
Peter Benner Patrick Kürschner Jens Saak

A Goal-Oriented Dual LRCF-ADI for

Balanced Truncation

FÜR DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Max Planck Institute Magdeburg

Preprints

MPIMD/12-01 January 5, 2012

Impressum:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for Dynamics of Complex
Technical Systems

Address:
Max Planck Institute for Dynamics of
Complex Technical Systems
Sandtorstr. 1
39106 Magdeburg

www.mpi-magdeburg.mpg.de/preprints

Max Planck Institute Magdeburg

Preprints

Peter Benner Patrick Kürschner Jens Saak

A Goal-Oriented Dual LRCF-ADI for

Balanced Truncation

MPIMD/12-01 January 5, 2012

FÜR DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Abstract

In this contribution we propose a novel dual Lyapunov solver that computes low
rank factors of the reachability and observability Gramians of a control system
simultaneously. This is especially helpful in balanced truncation model order
reduction applications, where the singular values of the product of these Gramian
factors are the basis of the truncation process. For stopping the dual iteration
scheme we therefore propose a tailored stopping criterion aiming at the accurate
computation of these singular values.

Contents

1. Introduction 1

2. Balanced Truncation for Generalized Linear Time Invariant Systems 1

3. Cross-Gramian and Approximate Invariant Subspace Approaches 2

4. Low Rank Gramian Factors and the Dual ADI Idea 3
4.1. Low Rank ADI for the Gramian Factors 4
4.2. Efficient implementation of the dual ADI iteration 4
4.3. Stopping the Dual Iteration . 4
4.4. Convergence of the Hankel Singular Values 6
4.5. Acceleration of the Algorithm . 6

5. Numerical Experiments 7
5.1. Rail Model . 8
5.2. BIPS07 1693 . 9

6. Conclusions 11

A. A Sample MATLAB Implementation 13

Author’s addresses:

Peter Benner / Patrick Kürschner / Jens Saak
Computational Methods in Systems and Control Theory, Max Planck Institute
for Dynamics of Complex Technical Systems,
Sandtorstr. 1,
39106 Magdeburg, Germany,
({benner,kuerschner,saak}@mpi-magdeburg.mpg.de)

1. Introduction

Balanced truncation (BT) introduced by [11] has shown to be a reliable method for
model order reduction (MOR) (see, e.g., [2]). The basic idea is to compute the reach-
ability and observability Gramians of a linear system from which information on the
dominant states to be preserved in the reduced order model (ROM) can be extracted.
It is especially attractive when the reduced order model has to be of a certain quality
since it features a computable a priori error bound. This is especially true for small to
medium size systems. There the dense storage of the system is possible and compu-
tation of the two system Gramians is still feasible using classical direct methods with
O(n3) complexity. For large and very large systems that can only be stored in sparse
or data sparse formats, the Gramians are usually approximated by low rank or data
sparse representations. Here we focus on the sparse case and thus on low rank repre-
sentations of the Gramians. There are several methods in the literature for computing
the low rank Gramians as the factorizations of the solutions of the reachability and
observability Lyapunov equations. The low rank Cholesky factor alternating directions
implicit (LRCF-ADI) iteration (see, e.g., [10, 4]), is one of the most efficient and most
deeply investigated among these methods.

The most crucial question in iterative methods in general is when to stop the it-
eration and accept the accuracy of the current iterate. In the special case at hand
this is even more crucial. The residual, whose smallness is often used as a stopping
criterion in iterative methods, is a dense square matrix and thus not computable itself.
Norms of the residual can however be computed or approximated without forming the
residual explicitly. Still these computations easily become as expensive as the actual
iteration step. To make it even worse, observations in practical examples show that
the two Lyapunov residuals do not directly relate to the accuracy of the reduced order
model.

In this contribution we therefore propose a more goal oriented stopping criterion. In
the case of balanced truncation the actual properties of interest are the Hankel singular
values of the system since these are applied as the basis of the truncation. We develop
a dual ADI iteration that solves the two dual Lyapunov equations simultaneously and
stops as soon as the Hankel singular values are found to the desired accuracy.

2. Balanced Truncation for Generalized Linear Time
Invariant Systems

Consider the system

Eẋ(t) = Ax(t) +Bu(t), (1)

y(t) = Cx(t), (2)

where E,A ∈ Rn×n, E is (for ease of presentation) assumed to be invertible and the
pencil has only stable eigenvalues, i.e., the system is asymptotically stable.

In BT-MOR the main task is to solve the generalized reachability and observability
Lyapunov equations

APET + EPAT = −BBT , (3)

ATQE + ETQA = −CTC. (4)

As the system is assumed to be stable and thus P and Q are positive (semi-)definite,
there exist Cholesky(-like) factorizations P = STS and Q = RTR. In the so-called
square-root balanced truncation (SRBT) algorithms introduced by [13, 9], these are
used to define the projection matrices

Tl := Σ
− 1

2
1 UT1 R

T (5)

and Tr := SV1Σ
− 1

2
1 (6)

determining the reduced order model as

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), (7)

ŷ(t) = Ĉx̂(t), (8)

with

Ê := TlETr, Â := TlATr, B̂ := TlB and Ĉ := CTr.

The matrices Σ
− 1

2
1 , U1 and V1 in equations (5), (6) are determined via the singular

value decomposition

RTES = UΣV T =
[
U1U2

] [Σ1 0
0 Σ2

] [
V T1
V T2

]
, (9)

with decreasingly ordered singular values – the Hankel singular values of the system.
Note that in case E is symmetric positive definite (e.g. a finite element mass

matrix) we compute the transformation matrices Tl, Tr with respect to the inner
product induced by E. In fact by construction of the transformation we always get
Ê = TlETr = I if E is invertible.

3. Cross-Gramian and Approximate Invariant Subspace
Approaches

The computation of the Gramian factors in (9) is a computationally expensive and
challenging task. In this section we will review two possible approaches to reduce the
computational complexity discussed in the literature. The Cross-Gramian approach
is especially useful in the case of a symmetric system, i.e., A = AT . There it can be
shown that for the solution X of the equation

ÃX +XÃ = −B̃C̃, (10)

2

one has X2 = P̃ Q̃. Here Ã := E−1C AE−TC , B̃ := E−1C B and C̃ := CE−TC for EC a
Cholesky factor of E. In turn for the Hankel singular values we find σi = |λi(X)| (see,
e.g., [5, 6]). Thus, replacing the SVD in (9) by the computation of bi-orthogonal bases
of the dominant eigenspaces of X, one can proceed as above (cf. [1]). The obvious
advantage is that only one matrix equation needs to be solved. On the other hand we
have a very restricted applicability. The number of inputs and outputs to the system
have to coincide and the system needs to be symmetric, or a symmetrizer has to exist
which is usually non trivial to find, especially numerically.

A second approach that tries to circumvent the necessity for a symmetrizer, but
keeps the idea of approximating the dominant eigenspaces is due to [14]. The approx-
imate implicit subspace iteration with alternating directions (AISIAD) successively
computes invariant subspaces of P and Q and uses the subspace for P to reduce the
amount of computations in the next step for Q and vice versa. The key ingredient in
the efficiency improvement is to transform the two Lyapunov equations in (3), (4) into
specially structured Sylvester equations. Here we show this for equation (3)

APVi + PViV
T
i A

TVi +Mi +BBTVi = 0. (11)

The coefficient matrix in the first term stays untouched, whereas the one in the second
term is transformed into a small and dense matrix HT

i := V Ti A
TVi. The matrix

Mi := P (I − ViV
T
i)ATVi needs to be approximated efficiently in this framework.

These resulting equations of the form

AX +XH +M = 0

can then be solved by an implicitly-restarted block Arnoldi iteration as in [14], or using
a combination of sparse direct solvers for A and dense techniques for the small and
dense matrix H following [3].

Our approach is more closely related to the balanced truncation idea. We stick with
the computation of the Gramian factors but replace them by low rank factors and
exploit that the two Lyapunov equations are dual to each other to decrease the amount
of computations taken. This approach will be presented in the following section.

4. Low Rank Gramian Factors and the Dual ADI Idea

In the case of large and sparse systems with B ∈ Rn×m, C ∈ Rp×n and m, p � n,
computing the triangular Cholesky factors S ∈ Rn×n and R ∈ Rn×n is infeasible due to
memory and complexity limitations. They are replaced by low rank Cholesky factors,
i.e., S ∈ Rn×kS and R ∈ Rn×kR exploiting the usually very low (numerical) rank of
the Gramians in this case.

3

4.1. Low Rank ADI for the Gramian Factors

The factors are computed by a low rank Lyapunov equation solver. We are here
focusing on the variant of LRCF-ADI (e.g., [12]) successively computing S as in

V1 = α1 (A+ p1E)
−1
B,

S1 = V1,

Vi = αi

[
I − (pi + pi−1) (A+ piE)

−1
]
EVi−1,

Si = [Si−1, Vi] .

(12)

For R this translates to

W1 = α1

(
AT + p1E

T
)−1

C,

R1 = W1,

Wi = αi

[
I − (pi + pi−1)

(
AT + piE

T
)−1]

ETWi−1,

Ri = [Si−1,Wi] .

(13)

Here α1 =
√
−2 Re (p1) and αi =

√
Re (pi)

Re (pi−1)
for i ≥ 2. When applying sparse direct

solvers to the linear system solves, the LU decomposition

(A+ pkE) = LkUk, (14)

is the by far most time consuming step.

4.2. Efficient implementation of the dual ADI iteration

Now rewriting the inverses in (13) in the form

(A+ pkE)−1 = (A+ pkE)−T ,

we observe that the LU factorization (14) can be reused in the triangular solves for
the dual equation. On the first glimpse the pk here is a problem. However if we keep
in mind that a proper set of shift parameters consists of pairs of complex conjugate
shifts applied one after the other, we immediately see that reusing (14) only switches
the order of the complex pairs of shifts in the dual equation. So we can do the cheap
forward-backward-solves with the same triangular factors as in (13). Thus we can
efficiently formulate a dual iteration simultaneously computing both low rank Gramian
factors as presented in Algorithm 1.

4.3. Stopping the Dual Iteration

Usually criteria like the normalized residual

resk(Sk) = γ−1‖ASkSTk ET + ESkS
T
k A

T +BBT ‖2, (15)

4

Algorithm 1 The dual low rank ADI iteration

Input: E, A, B, C from (1) and a proper set of shifts pk ∈ C−, k = 1, . . . , maxiter
Output: S, R ensuring good approximation of Σ1 in (9).

[L,U] = lu(A+ p1E)
V1 =

√
−2 Re (p1)U−1L−1B

W1 = α1L
−TU−TCT

S1 = V1
R1 = W1

for i = 2, . . . , maxiter do
[L,U] = lu(A+ piE)

αi =
√

Re (pi)
Re (pi−1)

Vi = αi
(
Vi−1 − (pi + pi−1)U−1L−1(EVi−1)

)
Wi = αi

(
Wi−1 − (pi + pi−1)L−TU−T (ETWi−1)

)
Si = [Si−1, Vi]
Ri = [Ri−1,Wi]
if converged then

STOP
end if

end for

with γ = ‖BBT ‖2 or γ = ‖BBT ‖2 + ‖E‖2‖A‖2‖Z‖22, or the relative change of the
factor

rc(Sk) =
‖Vk‖F
‖Sk‖F

, (16)

are employed to stop the iterations in (12) and (13). While the relative change
can cheaply be accumulated, the residual is usually expensive to compute. In many
examples the evaluation of the stopping criterion is therefore almost as expensive as
the actual iteration step.

Besides that, the residual of the Lyapunov equations often is totally unrelated to the
accuracy of the reduced order model that we are actually interested in. That means in
practice we have observed very good reduced order model accuracies, even when the
ADI did not converge at all. On the other hand we have seen examples where one of
the ADI iterations converged very much faster than the other one. Since the upper
limit to the reduced order model is the smaller of the two column dimensions of S
and R, this can limit the accuracy of the reduced order model and prevent us from
fulfilling prescribed error bounds.

Our novel idea to overcome these issues in the dual ADI process is to completely skip
classical stopping criteria and use something more problem oriented. The actual prop-
erties of interest in the square root method for balanced truncation are the Hankel
singular values of the original system. To be precise we want to capture the lead-
ing Hankel singular values as accurate as possible since these describe the dominant
dynamics of the system and thus need to be reflected in the reduced order model.

Let us for the time being assume we are searching for a fixed order (say r ∈ N)

5

reduced order model. The two Gramian factors can be employed to compute (9) during
the iteration since we compute them simultaneously anyway. Now we can monitor the
change of the leading r singular values in Σ1. Once these singular values stagnate we
have matched the corresponding subsystem and thus get a good reduced order model
evaluating (7). This way we find a reliable criterion when to stop the iteration in
contrast to the residual that may not tell us anything about the approximation. Note
that in finite arithmetic it is sufficient to drive the relative change of the leading Hankel
singular values below a certain tolerance. Here relative is to be understood as relative
to the largest singular value. For example, for the tolerance equal to machine precision
it does not make sense to compute the small singular values more exactly since due to
rounding the contribution of the further digits will not be seen in the results anyway.

To increase the efficiency of the implementation even further we can use a start up
phase in which we do not evaluate the stopping criterion at all. This phase is pre-
determinated by the size of the matrices B and C. It should at least be running as
long as S and R do not have a minimum of r linearly independent columns each.

4.4. Convergence of the Hankel Singular Values

The quantitative analysis of the convergence of the Hankel singular values is still under
investigation. However here we want to report the basic qualitative ideas to motivate
the stopping criterion above. From the practitioners point of view it is obvious that
the criterion is the right thing to look at if the Hankel singular values converge. Now
we want to show that at least we can expect them to do so and give a qualitative
explanation for the observation that the leading ones converge from below to the
actual Hankel singular values of the original system while we increase the dimension
of the subspaces spanned by the columns of R and S. For ease of representation we
assume E = I in the following. From (9) we know that the Hankel singular values
correspond to the singular values of M := SRT . Clearly we have that

σi(M) =
√
λi(MTM) =

√
λi(PQ),

for i = 1, . . . , n, i.e., computing the Hankel singular values is equivalent to the sym-
metric eigenvalue problem for MTM . Applying a Krylov subspace method to the
symmetric eigenvalue problem we know that the Ritz values converge from the inside
of the spectrum to the eigenvalues, since they are found as Rayleigh quotients that
have to lie between the real eigenvalues due to their interlacing property ([8]). Now
noting that the ADI iteration in fact forms rational Krylov subspaces (see, e.g., [10])
with respect to A and B, or AT and CT , forming the columns of the Gramian factors it
is clear that the leading Hankel singular values are approximated from below, whereas
the smallest ones converge from above.

4.5. Acceleration of the Algorithm

If the matrices forming the system are badly conditioned the iteration may produce
Gramian factors whose numerical rank is smaller than the actual number of columns

6

due to rounding errors. Then the SVDs computed in the evaluation of the stopping
criterion become considerably larger than required, as well. Here the column compres-
sion proposed, e.g., in [12] can help to further reduce the execution time. The SVD
for the matrix SRT is a dense O(ñ3) operation, where ñ is the leading dimension of
the Gramian factor product in (9), i.e., the larger of the two column numbers. Now
applying column compression to R and S such that the resulting compressed factors
have a number of columns equal to their ranks we can minimize ñ which can give a
strong runtime reduction due to the cubic effort in the SVD. Note that this will only
pay off if the number of columns is considerably larger than the actual numerical rank.
Otherwise the additional work for the compression may not be compensated by the
gain from the reduction of ñ.

5. Numerical Experiments

The numerical experiments reported in this section have been generated on a Dell
Precision Workstation with:

� CPU: 2x Intel®Xeon®W3503 @ 2.40GHz

� Cache: 4MB

� RAM: 6GB

� OS: Ubuntu Linux 10.04LTS

� 32bit kernel 2.6.32-25-generic-pae

� MATLAB® 7.11.0 (R2010b)

Note that MATLAB in this setting can only use 2GB of the main memory due to the
32bit limit.

We investigate two test examples. The first is the Semi-discretized Heat Transfer
Problem for Optimal Cooling of Steel Profiles from the Oberwolfach benchmark col-
lection for model reduction1. To be able to compute the Hankel singular values with
classical dense methods we use the version with n = 1357 degrees of freedom. The
model has 7 inputs and 6 outputs and is of the form (1). We will in the following
shortly use rail model to refer to this example.

The other example requires some additional implementation work. We consider the
BIPS07 16932 model introduced in [7]. This model is of the form (1) as well, but
with an E matrix that is singular. Thus we have to deal with a differential algebraic
equation in this case. Fortunately the block in A corresponding to the nullspace of E
is theoretically invertible and thus the model is of index 1. In [7] the authors showed
how the low rank ADI can be extended to such equations efficiently. Since the SVD
in (9) stays essentially the same, the stopping criterion proposed in Section 4.3 can

1http://simulation.uni-freiburg.de/benchmark
2http://sites.google.com/site/rommes/software

7

5 10 15 20 25 30 35 40 45 50

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

i

σ
i

Leading 52 Hankel singular values

Original

9 steps

12 steps

15 steps

20 steps

Figure 1: Hankel singular values for several low rank Gramian approximations after
certain numbers of dual ADI iteration steps.

directly be applied there, too. Also the extension of the dual ADI formulation is
straight forward. The model has 4 inputs and 4 outputs. We have explicitly stated
that the A22 block is theoretically invertible since it shows to have a gigantic condition
number. We chose this example to show the robustness of the Hankel singular value
convergence to such bad conditioning of the model. The model is of order 13 275 but
the Schur complement formulation erasing the algebraic constraints is of order 1693
only.

Both examples are of a size that allows the computation of the Hankel singular
values by a classical dense approach. We will refer to the singular values resulting
from these computations as the original Hankel singular values.

5.1. Rail Model

Figures 1 and 2 report on the rail model. We nicely see the approximation of the
Hankel singular values from below. Especially we see that after only 20 dual ADI
steps we can no longer distinguish the original and approximate values in the eyeball
norm.

To show how fast the singular values converge we plotted the relative change of the
leading values up to iteration 61. Here the process stopped since the largest relative
change already dropped below machine precision. Another effect that is often observed
can also be seen. The convergence is not monotone. We clearly see that for some values

8

10 20 30 40 50
10−19

10−16

10−13

10−10

10−7

10−4

i

‖σ
−
σ
(
o
ld

)
‖

σ
1

Relative change of Hankel singular values

12 steps

15 steps

20 steps

30 steps

40 steps

50 steps

61 steps

Figure 2: relative change in Hankel singular values after different numbers of dual ADI
iterations

the relative change in step 20 is even larger than in step 15. This is due to the different
influences of the shift parameters in the ADI process. A good shift may give a better
contribution to the error reduction than a bad one. Then again if the error is more
drastically reduced in some steps, the relative change may be larger than in steps
where the contribution of the shift is fairly poor.

5.2. BIPS07 1693

For the BIPS model we investigate some more things. In Figure 3 we repeat the
test from the previous section. Obviously the convergence here is a lot slower. This
is due to several facts. First of all we already mentioned the very bad conditioning
of the A22 block, but additionally this system is very close to instability making it
especially tough for any Lyapunov equation solver, since the Lyapunov operator is
close to singular itself.

A second observation is the bad reliability of residuals in combination with balanced
truncation. Figure 4 clearly shows that residuals would have told us to stop the
iteration after roughly 30 steps due to stagnation. This compares to the circles in
Figure 3, where we see that not even one of the singular values is matched. Note that
the relative model reduction error is smaller than 10% for a wide range of frequencies
anyway.

Finally we report on the speedups possible by our approach in the Table 1.

9

5 10 15 20 25 30

10−1

100

101

102

i

σ
i

Leading 32 Hankel Singular Values

S-LRCF-ADI(81)

dual-S-LRCF-ADI(81)

Original

S-LRCF-ADI(250)

S-LRCF-ADI(30)

Figure 3: Hankel singular values for several low rank Gramian approximations

maxiter 50 75 100 125

tdual 2.87 4.60 7.15 10.13
tS-LRCF-ADI 24.12 33.14 43.71 54.17

speedup 8.42 7.21 6.11 5.35

change HSV 1.150 e-01 6.740 e-02 6.229 e-02 5.884 e-02
final res. B 5.714 e-09 1.344 e-09 6.134 e-10 1.250 e-10
final res. C 2.004 e-03 2.359 e-03 2.368 e-03 2.341 e-03

150 175 200 225 250

14.88 19.67 32.93 38.57 52.98
66.27 85.23 90.51 102.5 112.7

4.45 4.33 2.75 2.65 2.13

5.839 e-02 5.820 e-02 5.815 e-02 5.812 e-02 5.811 e-02
1.440 e-10 9.196 e-11 9.461 e-10 9.259 e-11 2.049 e-11
2.334 e-03 2.332 e-03 2.331 e-03 2.331 e-03 2.331 e-03

Table 1: Execution time (in s) comparison for the dual and the two single iterations.

10

0 10 20 30 40 50 60 70 80
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

niter

re
s/

re
s 0

Residual history for S-LRCF-ADI

P
Q

Figure 4: Residual history over the first 80 iterations.

Again we observe that residuals do not tell us the truth about the actual convergence
of the subsystems we want to match. The change of Hankel singular values stays at
an almost constant level implying that we are still converging whereas the residuals
stagnate, telling that we do not add any essential information regarding the Lyapunov
solution. The bad news here is that the increasing cost of the SVD computations kills
the performance gain when the iteration has to run for many steps and thus the matrix
in the SVD gets large.

6. Conclusions

We have seen that tackling the two dual Lyapunov equations simultaneously can give
a considerable speedup in the computation time. This is especially due to the ability
to use problem tailored stopping criteria that may be much more efficient to compute
than the Lyapunov residuals. Also we have seen that this way we can highly increase
the reliability of when to stop the iteration. The main recommendation resulting from
this contribution is therefore to use tailored stopping criteria in any application where
it is possible when working with low rank Lyapunov solution factors.

11

References

[1] R. Aldhaheri, Model order reduction via real Schur-form decomposition, Inter-
nat. J. Control, 53 (1991), pp. 709–716.

[2] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM Pub-
lications, Philadelphia, PA, 2005.

[3] P. Benner, M. Köhler, and J. Saak, Sparse-dense sylvester equations in H2-
model order reduction., Tech. Rep. MPIMD/11-11, Max Planck Institute Magde-
burg Preprints, December 2011. submitted to Journal of computational and Ap-
plied Mathematics.

[4] P. Benner, J.-R. Li, and T. Penzl, Numerical solution of large Lyapunov
equations, Riccati equations, and linear-quadratic control problems, Numer. Lin.
Alg. Appl., 15 (2008), pp. 755–777.

[5] K. Fernando and H. Nicholson, On a fundamental property of the cross-
Gramian matrix, IEEE Trans. Circuits Syst., CAS-31 (1984), pp. 504–505.

[6] , On the structure of balanced and other principal representations of linear
systems, IEEE Trans. Automat. Control, AC-28 (1984), pp. 228–231.

[7] F. Freitas, J. Rommes, and N. Martins, Gramian-based reduction method
applied to large sparse power system descriptor models, IEEE Trans. Power Sys-
tems, 23 (2008), pp. 1258–1270.

[8] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, third ed., 1996.

[9] A. J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward, Computation of
system balancing transformations and other applications of simultaneous diago-
nalization algorithms., IEEE Trans. Autom. Control, 32 (1987), pp. 115–122.

[10] J.-R. Li, Model Reduction of Large Linear Systems via Low Rank System Grami-
ans, PhD thesis, Massachusettes Institute of Technology, September 2000.

[11] B. C. Moore, Principal component analysis in linear systems: controllability,
observability, and model reduction, IEEE Trans. Automat. Control, AC-26 (1981),
pp. 17–32.

[12] J. Saak, Efficient Numerical Solution of Large Scale Algebraic Matrix Equa-
tions in PDE Control and Model Order Reduction, PhD thesis, TU Chem-
nitz, July 2009. Available from http://nbn-resolving.de/urn:nbn:de:bsz:

ch1-200901642.

[13] M. Tombs and I. Postlethwaite, Truncated balanced realization of a stable
non-minimal state-space system, Internat. J. Control, 46 (1987), pp. 1319–1330.

12

[14] Y. Zhou and D. C. Sorensen, Approximate implicit subspace iteration with
alternating directions for LTI system model reduction, Numer. Lin. Alg. Appl., 15
(2008), pp. 873–886. DOI: 10.1002/nla.602.

A. A Sample MATLAB Implementation

The following code listing represents the generalized case. The implementation for
the standard case can be achieved by setting M = I. An efficient implementation
should however replace M in the code to avoid unnecessary multiplications by the
identity matrix saving (kg + kh + zg + zh) ∗ n flops in each iteration. Here kg, kh
are the number of columns and rows in G and H respectively and zg, zh are the
corresponding dimensions in the computed low rank factors ZG and ZH.

function [ZG,ZH,sd,niter]=lrcf g adi dual bt(...
F,M,G,H,p,maxiter,rtol,k,issym, verb)

% function [ZG,ZH,resg,resh,niter] =
% lrcf adi r dual(F,G,p,maxiter,rtol,k
% ,issym)
%
% Generate low rank matrices ZG, ZH such that
% P=ZG*ZG.', Q=ZH*ZH.' solve the Lyapunov equations:
%
% F*P*M' + M*P*F' = −G*G' (1)
% F'*Q*M + M*Q*F = −H'*H (2)
%
% The function implements the low rank Cholesky
% factor ADI method as proposed by
% Benner/Li/Penzl[1] (Algorithm 3) extended to the
% case of generalized systems taking M (invertible)
% instead of M=I.
%
% Inputs:
% F,M,G,H The matrices F,G,H in (1), (2).
% p a vector of shift parameters
% maxiter maximum iteration number.
% rtol tolerance for the residual norm based
% stopping criterion
% k desired reduced model order
% issym symmetrie flag for the operator F
%
% Outputs:
% ZG,ZH The solution factors of P and Q in
% (1) or (2) respectively.
% sd the vector of relativ changes in HSVs.
% niter the number of iteration steps taken

% input parameters not checked!

n=size(F,1);

sigma=ones(k,1);
sigmadiff=1;

13

sd=zeros(2,maxiter);

kg=size(G,2);
kh=size(H,1);
l=length(p);

V1G=zeros(n,kg);
V1H=zeros(n,kh);

pc=p(1);

if issym
V1=sqrt(−2*real(pc))*((F+pc*M)\[G H']);
ZG=V1(:,1:kg);
ZH=V1(:,kg+1:kg+kh);

else
[LS,US,pa,qa]=lu(F+pc*M,'vector');
y=LS\G(pa,:);
z(qa,:)=US\(y);
V1G=sqrt(−2*real(pc))*z;
y=US.'\(H(:,qa)');
z=[];
z(pa,:)=LS.'\(y);
V1H=sqrt(−2*real(pc))*z;
ZG=V1G;
ZH=V1H;

end

for i=2:maxiter
ip=mod(i+l−1,l)+1; pp=pc; pc=p(ip);
if issym

V1=sqrt(real(pc)/real(pp))*(V1 ...
−(pc+conj(pp))*((F+pc*M)\(M*V1)));

ZG=[ZG V1(:,1:kg)];
ZH=[ZH V1(:,kg+1:kg+kh)];

else
[LS,US,pa,qa]=lu(F+pc*M,'vector');

rhsG=M*V1G;
y = LS\(rhsG(pa,:));
z=[];
z(qa,:) = US\(y);
V1G=sqrt(real(pc)/real(pp))*(V1G ...

−(pc+conj(pp))*z);
ZG=[ZG V1G];

rhsH=M'*V1H;
y=US.'\rhsH(qa,:);
z=[];
z(pa,:)= LS.'\(y);
V1H=sqrt(real(pc)/real(pp))*(V1H ...

−(pc+conj(pp))*z);
ZH=[ZH V1H];

end

14

if size(ZH,2)≥k && size(ZG,2)≥k
sigmaold = sigma;
sigma = svd(ZH'*(M*ZG));
sigma = sigma(1:k);
sigmadiff = abs(sigma−sigmaold)/sigma(1);
sd(1,i)=max(sigmadiff);
sd(2,i)=min(sigmadiff);

end

if max(sigmadiff)<rtol, break; end

end

niter=i;
sd=sd(:,1:niter);

15

Max Planck Institute Magdeburg Preprints

