
Thomas Mach and Jens Saak

Towards an ADI iteration for Tensor

Structured Equations

FÜR DYNAMIK KOMPLEXER
TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Max Planck Institute Magdeburg

Preprints

MPIMD/11-12 March 15, 2012

Impressum:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for Dynamics of Complex
Technical Systems

Address:
Max Planck Institute for Dynamics of
Complex Technical Systems
Sandtorstr. 1
39106 Magdeburg

www.mpi-magdeburg.mpg.de/preprints

TOWARDS AN ADI ITERATION FOR TENSOR STRUCTURED EQUATIONS∗

THOMAS MACH† AND JENS SAAK‡

Abstract. We present a generalization of the alternating directions implicit (ADI) iteration to higher dimen-
sional problems. We solve equations of the form

(I ⊗ · · · ⊗ I ⊗A1 + I ⊗ · · · ⊗ I ⊗A2 ⊗ I + . . .+Ad ⊗ I ⊗ · · · ⊗ I) vec(X) = vec(B),

with B given in the tensor train format. The solution X is computed in the tensor train format, too. The accuracy
of X depends exponentially on the local rank of X and on the rank of B. To prove this we adapt a result for right
hand sides of low Kronecker rank to low tensor train rank. Further we give a convergence proof for the generalized
ADI iteration in the single shift case and show first ideas for more sophisticated shift strategies. The conditioning of
tensor-structured equations is investigated by generalizing results for the matrix equations case. Finally we present
first numerical results.

Key words. alternating directions implicit, ADI, tensor structured equations, tensor trains

AMS subject classifications. 15A24, 15A72, 65F30

1. Introduction. This paper deals with the numerical solution of linear equations with
coefficient matrices of tensor product structure. Such tensor structured equations occur, e.g., in
the solution of PDEs on d-dimensional hypercubes discretized by finite elements/differences. In
[5] Grasedyck showed that the solution of a linear system with tensor product structure has a
low Kronecker-rank approximation if the right hand side is of low Kronecker-rank. The solution
is approximated by a quadrature formula on an integral expression of the solution analog to
Equation (2.7). The solution of tensor structured equations using a Krylov subspace method was
recently investigated by Tobler and Kressner in [13]. Further Dolgov and Oseledets investigate
the solution of linear systems with a coefficient matrix in tensor-train matrix format in [4].

Here we will present a different approach based on the ADI iteration. The alternating direction
implicit (ADI) iteration is an efficient algorithm for the solution of equations Ax = b, where
A = H + V with commuting H and V for which the solution of linear systems is cheap compared
to solving with A directly. The ADI iteration originates from solving Poison’s problem over the
unit square. There the first summand is responsible for fulfilling the Laplace in x-direction and the
second summand for the y-direction. The idea of the ADI is to alternatingly solve, the equation
in x-direction and y-direction. We will generalize this idea to d dimensional problems, where we
will sweep through all d dimensions.

The aforementioned Poison equation in 2D serves as our first example. We will give a detailed
derivation in Section 1.1.

Example 1.1. The stationary 2D heat equation leads to the discrete linear system of equations
Au = f where

A = (I ⊗∆1,h + ∆1,h ⊗ I) . (1.1)

The Lyapunov equation related to a linear control system with the instationary heat equation
consequently results as:

(I ⊗∆1,h + ∆1,h ⊗ I)︸ ︷︷ ︸
∆2,h

X +X(I ⊗∆1,h + ∆1,h ⊗ I) = BBT , (1.2)

where B is the discretized input operator. Obviously ∆2,h, X and B are matrices with row/column
indices over the discretized unit square Ωh. In Section 2 we will use this special structure to look
at them as tensors with 4 modes.

∗This work represents equal share of both authors.
†Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany,

(thomas.mach@googlemail.com).
‡Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany,

(saak@mpi-magdeburg.mpg.de) and Chemnitz University of Technology, 09107 Chemnitz, Germany.

1

2 T. Mach and J. Saak

1.1. Classic ADI and Lyapunov Equations. Originally the ADI iteration has been de-
veloped to solve finite difference discretizations of Poisson’s equation [23]:

−∆u = f in Ω ⊂ Rd, d = 2

u = 0 on ∂Ω.

For d = 1 using centered differences on an equidistant mesh with nodes xi ∈ Ω and mesh width
h ∈ R this is well known, see, e.g., [29, 16], to form the linear system of equations ∆1,hu = h f ,
where ui = u(xi), fi = f(xi), i = 1, . . . , n, the boundary conditions are reflected by u0 = un+1 = 0
and we have

∆1,h =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

In 2D, when applying the 5-point differences star, it is equally well known that the resulting linear
system of equations looks like ∆2,hu = h2 f , where

∆2,h =


K −I
−I K −I

. . .
. . .

. . .

−I K −I
−I K

 and K =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

 .

It is an easy exercise to proof that then in fact we have

∆2,h = (∆1,h ⊗ I)︸ ︷︷ ︸
=:H

+ (I ⊗∆1,h)︸ ︷︷ ︸
=:V

. (1.3)

This leads to the idea of an iteration capable of exploiting the tridiagonal structure of ∆1,h, which
finally gave rise to the classical two step ADI iteration described by

(H + piI)ui+ 1
2

= (piI − V)ui + f̃ ,

(V + piI)ui+1 = (piI −H)ui+ 1
2

+ f̃ ,

for certain shift parameters pi ∈ C, where the optimal parameters solve

min
{p1,...,p`}⊂C

max
λ∈Λ(H),µ∈Λ(V)

∣∣∣∣∣∏̀
k=0

(pk − µ)(pk − λ)

(pk + λ)(pk + µ)

∣∣∣∣∣ . (1.4)

In the special case of our example we have Λ(V) = Λ(H) = Λ(∆1,h) and thus (1.4) simplifies to

min
{p1,...,p`}⊂C

max
λ∈Λ(∆1,h)

∣∣∣∣∣∏̀
k=0

(pk − λ)

(pk + λ)

∣∣∣∣∣ . (1.5)

Wachspress [30, 31] first observed that the vectorization

[(I ⊗ F) + (F ⊗ I)] vecX = −vec(GGT), (1.6)

of the Lyapunov equation

FX +XFT = −GGT (1.7)

Towards an ADI for Tensor Structured Equations 3

yields exactly the same structure as (1.3) and thus the Lyapunov equation is an ADI model
problem. This observation lead to the ADI iteration for the Lyapunov equation:

(F + piI)Xi+ 1
2

= −GGT −Xi

(
FT − piI

)
,

(F + piI)Xi+1 = −GGT −XT
i+ 1

2

(
FT − piI

)
,

where pi denotes the complex conjugate of pi ∈ C.
Additionally, Wachspress [31, 32] provides a way to compute the optimal (in terms of the global

convergence rate) ` shift parameters such that the `-th iterate meets a prescribed relative error
bound, provided the spectrum of F is real. For complex spectra with moderately sized imaginary
parts of the eigenvalues, an asymptotically optimal choice is given. A fast heuristic choice of the
parameters was introduced by Penzl [25], and Sabino [27] treats a potential theory based selection
algorithm. The contribution in [2] combines the optimality of the Wachspress parameters and the
fast computability of Penzl’s parameters.

1.2. The Basic Idea of Low Rank ADI. The two key observations towards a low rank
version of this iteration are that on the one hand [24, 17] after rewriting it into a one step iteration

Xi =− 2 Re (pi)(F + piI)−1GGT (F + piI)−T

+ (F + piI)−1(F − piI)Xi−1(F − piI)T (F + piI)−T ,
(1.8)

we find that (1.8) is symmetric. On the other hand the solutions singular values decay rapidly
such that it allows for a good low rank approximation [6].

Thus assuming Xi = ZiZ
H
i and Y0 = 0 we can write the iteration in terms of the factors Zi

as

Z1 =
√
−2 Re (p1)(F + p1I)−1G,

Zi =
[√
−2 Re (pi)(F + piI)−1G, (F + piI)−1(F − piI)Zi−1

]
.

Hence, we can write the ADI iteration such that it forms the factors by successively adding a
fixed number of columns in every step. In the current formulation, however, all columns have to
be processed in every step, which makes the iteration increasingly expensive. Now let np ∈ N be
the number of shift parameters we have at hand. Then defining the matrices Ti := (F − piI) and
inverse matrices Si := (F + piI)−1 following [17] one can express the np-th, i.e., the final, iterate
as

Znp =
[
Snp

√
−2 Re (pnp)G, Snp(TnpSnp−1)

√
−2 Re (pnp−1)G, . . . ,

SnpTnp · · ·S2(T2S1)
√
−2 Re (p1)G

]
.

Observing that the Sj and Tj commute, one can rearrange these matrices. Note that every block
of the dimension of G essentially contains its left neighbor, i.e., predecessor in the iteration. Thus
one finds that the factor can be rewritten in the form

Znp
=
[
znp

, Pnp−1znp
, Pnp−2(Pnp−1znp

), . . . , P1(P2 · · ·Pnp−1znp
)
]
, (1.9)

where znp =
√
−2pnp

Snp
G and one only needs to apply a step operator

Pi :=

√
−2 Re (pi)√
−2 Re (pi+1)

(F + piI)−1(F − pi+1I)

=

√
−2 Re (pi)√
−2 Re (pi+1)

[
I − (pi + pi+1)(F + piI)−1

]
,

(1.10)

to compute the new columns in every step.

4 T. Mach and J. Saak

Especially note that only the new columns need to be processed after rearrangement. In
summary this forms an iteration that computes a low rank factorization of the solution exploiting
the low rank structure of the right hand side. This is exactly what we want to pursue in Section 2
for more general tensor structures of the right hand side, although the direct computation will
not be possible in more general cases. To this end the next subsection briefly reviews some tensor
structures available in the literature.

1.3. Tensor Structure. Following [7] we define a d-mode tensor T ∈ RI as vector over the
product index set

I = I1 ⊗ I2 ⊗ · · · ⊗ Id,

where Ii are index sets. If we split I into

I = J ⊗K,

with t ⊂ {1, . . . , d}, J =
⊗

i∈t Ii and K =
⊗

i/∈t Ii, then there is a matricization M ∈ RJ×K of T .
We write for t = {i1, . . . , ij}

M = T (i1, . . . , ij ; ij+1, . . . , id)

to separate the indices into row indices (before the semicolon), and column indices (after the
semicolon). Sometimes this splitting of a tensor into a matrix with product index sets as row and
column index is also called tensor unfolding, e.g., [3].

We use the following notation of a product of tensor T with matrix M ∈ Rnj×nj from [3]:

(T ×j M)i1,...,id :=
∑
α

Ti1,...,ij−1,α,ij+1,...,idMij ,α.

Further we use the product of a matrix M ∈ RN×N with N =
d∏
k=1

nk and the vectorization of a

tensor T ∈ Rn1×···×nd :

(MT)i1,...,id = (Mvec(T))i1,...,id =

n1,...,nd∑
j1,...,jd=1

Mi1,...id;j1...,jdTj1,...,jd .

If it is clear from the context that T is a tensor, then we omit the vec and assume that the result
is again a tensor and not the vectorization.

For simplicity we assume that all Ii are of dimension n. Storing the nd entries of a tensor
becomes expensive for large d due to the exponential growth. This is often named the curse of
dimensionality, cf. [20].

There are different approaches to overcome this problem, e.g., the usage of the canonical form
or the tensor-train representation of the tensor. If

T =

r∑
α=1

U
(α)
1 ⊗ U (α)

2 ⊗ · · · ⊗ U (α)
d ,

then T is a tensor of tensor rank or canonical rank r. The right hand side is the canonical form
of the tensor. The computation of the canonical form of a tensor is unstable and difficult, except
for d = 1, 2.

Recently tensor-trains [20, 18] have been introduced by Oseledets and Tyrtshnikov. Tensor-
trains are a representation of tensors, which does not suffer from the curse of dimensionality. The
tensor-train decomposition (TT decomposition) is given by

T (i1, i2, . . . , id) ≈
∑

α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd−1(αd−2, id−1, αd−1)Gd(αd−1, id) = T̃ .

Towards an ADI for Tensor Structured Equations 5

Xabcd Xabcd

Xabcd Xabcd

a∆µa

b∆µb

c ∆µc

d ∆µd

+

+

+

= Babcd

Fig. 2.1. Lyapunov equation.

This means that the tensor is represented by (d−2) tensors of size rj−1×nj × rj and by 2 tensors
of size n1 × r1 and rd−1 × nd, so that only (d − 2)nr2 + 2nr (rj ≤ r, nj ≤ n ∀j) entries have

to be stored. The rj are called the tensor train ranks, or short TT-ranks, of T̃ . For d = 2 the
approximation by tensor trains is equal to the low rank approximation by a factorization ABT

resp. vec
(
ABT

)
.

If T is available one can compute the TT decomposition by a sequence of SVDs of different
matricizations of the tensor. There is a second approach using a generalization of the cross
approximation [22].

If we vectorize the matrix equation in Example 1.1, we get a linear system with a coefficient
matrix, which is a matricization of an 8-mode tensor given in canonical form,

I ⊗ I ⊗ I ⊗∆1,h︸ ︷︷ ︸
=H

+ I ⊗ I ⊗∆1,h ⊗ I︸ ︷︷ ︸
=V

+

+ I ⊗∆1,h ⊗ I ⊗ I︸ ︷︷ ︸
=R

+ ∆1,h ⊗ I ⊗ I ⊗ I︸ ︷︷ ︸
=Q

 vec(X)︸ ︷︷ ︸
=u

= vec(B)︸ ︷︷ ︸
=f

. (1.11)

In the last part of the next chapter we will assume that the right hand side B and the solution
X are tensors in the tensor train format and the coefficient matrix is given in the canonical form

T =

r∑
α=1

U
(α)
1 ⊗ U (α)

2 ⊗ · · · ⊗ U (α)
d ,

with r = d and

U
(α)
j =

{
I, α 6= j,

Aj , α = i.

2. ADI for Tensor Structures. In this section we will generalize the ADI iteration to
tensor structures. We use the 2D heat equation to explain the ideas. Afterwards we present the
generalization for higher dimensional problems.

2.1. ADI for 2D Heat Equation. We have seen in Equation (1.11) the vectorization of
Equation (1.2), see Example 1.1. The structure of this equation is equivalent to the equation

∆4,hu = f.

The tensor formulation of this equation as tensor network is shown in Figure 2.1, where we use
the graphical notation from [21]. Tensors are depicted by rectangles. The summation over indices
is shown by links with small circles giving the index. Similar notations are used in [12]. We search
for a 4-mode tensor X, since the right hand side B is also a 4-mode tensor. We assume that the
right hand side B has a tensor train structure with low local rank. On the left hand side of the
equation there are matrix-like multiplications of X with ∆1,h for each mode.

6 T. Mach and J. Saak

Generalizing ADI for this structure leads to the following iteration scheme:

(H + I ⊗ I ⊗ I ⊗ piI)Xi+ 1
4

= (piI − V −R−Q)Xi +B

(V + I ⊗ I ⊗ piI ⊗ I)Xi+ 1
2

= (piI −H −R−Q)Xi+ 1
4

+B

(R+ I ⊗ piI ⊗ I ⊗ I)Xi+ 3
4

= (piI −H − V −Q)Xi+ 1
2

+B

(Q+ piI ⊗ I ⊗ I ⊗ I)Xi+1 = (piI −H − V −R)Xi+ 3
4

+B.

The main advantage of this scheme as compared to the standard ADI, where we have H = ∆2,h⊗I,
is that we only have to solve very simple structured systems of the form

(I ⊗ · · · ⊗ I ⊗∆1,h ⊗ I ⊗ · · · ⊗ I + piI4n)X = B +

The matrix of the left hand side is the Kronecker product of identity matrices and one tridiagonal
matrix. Solving with (H + I ⊗ I ⊗ I ⊗ piI) simplifies to

(∆1,h + piI)Xd;abc = hd;abc,

where Xd;abc is the matricization of the tensor into a fat rectangular matrix, there d is the row
index and abc the column index. If X and the right hand side h are in tensor train representation,
this further simplifies to

Xj = hj ∀j 6= 4

(∆1,h + piI)X4 = h4.

The equations for V , R and Q can be handled analogously.
The assumption that X and B are given in tensor train representation is the analog to the

assumption in LRCF-ADI that BBT is a low rank factorization and the solution X can be given
in low rank Cholesky factorized form.

2.2. ADI for Multidimensional Equations. Now we will generalize the algorithm from
the previous subsection to higher dimensional equations of the form:

(I ⊗ · · · ⊗ I ⊗∆1,h + I ⊗ · · · ⊗ I ⊗∆1,h ⊗ I + . . .+ ∆1,h ⊗ I ⊗ · · · ⊗ I) vec(X) = vec(B). (2.1)

Like in the 4-mode case, we have to solve d equations in each iteration. Now they have the
more general form

(Sk + piI)Xi+ k
d

=

(
piI −

d∑
j=1
j 6=k

Sj

)
Xi+ k−1

d
+B ∀k ∈ {1, . . . , d} ,

with

Sk = I ⊗ · · · ⊗ I ⊗∆1,h ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
k − 1 factors

.

After we have cycled through all dimensions/directions once, we choose the next shift and start
again with dimension/direction k = 1. Again the right hand side has the same simple structure
as in the 4-mode case.

The algorithm can further be generalized by replacing ∆1,h with regular matrices Ai ∈ Rni×ni ,
so that equations like

A vec(X) = vec(B), (2.2)

where

A = I ⊗ · · · ⊗ I ⊗A1 + I ⊗ · · · ⊗ I ⊗A2 ⊗ I + . . .+Ad ⊗ I ⊗ · · · ⊗ I, (2.3)

Towards an ADI for Tensor Structured Equations 7

can be solved.
Equation (2.2) is solvable if and only if A is regular. Therefore the eigenvalues of A have to

be non-zero. It is well known as Stéphanos’ theorem, see, e.g., [13, 11], that the eigenvalues of A
are the sum of the eigenvalues of A1 to Ad

λi(A) = λi1(A1) + λi2(A2) + · · ·+ λid(Ad), (2.4)

with i = i1 + i2n1 + · · ·+ id
∏d−1
j=1 nj . The multidimensional case follows from d = 2 by recursion.

Remark 2.1. In perfect analogy to the Lyapunov/Sylvester equation case, the eigenvalues of
A are non-zero if A1, . . . , Ad are Hurwitz. Further in analogy to the two-dimensional case we will
call Equation (2.2) a Sylvester tensor equation and in the case of A1 = A2 = · · · = Ad a Lyapunov
tensor equation.

Fast convergence of the ADI iteration can only be expected when using suitable shifts. In the
next subsection we present a simple shift strategy.

2.3. ADI Shift Parameters and Convergence of our Method. Computing good shifts
is a tough task in the ADI in general. This topic is not in the focus of this paper. Nevertheless,
we want to state some remarks.

Let G` be the error propagation operator for ` steps of the ADI iteration. In the Lyapunov
matrix equation case the norm of G` for shifts p1, . . . , p` is bounded by (see, e.g. [31])

‖G`‖2 ≤ max
λ,µ∈Λ(A)

∣∣∣∣∣∣
∏̀
j=0

(pj − µ)(pj − λ)

(pj + λ)(pj + µ)

∣∣∣∣∣∣ .
It is straight forward to generalizes this for arbitrary d to

‖G`‖2 ≤ max
λk∈Λ(Ak), k=1,...,d

∣∣∣∣∣∣∣
∏̀
j=0

d∏
l=0

pj −
∑
k 6=l

λk

pj + λl

∣∣∣∣∣∣∣ . (2.5)

The following theorem shows that in the single shift case the ADI iteration converges.
Theorem 2.2. Let A1, . . . , Ad be Hurwitz matrices with Λ(Ak) ⊂ R− ∀k. Let further p be a

shift with

∞ < p ≤ λi(A) ≤ 0 ∀i = 1, . . . , N.

Then ‖G1‖2 < 1 and so the ADI iteration converges.
Proof. Equation (2.5) simplifies to

‖G1‖2 ≤ max
λk∈Λ(Ak),

k=1,...,d

∣∣∣∣∣∣
d∏
l=0

p−
∑
k

λk + λl

p+ λl

∣∣∣∣∣∣ = max
λk∈Λ(Ak),

k=1,...,d

∣∣∣∣∣∣
d∏
l=0

1−

∑
k

λk

p+ λl

∣∣∣∣∣∣ .
Since the Ak are Hurwitz, we have λl < 0 and λi(A) < 0. The shift p is also smaller than zero
and so we subtract a positive number from one. Since p ≤ λi(A) ∀i the absolute value of the
denominator is larger than the absolute value of the numerator and so we get∑

k

λk

p+ λl
< 1.

The proof is completed by the argument that lim
l→∞

∥∥∥(G1)
l
∥∥∥ = 0. The shift p can be chosen larger,

since the bound is not tight. In the Lyapunov case (Ak = A0 ∀k) we have a tight bound for a
single shift p if A0 is a real Hurwitz matrix. The shift p must fulfill

p <
d− 2

2
λmin,

8 T. Mach and J. Saak

since otherwise the quotient dλmin(A0)
p+λmin

≥ 2 and ‖G‖2 ≥ 1. Note: For d = 2 we have p < 0 and this
is no additional restriction, since p has to be chosen negative anyway.

More sophisticated shift strategies need the adaption of Penzl’s heuristic shifts [25] or the
(asymptotically) optimal Wachspress shifts [31, 17] for the standard Lyapunov type matrix equa-
tion. Both strategies (for d = 2) are based on the rational min max problem:

min
{p1,...,p`}⊂C

max
λk∈Λ(Ak),k=1,...,d

∣∣∣∣∣∣
∏̀
j=0

pj −
∑
k 6=l λk

pj + λl

∣∣∣∣∣∣ , (2.6)

Penzl’s idea for the heuristic with respect to (1.4) is essentially the restriction of {p1, . . . , p`} and
λ to a subset R of Λ and the successive evaluation of the rational function, to choose an even
smaller subset of R as the actual shifts. It is obvious that we can do the same for (2.6). This
may become expensive for very large d, though. Due to the notably more complex structure
of the rational functions there is no obvious extension of the Wachspress shift strategy for the
tensor case. The further investigation of shift strategies is beyond the scope of this paper. Besides
the generalization of the shift parameter choice an important ingredient for the efficiency of our
method is the generalization of the low rank solution structure corresponding to the low rank form
of the right hand side. In the next subsection we discuss the effects of choosing B to be of tensor
train structure, especially we show that then X can be approximated by a tensor train of low local
rank, as well.

2.4. ADI for Tensors given as Tensor Trains. Now we assume that b is given as TT
decomposition, with small TT-ranks, then Algorithm 1 computes an approximate solution X in
tensor train form.

Now we will show that the solution X for a right hand side B with low TT-rank is of low
TT-rank. This argumentation will use ideas from [5], where it is shown that the solution for a right
hand side of low Kronecker-rank is also of low Kronecker-rank. Therefore we need the following
lemma cf. [5, 13], which we proof like in [14, Theorem 2], where the proof is given for the Sylvester
equation.

Lemma 2.3. Let Aj be Hurwitz. The tensor equation

d∑
j=1

X ×j Aj = B

has the solution

X = −
∫ ∞

0

B ×1 exp(A1t)×2 · · · ×d exp(Adt)dt. (2.7)

Proof. We define the function

Z(t) = B ×1 exp(A1t)×2 · · · ×d exp(Adt).

Differentiating Z(t) obviously gives [3, Property 2]

Ż(t) =

d∑
j=1

Z(t)×j Aj .

Further we have

Z(∞)− Z(0) =

∫ ∞
0

Ż(t)dt,

0−B =

d∑
j=1

∫ ∞
0

Z(t)dt︸ ︷︷ ︸
=−X

×jAj .

Towards an ADI for Tensor Structured Equations 9

Algorithm 1: ADI for Tensor Trains.

Input: {A1, . . . , Ad}, with λmax(A) ≤ 1, tensor train B, accuracy ε
Output: tensor train X, with (I ⊗ · · · ⊗ I ⊗A1 + . . .+Ad ⊗ I ⊗ · · · ⊗ I)X = B
forall j ∈ {1, . . . , d} do

ej := Λ(Aj) ; /* eigenvalues of small dense matrices */

X
(0)
j := zeros(n, 1, 1) ; /* initial tensor train of tt-rank 1 */

end

r(0) := B;
forall j ∈ {1, . . . , d} do

y := X(0);
yj := Ajyj ; /* yj in suitably reshaped form */

r(0) := r(0) − y; /* truncated sum */

end
i := 0;
while

∥∥r(i)
∥∥ > ε do

i+ +;
Choose the shift pi;
forall k ∈ {1, . . . , d} do

h := B + piX
(i−1+ k−1

d);
forall j ∈ {1, . . . , d} \ {k} do

y := X(i−1+ k−1
d);

yj := Ajyj ; /* yj in suitably reshaped form */

h := h− y; /* truncated sum */

end

X(i−1+ k
d) := h;

X
(i−1+ k

d)

k := (Ak + pi) \X
(i−1+ k

d)

k ; /* solve the small linear system */

end

r(i) := B;
forall j ∈ {1, . . . , d} do

y := X(i);
yj := Aiyj ; /* yj in suitably reshaped form */

r(i) := r(i) − y; /* truncated sum */

end

end

We assume B to be of low TT-rank that means

B (i1, i2, . . . , id) =

r1,...,rd−1∑
α1,...,αd−1=1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id), (2.8)

with small r1, . . . , rd−1. The solution X is then

X = −
∫ ∞

0

r1,...,rd−1∑
α1,...,αd−1=1

∑
β1

G1(β1, α1) (exp(A1t))i1,β1

∑
β2

G2(α1, β2, α2) (exp(A2t))i2,β2
(2.9)

· · ·∑
βd−1

Gd−1(αd−2, βd−1, αd−1) (exp(Ad−1t))id−1,βd−1∑
βd

Gd(αd−1, βd) (exp(Adt))id,βd
dt.

10 T. Mach and J. Saak

Further we will need the Dunford-Cauchy representation of the matrix exponential [11, Theo-
rem 6.2.28]

exp(tA) =
1

2πı

∮
Γ

exp(tλ) (λI −A)
−1
dΓλ. (2.10)

Theorem 2.4. (cf. [5, Lemma 6/7])
Let A1, . . . , Ad be matrices such that the matrix A from Equation (2.3) has a spectrum σ(A)
contained in [−λmin,−λmax]⊕ ı [−µ, µ] ⊂ C−. Let Γ be the boundary of [−2λmin/λmax − 1,−1]⊕
ı [−µ− 1, µ+ 1]. Let B be a tensor of tensor train structure like in Equation (2.8). Further let
k ∈ N and the quadrature points and weights like in

hst := π/
√
k,

tj := log
(

exp(jhst) +
√

1 + exp(2jhst)
)
,

wj := hst/
√

1 + exp(−2jhst).

Then the solution X can be approximated by

X̃ (i1, i2, . . . , id) = −
r1,...,rd−1∑

α1,...,αd−1=1

H1(i1, α1)H2(α1, i2, α2) · · ·Hd−1(αd−2, id−1, αd−1)Hd(αd−1, id),

with

Hp(αp−1, ip, αp) :=

k∑
j=−k

2wj
λmax

∑
βp

(
exp

(
2tj
λmax

Ap

))
ip,βp

Gp(αp−1, βp, αp)

with the approximation error∥∥∥X − X̃∥∥∥
2
≤ Cst

πλmax
exp

(
2µλ−1

max + 1

π
− π
√
k

)∮
Γ

∥∥∥(λI − 2A/λmax)
−1
∥∥∥

2
dΓλ ‖B‖2 .

Proof. The following proof is a straight forward application of Lemma 5, 6 and 7 from [5].
The quadrature formula (tj , wj) can be found in [28, Example 4.2.11], with d = π/2 (d here

is a parameter from Stenger’s quadrature formula and not the dimension), α = β = ε = 1,
n = N = M = k. The quadrature formula is used to approximate 1

r resp. the inverse of matrices
by

1

r
=

∫ ∞
0

exp(−tr)dt ≈
k∑

j=−k

wj exp(tjr).

The quadrature error is bounded by [28, (4.2.60)]∣∣∣∣∣∣
∫ ∞

0

exp(tr)dt−
k∑

j=−k

wj exp(tjr)

∣∣∣∣∣∣ ≤ C3 exp(−π
√
k),

with, cf. [8],

C3 ≤ Cst exp(|=(z)| /π).

In [9, D.4.3] it is shown that d = π/2 is optimal, since for larger d the quadrature error depends
on r exponentially. Together with (2.10) scaled by 2

λmax
we get the formula for X̃.

Towards an ADI for Tensor Structured Equations 11

For the error holds

∥∥∥X − X̃∥∥∥
2

=

∥∥∥∥∥∥
r1,...,rd−1∑

α1,...,αd−1=1

d∏
p=1

∑
βp

Gp(αp−1, βp, αp)

−∫ ∞
0

exp

(
2t

λmax
Ap

)
+

k∑
j=−k

wj exp

(
2tj
λmax

Ap

)
ip,βp

∥∥∥∥∥∥∥
2

.

The Dunford-Cauchy formula and the quadrature error give∥∥∥∥∥∥−
∫ ∞

0

exp

(
2t

λmax
Ap

)
+

k∑
j=−k

wj exp

(
2tj
λmax

Ap

)∥∥∥∥∥∥
≤ 1

2π

∥∥∥∥∥∥−
∮

Γ

∫ ∞
0

exp (tλ)

(
λI − 2Ap

λmax

)−1

dΓλ+
k∑

j=−k

wj

∮
Γ

exp (tjλ)

(
λI − 2Ap

λmax

)−1

dΓλ

∥∥∥∥∥∥
≤ 1

2π
Cst exp(|=(z)| /π) exp(−π

√
k)

∮
Γ

∥∥∥∥∥
(
λI − 2Ap

λmax

)−1
∥∥∥∥∥

2

dΓλ.

Summing over p completes the proof.
Remark 2.5. Theorem 2.3 gives an explicit formula for the solution X. This explicit formula

can be used to compute the solution X, cf. [5] where this is done for B of low Kronecker rank.
This approach will be investigated in the future. The proof tells us that for B of low TT-rank,
there is an approximation to the solution of low TT-rank and that the error decays exponentially.
In the next section we will investigate numerical properties of Algorithm 1, which computes this
TT approximation.

If A1, . . . , Ad are Hurwitz and the imaginary parts of the eigenvalues of the Aj ’s are bounded
by µ

d , then the eigenvalues of A lie in a rectangle as required by the theorem above. Large
imaginary parts of the eigenvalues increases the µ and so the factor exp

(
2µλ−1

max/π
)
. Compared

with this large real parts of the eigenvalues only increase the length of Γ.

3. Conditioning the Problem. Up to this point we have always tackled the curse of di-
mensionality to make up a solver capable of solving the large tensor equations. A second and
similarly crucial issue when solving increasingly large linear systems is the conditioning of the
equation. The study of the condition will therefore be the focus of this section. We will generalize
some results that have been derived for Lyapunov equations (1.7) in [33]. The initial idea there is
to investigate the vectorized form (1.6) of equations (1.7), which coincides with (2.1) for d = 2. We
will follow the presentation there and show that it is a straight forward argumentation to extend
the results to d > 2.

To this end we recall Equations (2.3) and (2.4) and define A := {A1, A2, . . . , Ad}. It is then
obvious that

min
l
|λl(A)| = min

l1,...,ld

∣∣∣∣∣
d∑
k=1

λl(Ak)

∣∣∣∣∣ ≤
d∑
k=1

min
lk
|λlk(Ak)|. (3.1)

Now defining

mk = argmax
j∈{i=1,...,nk : Im (λi(Ak))≥0}

|λj(Ak)| (3.2)

and assuming that Ak is Hurwitz for all k = 1, . . . , d, we find

max
l
|λl(A)| ≥

∣∣∣∣∣
d∑
k=1

λmk
(Ak)

∣∣∣∣∣ ≥
∣∣∣∣∣
d∑
k=1

Re (λmk
(Ak))

∣∣∣∣∣ . (3.3)

12 T. Mach and J. Saak

Where the first inequality holds since we maximize only over a subset of {1, . . . , N}, where N

denotes the dimension of A given as N =
d∏
k=1

nk. The second one holds due to the fact that

we leave away the positive (by definition of the mk) imaginary parts. Note that we assume real
data, i.e., real matrices Ak and thus the restriction to the positive imaginary part eigenvalues is
no restriction since these come in pairs anyway. Our choice here guarantees that we pick the one
giving the larger result in the sum.

Furthermore, we can generalize the definition of the sep operator to

sep(A) := min
X

‖X ×1 A1 +X ×2 A2 + · · ·+X ×d Ad‖F
‖X‖F

= min
vec(X)

‖Avec(X)‖2
‖vec(X)‖2

,

and find that then we have∥∥A−1
∥∥−1

2
= σmin(A) = min

y

‖Ay‖2
‖y‖2

= sep(A). (3.4)

Here the first two equalities are the obvious consequences from the definitions and the last equality
follows immediately from the vectorization of the above definition.

Lemma 3.1. If all Ai, i = 1, . . . , d are normal, then also A is normal.
Proof. For d = 2 and A1 = A2 the proof directly follows from a result, e.g., in [15]. We present

the calculations for d = 3, the extension to large d is obvious.

AAT = (A3 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A1) (A3 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A1)
T

= (A3 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A1)
(
AT3 ⊗ I ⊗ I + I ⊗AT2 ⊗ I + I ⊗ I ⊗AT1

)
=
(
A3A

T
3 ⊗ II ⊗ II

)
+
(
A3I ⊗ IAT2 ⊗ II

)
+
(
A3I ⊗ II ⊗ IAT1

)
+
(
IAT3 ⊗A2I ⊗ II

)
+
(
II ⊗A2A

T
2 ⊗ II

)
+
(
II ⊗A2I ⊗ IAT1

)
+
(
IAT3 ⊗ II ⊗A1I

)
+
(
II ⊗ IAT2 ⊗A1I

)
+
(
II ⊗ II ⊗A1A

T
1

)
=
(
AT3 A3 ⊗ II ⊗ II

)
+
(
IA3 ⊗AT2 I ⊗ II

)
+
(
IA3 ⊗ II ⊗AT1 I

)
+
(
AT3 I ⊗ IA2 ⊗ II

)
+
(
II ⊗AT2 A2 ⊗ II

)
+
(
II ⊗ IA2 ⊗AT1 I

)
+
(
AT3 I ⊗ II ⊗ IA1

)
+
(
II ⊗AT2 I ⊗ IA1

)
+
(
II ⊗ II ⊗AT1 A1

)
= (A3 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A1)

T
(A3 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A1)

=ATA

Now for the normal case, i.e., all the Aj are normal and thus A is normal, we can just pull back
the 2-norm condition κ2(A) to the eigenvalues of the A matrix via

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2

=
σmax(A)

σmin(A)
=

max
l
|λl(A)|

min
l
|λl(A)|

∀i,j Ai=Aj
=

max
`u
|λ`u(A1)|

min
`l
|λ`l(A1)|

Note that this equality may only be helpful in the “Lyapunov” case, i.e., when all the Ak are the
same, since computing all eigenvalues of A from those of the Ak (k = 1, . . . , d) is an O(d · N)
operation.

Now allowing the non-normal case, we will derive computable bounds on the condition number.
We denote by T the set of normalized eigenvectors of A. We then find

σmax(A) = ‖A‖2 = sup
y∈RN

‖Ay‖2
‖y‖2

≥ sup
y∈T
‖Ay‖2 = max

l
|λl(A)|

σmin(A) = ‖A‖2 = sup
y∈RN

‖Ay‖2
‖y‖2

≤ sup
y∈T
‖Ay‖2 = min

l
|λl(A)|

Towards an ADI for Tensor Structured Equations 13

We have already noted in Remark 2.1 that Aj Hurwitz for all j = 1, . . . , d is sufficient for the
solubility of the tensor equation. Taking this assumption we establish the following proposition:

Theorem 3.2. Assume Aj Hurwitz for all j = 1, . . . , d, then the lower bound

κ2(A) ≥

d∑
k=1

Re (−λmk
(Ak))

d∑
k=1

min
lk
|λlk(Ak)|

,

with mk defined as in (3.2), holds for the 2-norm condition number of A.
Proof. Insert the above bounds on the singular values and the bounds (3.1), (3.3) into

κ2(A) =
σmax(A)

σmin(A)
, (3.5)

exploiting that all Aj are Hurwitz. Obviously we may underestimate the real condition number
by this bound. On the other hand it is as easily computable as the exact condition number in
the normal case. However, we can also give the strict condition number in very similar, although
practically non useful terms. Noting that we can express the maximal singular value of A in
analogous manner as the minimal one in (3.4) and using (3.5) we end up with

κ2(A) =

max
‖X‖F =1

‖A(X)‖F

sep(A)

The upper bound employs the logarithmic norms µ(Aj) (see [33] and references therein) of
the Aj matrices, which in case of the 2-norm reduces to

µ2(Aj) =
1

2
λmax(Aj +ATj).

Note that the logarithmic norm is not a real norm, since it is allowed to take negative values. The
upper bound to the 2-norm condition number is then given by

Theorem 3.3. Assume Aj ∈ Rnj×nj Hurwitz for all j = 1, . . . , d and thus µ(Aj) < 0 for all
j = 1, . . . , d. Then the 2-norm condition number for A is bounded from above by

κ2(A) ≤ −
2

d∑
k=1

σmax(Ak)

d∑
k=1

λmax(Ak +ATk)

≤ −
2 max

k
σmax(Ak)

min
k
λmax(Ak +ATk)

.

Proof. The upper bound for ‖A‖2 follows directly by applying the triangular inequality

‖A‖2 ≤
d∑
k=1

‖Ak‖2 =

d∑
k=1

σmax(Ak).

For the upper bound on
∥∥A−1

∥∥
2

analogous to [33] we consider the tensor equation

d∑
j=1

H ×j Aj = −I.

From Lemma 2.3 we know that the solution can be expressed as the integral

H =

∫ ∞
0

I ×1 exp(A1t)×2 · · · ×d exp(Adt)dt.

14 T. Mach and J. Saak

By definition of H and due to the fact that all Aj are Hurwitz, we have∥∥A−1
∥∥ = ‖H‖ ,

following the argumentation in [1]. Thus we only need to bound ‖H‖2 to get the desired bound
for
∥∥A−1

∥∥
2
. To get this we exploit that ‖exp(Ajt)‖2 ≤ exp(µ2(Aj)t) (from the defining propertiy

of µ2(Aj)) in

‖H‖2 ≤
∞∫

0

d∏
k=1

exp(µ2(Ak)t)dt ≤ − 1
d∑
k=1

µ2(Ak)

≤ − 2
d∑
k=1

λmax(Ak +ATk)

.

Insertion of the two estimates in

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2
,

completes the proof, since the second part of the bound is obvious. We conclude this section
with a remark about simplifications in the bounds for the case where all Aj are equal.

Corollary 3.4. Let A0 := A1 = A2 = · · · = Ad ∈ Rn×n be Hurwitz, then the upper and
lower bounds on the 2-norm condition number read

max
l

Re (−λl(A0))

min
l
|λl(A0)|

≤ κ2(A) ≤ − 2σmax(A0)

λmax(A0 +AT0)

Note that these are exactly the bounds derived in [33] for the Lyapunov equation.

4. Numerical Results. For the numerical computations we use the tensor train toolbox by
I.V. Oseledets [19]. We implement Algorithm 1 in MATLAB R©. We test the algorithm with the
d-dimensional variants of Example 1.1, where Aj = ∆1,h ∀j, B = [0, · · · , 0, 1]T . The relative norm
of the residual is computed by∥∥∆d,hX

(i) −B
∥∥

2∥∥∆d,hX(0) −B
∥∥

2

=

∥∥∆d,hX
(i) −B

∥∥
2

‖B‖2
=
∥∥∥∆d,hX

(i) −B
∥∥∥

2
,

since ‖B‖2 = 1.
We observe (see Figure 4.1) that the first iterates X have large TT-ranks. The solution X

has a low TT-rank property. In the first steps we are far away from the solution, thus we can not
expect that our iterates are of low rank. Since the accuracy of the result does not depend on the
truncation in the first steps, but on the truncation error in the last steps, it makes sense to allow
large truncation errors in the earlier steps, cf. [10]. In practice we observe a slight increase in
the number of iterations, but the first iterations become much cheaper, which reduces the overall
computation time.

We use the residual for the termination criterion, computing the residual with full accuracy of
10−15 in each step. We terminate the iteration once the residual drops below 10−9, even if the last
step was not done with the full accuracy. The results are listed in Table 4.1. Since these results
may depend on the randomly chosen shifts p, we do five runs and average. The last line represents
the solution of a linear system of dimension 10500× 10500. We observe that the computation time
grows like d3. The number of sweeps for large d is equal to 5. In each sweep we solve d equations.
For each of these equations we have to perform d − 1 updates for the computation of the right
hand side. Each of these updates has a complexity linear in d, such that the whole algorithm is
of cubic complexity in d.

Finally we compare our new algorithm with the existing ones in MATLAB. Therefore we use
the MATLAB operator backslash for the full system and the MATLAB function lyap as well as
the package M.E.S.S. [26] for the formulation as matrix equation.

We do not compare our method with the tensor-structured equation solvers from [5] and [13],
since such a comparison would only be fair if one used a good shift strategy. The shift strategy is
work in progress and we will report such a comparison as soon as possible.

Towards an ADI for Tensor Structured Equations 15

d t in s residual mean(#it)
2 0.3887 e+00 7.015 e−10 112.8
5 5.3975 e+00 7.467 e−10 45.8
8 6.0073 e+00 6.936 e−10 12.8

10 3.6624 e+00 7.685 e−10 6.8
15 7.1693 e+00 3.579 e−10 5.0
20 1.6102 e+01 2.716 e−10 5.0
25 3.1421 e+01 2.437 e−10 5.0
30 5.1158 e+01 3.293 e−10 5.0
40 1.1793 e+02 2.525 e−10 5.0
50 2.2682 e+02 2.049 e−10 5.0
75 7.1918 e+02 4.036 e−10 5.0

100 1.6997 e+03 1.864 e−10 5.0
150 5.5375 e+03 1.801 e−10 5.0
200 1.2795 e+04 1.472 e−10 5.0
250 2.4991 e+04 1.816 e−10 5.0
300 4.2979 e+04 2.535 e−10 5.0
500 1.9515 e+05 2.039 e−10 5.0

Table 4.1
Numerical results, 10 inner discretizations points per direction.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20,000

40,000

60,000

80,000

1 · 105

Iteration

S
to

ra
ge

constant truncation error
tightened truncation error

10−20

10−15

10−10

10−5

100

T
ru

n
ca

ti
o
n

E
rr

o
r
ε i

Fig. 4.1. Memory (left axis, solid line) used for X(i) depending on the truncation error εi (right axis, dashed
line).

5. Conclusions. We have presented a generalization of the alternating direction implicit
iteration to higher dimensions. We computed an approximation of the solution X in tensor train
format. The existence of such an approximation was proven by a generalization of a theorem by
L. Grasedyck for right hand sides and solution of low Kronecker rank to low tensor train rank.

In Theorem 2.2 we prove the convergence of the generalized ADI iteration. We present first
ideas for shift strategies, which are tested in a first numerical experiment. The numerical example
showed that the ADI iteration is of cubic complexity in d. For large d the method is much cheaper
than the matrix equation solvers.

The generalization of results regarding the condition number of matrix equations leads to
similar results for the tensor structured equation. In the Lyapunov case we even get exactly the
same results, i.e., the conditioning of the problem is dimension independent.

It is of high interest to generalize the method further. First, one may investigate the effects

16 T. Mach and J. Saak

n = 10
d Tensor-ADI sparse backslash sparse MESS (Penzl shifts) dense backslash lyap
2 0.3100 0.0006 0.0240 (0.0028) 0.0003 0.0005
4 3.1304 0.1695 0.0109 (0.0492) 6.3308 0.0124
6 8.1469 out of memory 0.0758 (0.0937) out of memory 7.1645
8 5.4582 out of memory 5.8634 (1.0972) out of memory 13698.2117

10 5.3060 out of memory 3445.5234 (249.4638) out of memory out of time
n = 15
d Tensor-ADI sparse backslash sparse MESS (Penzl shifts) dense backslash lyap
2 0.7999 0.0038 0.0638 (0.0767) 0.0538 0.0990
4 8.4896 4.9191 0.0167 (0.0567) out of memory 0.0811
6 13.5902 out of memory 0.3852 (0.2642) out of memory 345.1757
8 7.5854 out of memory 217.3529 (18.5596) out of memory out of time

Table 4.2
Computation time in s for our new algorithm and MATLAB functions.

of a coefficient matrix expanded by a summand N ⊗N ⊗ · · · ⊗N . Such a term would be related
to convection in our model problem.

Further, the investigation of more sophisticated shift strategies adapting the ideas of Penzl
and Wachspress may lead to a more efficient method.

REFERENCES

[1] R. Bathia, A note on the Lyapunov equation, Linear Algebra Appl., 259 (1997), pp. 71–76.
[2] P. Benner, H. Mena, and J. Saak, On the parameter selection problem in the Newton-ADI iteration for

large-scale Riccati equations, Electr. Trans. Num. Anal., 29 (2008).
[3] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-(r1, r2, . . . , rN) approx-

imation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324–1342.
[4] S. Dolgov and I. V. Oseledets, Solution of linear systens and matrix inversion in the TT-format, Preprint

2011-19, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, May 2011. Available
at www.mis.mpg.de/preprints/2011/preprint2011 19.pdf.

[5] L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large linear systems of
tensor product structure, Computing, 72 (2004), pp. 247–265.

[6] , Existence of a low rank or H-matrix approximant to the solution of a Sylvester equation, Numer. Lin.
Alg. Appl., 11 (2004), pp. 371–389.

[7] , Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2029–
2054.

[8] L. Grasedyck, W. Hackbusch, and B. Khoromskij, Solution of large scale algebraic matrix Riccati equa-
tions by use of hierarchical matrices, Computing, 70 (2003), pp. 121–165.

[9] W. Hackbusch, Hierarchische Matrizen. Algorithmen und Analysis, Springer-Verlag, Berlin, 2009.
[10] W. Hackbusch, B. Khoromskij, and E. E. Tyrtyshnikov, Approximate iterations for structured matrices,

Numer. Math., 109 (2008), pp. 365–383.
[11] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.
[12] R. Hübener, V. Nebendahl, and W. Dür, Concatenated tensor network states, New Journal of Physics, 12

(2010), p. 025004.
[13] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor product structure,

SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688–1714.
[14] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Orlando, 2nd ed., 1985.
[15] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Control, AC-24

(1979), pp. 913–921.
[16] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations, in Finite difference

methods for ordinary and partial differential equations : steady-state and time-dependent problems,
SIAM, Philadelphia, PA, 2007.

[17] J.-R. Li and J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24 (2002),
pp. 260–280.

[18] I. V. Oseledets, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2130–2145.

[19] , TT-toolbox 2.1. http://spring.inm.ras.ru/osel/, 2011.
[20] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality or how to use SVD in many

Towards an ADI for Tensor Structured Equations 17

dimensions, SIAM J. Sci. Comput., 31 (2009), pp. 3744–3759.
[21] , Tensor tree decomposition does not need a tree, Preprint 2009-09, Russian Academy of Sci-

ences - Institute of Numerical Mathematic, Russian Academy of Sciences, Sept. 2009. Available at
http://pub.inm.ras.ru/pub/inmras2009-08.pdf.

[22] , TT-cross approximation for multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70–88.
[23] D. Peaceman and H. Rachford, The numerical solution of elliptic and parabolic differential equations, J.

Soc. Indust. Appl. Math., 3 (1955), pp. 28–41.
[24] T. Penzl, A cyclic low rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21

(2000), pp. 1401–1418.
[25] , Lyapack Users Guide, Tech. Rep. SFB393/00-33, Sonderforschungsbereich 393 Numerische Simula-

tion auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, Germany, 2000. Available from
http://www.tu-chemnitz.de/sfb393/sfb00pr.html.

[26] J. Saak, M. Köhler, P. Kürschner, H. Mena, and P. Benner, M.E.S.S. matrix equations sparse solvers
library 1.0. http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/wiki/, 2011. in preparation.

[27] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified Smith
Method, PhD thesis, Rice University, Houston, Texas, June 2007. available from:
http://www.caam.rice.edu/tech reports/2006/TR06-08.pdf.

[28] F. Stenger, Numerical methods based on Sinc and analytic functions, Springer, 1993.
[29] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980. 2nd

printing 1983.
[30] E. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Letters, 107 (1988), pp. 87–

90.
[31] , The ADI model problem, 1995. Available from the author.
[32] , ADI iteration parameters for the Sylvester equation, 2000. Available from the author.
[33] Y. Zhou, Numerical Methods for Large Scale Matrix Equations with Applications in LTI System Model

Reduction, PhD thesis, Rice University, Houston, Texas, May 2002.

