
are implemented in MATLAB® and our upcoming M.E.S.S. library which is
written in C and Fortran. Most computations are done with the help of our C
library. The hardware consists of two six-core Intel® Xeon®X5650 CPUs with
2.66 GHz and 48GB DDR3 RAM. The software used is the following: CentOS
5.51 64bit, GNU C and Fortran compiler 4.5.12, ATLAS 3.8.43, Lapack 3.3.14,
SuiteSparse 3.55 and MATLAB 2010b. We also tried the Sylvester equation
solver from SLICOT6, but this change had no in�uence on the performance
results.

As test problem for the standard state space system we use a well known
FDM discretization of the convection-di�usion equation from LyaPack [19, 20],
because it is an easily scalable problem. The test examples for the generalized
case are a semi-discretized heat transfer problem for optimal cooling of steel
pro�les [3] and a tunable optical �lter [15]. As an arti�cial example we use a
system from Penzl [19] with a prescribed spectra.

First, as we already mentioned in Section 2, we compare the correction for-
mula (12) for the skew-projection with our biorthonormalization approach. We
use the standard state space example and a random initial projection to obtain
a �rst reduced model. Using this we perform one step of the TSIA Algorithm 2
and check the di�erent ideas. Table 1 shows the results for varying problem di-
mensions. As we can easily see the correction equation works only for one small
case. In all other cases the condition number of WTV is getting too large to
solve the correction equation with a satisfactory error. Our biothornomalization
approach on the other hand gives us consistent results even where the problem
size is getting larger. So this approach is preferred for large scale problems.

After we have seen how to ful�ll the oblique projector condition in a robust
way, we will present some convergence results of the TSIA algorithm. The
Figures 1 and 2 show the di�erent information available during the iteration
for the reduction from order 10 000 or 1 668 to order 10. We can see that the

1http://www.centos.org
2http://gcc.gnu.org
3http://math-atlas.sf.net
4http://www.netlib.org/lapack
5http://www.cise.ufl.edu/research/sparse/SuiteSparse/
6http://www.slicot.org
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Figure 1: convergence of the TSIA algorithm for the FDM heat equation of
order 10 000 to 10

n r = 5 r = 10 r = 15 r = 20 r = 25

625 5.141 e−04 1.798 e−06 1.111 e−09 7.185 e−14 9.993 e−15
2 500 1.594 e−02 4.494 e−05 2.642 e−08 4.722 e−11 1.345 e−13

10 000 5.977 e−02 2.646 e−04 1.248 e−06 2.293 e−09 2.088 e−11
40 000 2.573 e−01 8.126 e−03 9.437 e−05 4.147 e−07 2.687 e−09
90 000 6.083 e−01 1.293 e−02 1.702 e−04 1.280 e−06 3.409 e−08

160 000 1.107 e+00 3.183 e−02 2.037 e−04 1.097 e−05 4.877 e−06
250 000 1.751 e+00 4.982 e−02 6.924 e−04 1.162 e−05 2.990 e−07
762 500 3.993 e+00 1.131 e−01 9.493 e−03 2.721 e−05 9.238 e−07

1 000 000 7.130 e+00 2.038 e−01 1.530 e−02 2.469 e−04 9.302 e−06

Table 2: H2-error of the TSIA algorithm for the standard state space example
after 15 steps.

algorithm converges after 5 to 10 steps. It is obvious that all stopping criteria,
which are not based on the evaluation of the H2-error are very slow or not
reliable like the norm of the gradient ∇JAr in the generalized case. For the
rank based criterion it can not be guaranteed that we get rank ([Vi Vi−1]) =
rank ([Wi Wi−1]) = 10 at the end. The relative change in the interpolation
points can be used as a good criterion, but we are not able to provide problem
independent limits. As a good choice we can use

||σi − σi−1|| <
√
u · n · ||σ1||

where u denotes the machine precision. Experiments show that this is mostly
too strong. Another problem of this criterion is that the convergence of this
criterion is relatively slow in comparison with the stagnation of the H2-error.
The small jump-up in Figure 1 is caused by rounding errors. The Tables 2 and 3
show the results after 15 steps of TSIA for di�erent problem sizes. We can see
that we are able to reduce problems up to a full order of 1 000 000. This takes
from about 4 700 seconds for r = 5 to about 54 000 seconds for r = 25. So the
technical modi�cations we have done in the TSIA algorithm enable us to solve
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Figure 2: convergence of the TSIA algorithm for the 2D optical �lter order 1 668
to 10

problem r = 5 r = 10 r = 15 r = 20 r = 25

rail 1 357 2.223 e−03 1.479 e−03 5.825 e−04 3.003 e−04 1.408 e−04
rail 5 177 2.250 e−03 1.558 e−03 5.930 e−04 2.704 e−04 1.975 e−04
rail 20 209 5.478 e−03 5.278 e−03 1.457 e−03 1.445 e−03 8.005 e−04
rail 79 841 4.211 e−03 1.945 e−03 1.555 e−03 1.494 e−03 1.039 e−03
F-2D 1 688 4.575 e−01 9.859 e−03 4.916 e−04 1.669 e−05 3.648 e−06
F-3D 106 437 6.908 e+02 3.546 e+00 7.271 e−01 3.832 e−02 1.611 e−02

Table 3: H2-error of the TSIA algorithm for the generalized state space examples
after 15 steps.

such problem in less than one day. Without special solvers for the Sylvester
equation this will take much longer or is impracticable on current hardware.

The connection between IRKA and TSIA is shown in Figure 3. We do one
step of IRKA and use this projection to get the �rst reduced model for TSIA.
Then both methods should converge in the same way as shown in Theorem 1.
We see that the di�erence between the interpolation points is basically the same
for IRKA and TSIA. If we take the overall distance ||δIRKA − δTSIA||2, where
δ =

{
||σ(i) − σ(i−1)||2

}maxit
i=1

, between the changes of the interpolation points,
we can observe that it is not exactly the same and it is growing for larger models
and bigger reduced orders. This is caused by rounding errors, stability problems
and many other in�uences.

In order to show an advantage of the TSIA we regard a special model problem
presented by Penzl in [20]. It prescribes a certain spectrum such that the Bode
plot shows some peaks. The dimension of the model is 408. We approximate
this model using IRKA with start parameters computed as some Ritz values of
the system matrix, TSIA based on the �rst IRKA step and TSIA with a special
pair of initial projection matrices V andW . The problem setup for the �rst two
cases is the exactly the same as in the previous example. For the third case we
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Figure 3: Di�erence of the interpolation points in IRKA and TSIA for the
standard state space example, n = 2 500.

choose the projection matrices V and W as

V =

(
I
0

)
and W =

(
I
0

)
. (42)

We want to regard the connection between the dimension of the reduced and
the corresponding H2 error. Therefore we compute reduced order models of
dimension 4 up to 24, see Figure 4. Theoretically IRKA and the IRKA started
TSIA should produce the same reduced order model as we have already seen in
Theorem 1. But for certain reduced dimensions, IRKA exhibits some instabil-
ities and does not deliver the desired H2 optimal reduced order model, as we
see in the �gure. The interesting fact is that the H2-error of the IRKA algo-
rithm jumps up for dimension 20 and 24. Although the equivalent TSIA model
should compute the same reduced model it produces the results we except with-
out showing the peak. Even the TSIA with the special initial reduced model
produces the same H2-error beginning at dimension 14. This behavior can be
reproduced with di�erent initial approximation parameters. This indicates a
better stability of the TSIA when compared to IRKA and may be explained
by the fact that IRKA requires an eigendecomposition of possibly non-normal
matrices Ar which is avoided by TSIA.

The underlying Sylvester Equation Solver The key ingredient of the fast
implementation of the TSIA algorithm are the special Sylvester equation solvers.
We solve the systems

(A+ SjjI)X̃j = M̂

using sparse LU decomposition. The factors are precomputed and used for
Equations (14) and (15). Because the factors are data independent, we can
easily compute them in parallel. The parallel parts of the Sylvester solver (and
of cause of the TSIA algorithm) are realized by a mixture of OpenMP and
Pthreads. Another e�ciency improving technique is the so called pattern reuse
or single pattern multi value LU decomposition. This special solver technique
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Figure 4: H2-error depending on the reduced dimension r for a articial problem.

problem r Lapack algorithm 3 speedup
FDM conv-di� 5 1.19s 0.046s 25.870
n = 625 10 1.121s 0.052s 21.558

15 1.127s 0.066s 17.076
FDM conv-di� 5 990.254s 0.210s 4 715.495
n = 10 000 10 996.163s 0.249s 4 000.655

15 1 005.483s 0.339s 2 966.027
FDM conv-di� 5 54 858.001s 0.996s 55 078.314
n = 40 000 10 54 604.927s 1.279s 42 693.453

15 54 644.927s 1.992s 27 432.192
FDM conv-di� 5 out of memory 118.392s -
n = 1 000 000 10 out of memory 151.984s -

15 out of memory 253.312s -

Table 4: Performence algorithm 3 vs. Lapack DTRSYL

for families (A + piI) of linear systems is developed in [16]. To evaluate the
performance of Algorithms 3 and 4 we use our standard state space example and
the generalized state space example as sparse input data. The dense matrices
and the right hand sides are random matrices generated with the MATLAB rand

function. The classical dense solving was done via the Lapack routines DTRSYL
for the standard equation and DTGSYL for the generalized one. Because the TSIA
algorithm requires the solution of the standard equation and the transposed
one, we solve both using the modi�cations presented in Subsection 3.3. We can
estimate the runtime of TSIA by the runtime of the Sylvester solver. DTRSYL is
able to handle the transposed equation directly, but DTGSYL is not. This is due
to the generalized Sylvester equation

AR− LB = C,

DR− LE = F,

behind this solver. We can not reuse the Schur decomposition for the transposed
case like it is done in the standard case, which is one argument why this solver
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problem r Lapack Algorithm 4 speedup
rail pro�le 5 151.915s 0.066s 2 301.742
n = 1 357 10 169.927s 0.073s 2 327.767

15 170.596s 0.087s 1 960.874
rail pro�le 5 9 718.017s 0.128s 75 922.008
n = 5 177 10 9 714.235s 0.170s 57 142.559

15 9 284.022s 0.228s 40 719.395
rail pro�le 5 693 563.279s 0.571s 1 214 646.723
n = 20 209 = 8.03 days

10 - 0.924s -
15 - 1.335s -

rail pro�le 5 out of memory 4.498s -
n = 79 841 10 out of memory 7.287s -

15 out of memory 10.647s -
�lter 2D 5 226.058s 0.063s 3 588.222
n = 1 668 10 225.560s 0.105s 2 148.190

15 226.031s 0.101s 2 237.930
�lter 3D 5 out of memory 377.761s -
n = 106 437 10 out of memory 552.555s -

15 out of memory 761.060s -

Table 5: Performance results of Algorithm 4 vs. Lapack DTGSYL

FDM conv-di� r
n 5 15 25

625 3.338 e−17 3.227 e−17 2.123 e−17
10 000 1.319 e−16 5.477 e−17 6.685 e−17
40 000 7.976 e−17 1.289 e−16 1.093 e−16
250 000 9.495 e−17 2.511 e−16 2.561 e−16

Table 6: relative di�erence between X in Re (X) in Algorithm 3, ||X−Re (X)||2
||Re (X)||2

is so slow. Tables 4 and 5 show us the runtime of the Sylvester solver. As
we easily can see, even for relatively small systems of order 1 357 or 1 668 the
computation time of the classical solver is too large to use it in an iterative
outer algorithm. For systems larger than 10 000 it is nearly impossible to use
the classical solver. If we want to reduce the heat equation example of order
40 000 to order 10 with the classical solver and we need 15 steps of TSIA, then
we need 15 · 54 604s ≈ 9.5 days to solve the Sylvester equations, which is not
acceptable in practice. The most time consuming part in DTRSYL or DTGSYL

are the Schur decompositions of the large matrices that have to be performed.
Algorithms 3 and 4 avoid such operations on the large matrices.

The only problem is that we need complex arithmetics if the small matrices
have complex eigenvalues and Schur vectors. However this does not seem to be
a problem, because in exact arithmetics the �nal solution will be real again and
the truncation of the imaginary part should not cause a notable error, since from
Table 6 we can observe that the relative error between the eventually complex
solution and the real part of the solution is in the range of machine precision.
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Another trick to save computation time is, that for real matrices all complex
eigenvalues exist in pairs. Computing LU = (A+ SiiI) we get the factorization
of (A + Si+1,i+1I) = (A + SiiI) = LU for free. A complete real variant is
not possible at the moment because we require that there are no blocks on the
diagonal of the Schur matrix. Using 2 × 2 blocks on the diagonal of S (or T )
will destroy our linear solvers and con�icts with our initial conditions.

5 Conclusions

We have seen in the previous sections that it is possible to apply H2-model order
reduction to large scale systems. Even problems of order larger than 100 000
can be solved in less than a day. The TSIA algorithm works for MIMO systems
and is theoretically the same as the IRKA algorithm [12] in the SISO case. We
have seen that there exists a model problem which makes the IRKA algorithm
instable which is not the case for the corresponding TSIA algorithm shown in
Section 4. In this way we see the TSIA algorithm as a more robust variant of
the SISO-IRKA algorithm. The connection to the MIMO variant of the IRKA
algorithm, called MIRIAM [17], is similar.

A new interpretation of the oblique projector condition WTV = I for the
projection matrices lead us to a new robust technique to ful�ll this.

We have extended the TSIA algorithm to generalized state space systems.
Although our method is restricted to problems with a symmetric and positive
de�nite matrix E, this will in most situations be no practical limitation as
E often is a mass matrix. As the solution of the Sylvester equation is the
most expensive operation in every iteration step, we have developed a family
of Sylvester solvers that can handle the special sparse-dense structure of the
matrices extending the idea of Sorensen and Antoulas for the standard Sylvester
equation [23].

The H2-model order reduction is now at a point where it can be used for
large scale problems. The special features of modern computers can be exploited
to accelerate such algorithms. Special solvers for sparse matrices enable us to
solve such problems without using supercomputers.
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