
Peter Benner Pablo Ezzatti Enrique S. Quintana-Ort́ı

Alfredo Remón

Matrix Inversion on CPU-GPU Platforms

with Applications in Control Theory

FÜR DYNAMIK KOMPLEXER
TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Max Planck Institute Magdeburg

Preprints

MPIMD/12-02 February 1, 2012

Impressum:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for Dynamics of Complex

Technical Systems

Address:
Max Planck Institute for Dynamics of

Complex Technical Systems

Sandtorstr. 1

39106 Magdeburg

www.mpi-magdeburg.mpg.de/preprints

Matrix Inversion on CPU-GPU
Platforms with Applications in Control

Theory ∗

Peter Benner† Pablo Ezzatti‡

Enrique S. Quintana-Ort́ı§ Alfredo Remón¶

February 1, 2012

Abstract

In this paper we tackle the inversion of large-scale dense matrices via con-
ventional matrix factorizations (LU, Cholesky, LDL

T) and the Gauss-Jordan
method on hybrid platforms consisting of a multi-core CPU and a many-core
graphics processor (GPU). Specifically, we introduce the different matrix in-
version algorithms using a unified framework based on the notation from the
FLAME project; we develop hybrid implementations for those matrix operations
underlying the algorithms, alternative to those in existing libraries for single-
GPU systems; and we perform an extensive experimental study on a platform
equipped with state-of-the-art general-purpose architectures from Intel and a
“Fermi” GPU from NVIDIA that exposes the efficiency of the different inver-
sion approaches. Our study and experimental results show the simplicity and
performance advantage of the GJE-based inversion methods, and the difficulties
associated with the symmetric indefinite case.

Keywords: Matrix inversion, matrix equations, dense linear algebra, control theory,
high performance computing, graphics processors.

∗The researchers from the UJI were supported by project TIN2011-23283 and FEDER.
†Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
benner@mpi-magdeburg.mpg.de.

‡Centro de Cálculo-Instituto de Computación, Universidad de la República, Montevideo, Uruguay.
pezzatti@fing.edu.uy.

§Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I (UJI), 12.071–Castellón,
Spain. quintana@icc.uji.es.

¶Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I (UJI), 12.071–Castellón,
Spain. remon@icc.uji.es.

1

1 Introduction

Explicit matrix inversion is required in a few selected applications. One important
case is the computation of the sign function of a matrix A ∈ R

s×s via the Newton
iteration [18]:

A0 ← A, Aj+1 ←
1

2
(Aj +A−1

j), j = 0, 1, (1)

Provided A has no eigenvalues on the imaginary axis, the sequence {Aj}
∞

j=0 converges
to sign (A), at an asymptotically quadratic rate. Diverse variants of (1), all requiring
the explicit inversion of a matrix at each iteration, can be used to efficiently solve
several types of matrix equations arising in numerically robust methods for model
reduction and linear-quadratic optimal control (LQOC) [6, 7]. Large-scale instances of
these problems involving dense matrices arise, e.g., in VLSI circuit simulation [1] and,
when tackled via the matrix sign function, require the inversion of a dense matrix of
dimension s→ O(10, 000− 100, 000).
Efficient and numerically stable methods for the inversion of a dense matrix A first

compute some type of factorization of the matrix to then obtain the inverse from the
resulting factors. Depending on the properties of A, the initial stage is usually per-
formed via the LU factorization with partial pivoting (if A has no special properties),
the Cholesky decomposition (when A is symmetric positive definite, s.p.d.), or the
LDLT factorization (when A is symmetric indefinite). If A is of size s, these three
types of decompositions as well as the computation of the inverse from the triangu-
lar factors require O(s3) flops (floating-point arithmetic operations). Alternatively,
in the former two cases one can employ Gauss-Jordan elimination (GJE), also at a
cost of O(s3) flops. Thus, these methods clearly ask for high performance computing
techniques when s is large.
Research in the framework of the MAGMA and FLAME projects has demonstrated

the potential of graphics processors (GPUs) to accelerate the computation of dense
linear algebra operations [16, 20]. These two projects, together with the commercial
development CULA [10], provide hybrid CPU-GPU kernels for the LU factorization
and the Cholesky decomposition, among others. In [3, 11, 4, 5] we have reported the
results from our own effort towards the computation of dense linear algebra operations,
with special focus on matrix inversion and its application to the solution of Lyapunov
matrix equations and algebraic Riccati equations (AREs) arising in control theory. In
this paper we extend those results as follows:

• We provide a unified framework, based on the FLAME notation [14, 8], for
the presentation of conventional matrix inversion algorithms via the LU and
Cholesky factorizations (for general and s.p.d. matrices, respectively), and al-
ternative approaches based on the GJE (for both cases).

• We include new multi-core and hybrid algorithms for the inversion of symmetric
indefinite matrices via the LDLT factorization, a case not tackled in previous
work, accommodating them into the same framework/notation.

2

• We perform an experimental study of the performance and overheads of our im-
plementations of the inversion algorithms, comparing them with those available
in the MAGMA and CULA libraries, using a state-of-the-art platform equipped
with Intel Xeon-based multi-core processors and a NVIDIA “Fermi” GPU.

The rest of the paper is structured as follows. In the next subsection we introduce
an algorithmic skeleton that will allow a unified presentation of the matrix inversion
algorithms. In Section 2 we briefly review how to use the matrix sign function to solve
the Lyapunov equation and the ARE, and the application of these matrix equations in
model reduction and LQOC. The three algorithmic approaches and the hybrid CPU-
GPU implementations for the inversion of general, s.p.d., and symmetric indefinite
matrices are presented, respectively, in Sections 3, 4, and 5. In Section 6 we describe
several optimization techniques, applicable to most hybrid algorithms. Experimental
results on a hybrid CPU-GPU platform are reported in Section 7, and a few remarks
close the paper in Section 8.

1.1 Dense linear algebra algorithms

High performance algorithms for dense linear algebra operations organize the compu-
tations by blocks, to hide the memory latency by amortizing the cost of data transfers
between the main memory and the floating-point units with a large number of flops.
Figure 1 shows two algorithmic frameworks (skeletons), employing the FLAME nota-
tion, that illustrate the usual organization of blocked dense linear algebra algorithms.
In the figure, m(·) stands for the number of rows of a matrix. The partitioning (Par-
tition) before the while loop sets ABR := A (left) or ATL := A (right). The reparti-
tionings inside the loop body (Repartition and Continue with) and the thick lines
capture how the algorithms progress through the operands. Thus, the algorithm on the
left processes the matrix from the top-left corner to the bottom-right one (tl→br),
while the algorithm on the right proceeds in the opposite direction. At each iteration,
both algorithms identify a b× b diagonal block A11, with b usually known as the (al-
gorithmic) block size. Examples of the first type of algorithms (tl→br2× 2) include
the three key factorizations for the solution of dense linear systems: LU, Cholesky
and LDLT . Examples of the second (bl→tl2 × 2) include the solution of an upper
triangular linear system [13].
In the following sections, when presenting an algorithm for a dense linear algebra

operation, we will indicate whether it proceeds tl→br2 × 2 or bl→tl2 × 2, and
specify the computations that are performed during the “current” iteration (to be
included in the box marked as “Update” in one of the algorithms in Figure 1). In our
notation triu(·)/tril(·) stands for the upper/lower triangular part of its argument
and trils(·) for its strictly lower triangular part; trilu(·) is analogous to trils(·)
with the diagonal entries of the matrix replaced by ones.
For simplicity, we will not include pivoting in the algorithmic descriptions, though

this is crucial for the numerical stability of the inversion of general as well as symmetric
indefinite matrices. Our hybrid implementations for the inversion of general matrices
employ partial pivoting. Our inversion algorithms for symmetric indefinite matrices

3

Algorithm: A := tl→br2× 2(A)

Partition A→

(

ATL ATR

ABL ABR

)

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b

Repartition

(

ATL ATR

ABL ABR

)

→







A00 A01 A02

A10 A11 A12

A20 A21 A22







where A11 is b× b

Update

Continue with
(

ATL ATR

ABL ABR

)

←







A00 A01 A02

A10 A11 A12

A20 A21 A22







endwhile

Algorithm: A := br→tl2× 2(A)

Partition A→

(

ATL ATR

ABL ABR

)

where ABR is 0× 0
while m(ABR) < m(A) do

Determine block size b

Repartition

(

ATL ATR

ABL ABR

)

→







A00 A01 A02

A10 A11 A12

A20 A21 A22







where A11 is b× b

Update

Continue with
(

ATL ATR

ABL ABR

)

←







A00 A01 A02

A10 A11 A12

A20 A21 A22







endwhile

Figure 1: Blocked algorithmic skeletons for dense linear algebra operations.

incorporate pivoting akin that of the LDLT factorization.
In the hybrid algorithms, we assume that the matrix to be inverted is in the GPU

memory. This implies that there exists a preliminary transfer of the data from the
(host) main memory to the device (GPU) memory. When presenting the update
performed during the iteration, we will specify in which architecture is carried out
each computation. Therefore, depending on where initially each operand is located,
the exact data transfers between the host and device memory spaces can be easily
derived.

2 Matrix sign function solvers with application in control

In state-space, a dynamic linear time-invariant (LTI) system is represented as:

ẋ(t) = Fx(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0,

(2)

where x0 ∈ R
n stands for the initial state of the system; and x(t) ∈ R

n, u(t) ∈ R
m and

y(t) ∈ R
m contain, respectively, the states, inputs and outputs of the system. Here

F ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m and, usually, m, p≪ n.
Given a system of order n as in (2), model order reduction aims at finding an alter-

native LTI system of order r ≪ n which can accurately replace the original system in
subsequent operations [1]. Balanced truncation (BT) is an efficient numerical method

4

for model reduction of large-scale LTI systems; see, e.g., [6]. The major computational
step in BT requires the solutions Y,Z ∈ R

n×n of the coupled Lyapunov equations
FY + Y FT = BBT , FTZ + ZF = CTC, which can be obtained from sign (F) and
a few minor other computations [18].
Given a pair of weight matrices R ∈ R

m×m and Q ∈ R
p×p, with R s.p.d. and Q

symmetric positive semidefinite, the solution of the LQOC problem associated with (2)
is given by the stabilizing feedback control law u(t) = −R−1BTXx(t) = −Kx(t), t ≥
0, with X ∈ R

n×n positive semidefinite. Under certain conditions [15], this feedback
is given by the solution of the ARE FTX +XF −XBR−1BTX +CTQC = 0. In [18],
it is shown that the solution X can be easily obtained from sign (H), with

H =

(

F BR−1BT

CTQC −FT

)

. (3)

The two problems defined above illustrate the need to compute the sign function of
a matrix (F or H). When the number of states of the LTI system (2) is large, and the
state matrix F is dense, it is therefore necessary to compute the inverse of a sequence
of large-scale dense matrices. Note also that, when F is symmetric negative definite all
the matrices inverted during the computation of sign (F) inherit this property. On the
other hand, a simple reorganization of the blocks in (3) yields a symmetric indefinite
matrix, which can be leveraged to invert only symmetric indefinite matrices during
the Newton iteration for the matrix sign function [12].

3 Inversion of general matrices

In this section we review the inversion of general matrices via the LU factorization and
GJE [13]. In both cases, the contents of A are overwritten with its inverse (i.e., they
are in-place procedures). Besides, the two approaches require 2s3 flops.

3.1 LU factorization

Matrix inversion of a general matrix A ∈ R
s×s via the LU factorization can be accom-

plished in three steps. First the matrix is decomposed as A = LU , where L ∈ R
s×s

and U ∈ R
s×s are lower unit and upper triangular factors, respectively; the upper

triangular factor is then explicitly inverted: U → U−1 = Ū ; and finally, the (lower
unit) triangular system A−1L = Ū is solved for the sought-after inverse A−1.
Figure 2 illustrates the updates performed at each one of the three steps for the

inversion via the LU factorization. The complete algorithms are obtained by including
these operations into the update box of the appropriate algorithmic skeleton in Fig-
ure 1. For each operation, we indicate in which architecture it is performed (host/CPU
or device/GPU) and the type of numerical kernels involved (using the LAPACK/BLAS
interface). Consider the LU factorization first (left). This algorithm proceeds tl→br

and the resulting factors L and U overwrite, respectively, the strictly lower and the
upper triangular parts of A. The invocation to the kernel LU, in the first operation

5

tl→br2× 2. LU factorization tl→br2× 2. U → U−1 = Ū br→tl2× 2. Solve A−1L = Ū
(

A11

A21

)

:= LU

(

A11

A21

)

CPU/
getrf

A01 := triu(A00)A01 GPU/
trmm

(

W1

W2

)

:= trils

(

A11

A21

)

GPU/
lacpy

A12 := trilu(A11)−1A12 GPU/
trsm

A01 := −A01

triu(A11)−1

GPU/
trsm

trils

(

A11

A21

)

:= 0 GPU/
laset

A22 := A22 −A21A12 GPU/
gemm

triu(A11) :=
triu(A11)−1

CPU/
trtri







A01

A11

A21






− :=







A02

A12

A22






W2 GPU/

gemm






A01

A11

A21






:=







A01

A11

A21






W−1

1
GPU/
trsm

Figure 2: Operations (updates) to invert a general matrix A via the LU factorization.
Left: LU factorization. Center: Inversion of the triangular factor U . Right:
Solution of lower triangular system.

of the update, obtains the factorization of the panel
(

AT
11, A

T
12

)T
, of (column) width b.

In our hybrid algorithm, this operation is performed in the CPU (via kernel getrf).
Since we assume that the matrix is initially stored in the GPU, this implies that the
panel has to be transferred to the host memory prior to this computation. The other
two operations involved in the factorization, a triangular system solve (trsm) and a
matrix-matrix product (gemm), are performed in the GPU. Thus, the triangular ma-
trices resulting from the panel factorization have to be transferred back to the GPU
before these two operations commence.
Upon termination of the algorithm for the inversion of the triangular matrix U , in

the center of the figure, the upper triangular part of A (which initially contained U) is
overwritten with Ū = U−1. At each iteration, the algorithm computes the product of
a triangular matrix times a general one (trmm), the solution of an upper triangular
linear system, and the inversion of the triangular b× b block A11 (trtri). The former
two operations are performed in the GPU, while the last one is carried out by the
CPU. Thus, A11 is transferred from the device to the host before its inversion, and
the result is moved back to the GPU. Finally, the solution of the triangular system
A−1L = Ū for A−1 (right) performs a matrix-matrix product and a triangular system
solve per iteration, both computed in the GPU. Thus, the algorithm requires no data
transfers. For high performance, though, this operation employs a small workspace,
of size s× b, in general with b ≥ 128.

The previous algorithms illustrate a pattern common to most blocked procedures for
dense linear algebra operations. The matrix is processed by blocks of a certain dimen-
sion (block size) and, at each iteration, only a part of the matrix is updated. In the
hybrid CPU-GPU algorithms, we employ the GPU for the computationally-intensive,
data-parallel operations, leaving the CPU for the kernels with strong control depen-
dencies. This in turn dictates the data movements during the algorithm’s iterations.
For high performance, our hybrid algorithms will pursue two goals: 1) amortize the

6

tl→br2× 2. Invert general A via GJE tl→br2× 2. Invert s.p.d. A via GJE






A01

A11

A21






:= GJE







A01

A11

A21






CPU/– triu(A11) := Chol(A11) CPU/potrf

A00 := A00 +A01A10 GPU/gemm triu(A11) := triu(A11)−1 CPU/trtri

A20 := A20 +A21A10 GPU/gemm A01 := A01triu(A11)T GPU/trmm

A10 := A11A10 GPU/gemm triu(A00) := triu(A00 +A01A
T

01
) GPU/syrk

A02 := A02 +A01A12 GPU/gemm A01 := A01triu(A11) GPU/trmm

A22 := A22 +A21A12 GPU/gemm A12 := triu(A11)−TA12 GPU/trsm

A12 := A11A12 GPU/gemm triu(A22) := triu(A22 −AT

12
A12) GPU/syrk

A02 := A02 −A01A12 GPU/gemm

A12 := −triu(A11)A12 GPU/trmm

triu(A11) := triu(A11)triu(A11)T CPU/lauum

Figure 3: Operations (updates) to invert a general or a s.p.d. matrix A via GJE (left
or right, respectively.)

amount of data that are transferred between CPU and GPU with a large number of
flops (per iteration); and 2) cast most of the flops in terms of a reduced number of
high performance GPU kernels operating on large pieces of data. Consider, e.g., the
algorithm for the LU factorization. At each iteration, a panel of k×b elements is trans-
ferred between CPU and GPU (k initially equals s and decreases with each iteration
by a factor of b), while this overhead has to be amortized roughly by the 2(k − b)2b
flops corresponding to the update of A22. Also, the major part of the computation
is cast in terms of the matrix-matrix product for the update of A22, an operation
that is well-known to attain high performance on most current architectures and, in
particular, on GPUs.

3.2 Gauss-Jordan elimination

An alternative blocked procedure to invert a matrix via GJE is shown in Figure 3
(left) [17]. Compared with the three sweeps of the inversion approach based on the
LU factorization (one per step), the algorithm computes the inverse in a single sweep of
the matrix and is richer in large matrix-matrix products. All operations are performed

on the GPU, except for the factorization of the current panel
(

AT
01, A

T
11, A

T
12,
)T

(kernel
GJE), which is done in the CPU. Thus, at the beginning of each iteration, this panel
of dimension s× b is transferred to the CPU, processed there, and the results are sent
back to the GPU. Note the regularity of the algorithm: All iterations perform the
same number of flops (approximately, 2sb(s − b) flops) and the same amount of data
is transferred between host and device (except for the last iteration if the problem size
is not an exact multiple of b).

7

4 Inversion of s.p.d. matrices

We next describe the specialized counterparts of the LUpp- and GJE-based methods for
the inversion of s.p.d. matrices. These alternatives exploit the symmetric structure
of the matrix A ∈ R

s×s to halve its computational cost: from the 2s3 flops of the
general case to roughly s3 flops in this case. The variants presented next compute
the inverse in-place, requiring no additional workspace. In fact, in the algorithms, the
upper triangular part of the matrix is replaced by the upper triangle of its inverse while
the strictly lower part is not referenced/modified. Also, the symmetry combined with
the positive definiteness render unnecessary the application of pivoting for numerical
stability in the algorithms.

4.1 Cholesky factorization

This algorithm performs the inversion in three steps (sweeps). First, the s.p.d. matrix
is decomposed into the product A = UTU , where the upper triangular matrix U ∈
R

s×s is the Cholesky factor. Next, the Cholesky factor is explicitly inverted U →
U−1 = Ū and, finally, the inverse is obtained as A−1 := Ū ŪT = U−1U−T .

Figure 4 reports the updates performed in the first and third steps (Cholesky factor-
ization and matrix product A−1 := U−1U−T , respectively) of matrix inversion via the
Cholesky factorization. The inversion of the triangular factor U (second step) can be
obtained using the same algorithm described in the previous section. At each iteration
of the Cholesky factorization (left column of the figure), the b × b block A11 is first
transferred to the CPU, factorized there (via a call to kernel potrf), and the trian-
gular factor is moved back to the GPU. This factor is then used to solve a triangular
system and perform a symmetric rank-b update (syrk) of the trailing submatrix A22

in the GPU. It is important to realize that only the upper triangular part of A22 is
updated, which in practice halves the cost of this factorization with respect to that
of the general case. This is attained by using the appropriate kernel for the update
of A22, which requires only (k − b)2b flops (with k := s initially, and decreasing by a
factor of b per iteration).
At the beginning of the third step (Figure 4 (right)), Ū = U−1 overwrites the upper

triangular part of A and, therefore, the matrix product that is computed corresponds
to A−1 := Ū ŪT = U−1U−T . The algorithm consists of four operations: the product of
a general matrix times a triangular one, a call to compute the (in-place) inverse of the
b × b block A11 (lauum), a general matrix-matrix product, and a symmetric rank-b
update. All these operations, except the second one, are performed in the GPU. This
dictates the need to transfer the corresponding b× b block between the GPU and the
CPU before the second operation, and in the opposite direction immediately after it.

4.2 Gauss-Jordan elimination

The procedure for matrix inversion of s.p.d. matrices based on GJE is illustrated in
Figure 3 (right) [9]. The algorithm consists of a sequence of 10 operations of different
types: Cholesky factorization, triangular matrix inversion, matrix multiplications with

8

tl→br2× 2. Cholesky factorization tl→br2× 2. A−1 := ŪŪT

triu(A11) := Chol(A11) CPU/potrf A01 := A01triu(A11)T GPU/trmm

A12 := triu(A11)−1A12 GPU/trsm triu(A11) := triu(A11)triu(A11)T CPU/lauum

triu(A22) := triu(A22 −AT

12
A12) GPU/syrk A01 := A01 +A02A

T

12
GPU/gemm

triu(A11) := triu(A11 +A12A
T

12
) GPU/syrk

Figure 4: Operations (updates) to invert a s.p.d. matrix A via the Cholesky fac-
torization. Left: Cholesky factorization. Right: Triangular matrix-matrix
multiplication A−1 := Ū ŪT .

tl→br2× 2. LDLT factorization br→tl2× 2. Invert symmetric indefinite A
[(

A11

A12

)

,W

]

:= LDLt

(

A11

A12

)

CPU/– W2 := D̄2A21 CPU/–

tril(A22) := tril(A22 −A21W) CPU/gemv,gemm tril(W1) := tril(D̄1A11) CPU/–

W1 := tril(A11)TW1 GPU/trmm

tril(A11) := tril(W1) GPU/lacpy

W1 := AT

21
W2 GPU/gemm

tril(A11) := tril(A11 +W1) GPU/–

A21 := tril(A22)TW2 GPU/trmm

Figure 5: Operations (updates) to invert a symmetric indefinite matrix A via the
LDLT factorization. Left: LDLT factorization. Right: Inversion A−1 :=
L−TD−1L−1.

operands of diverse structures, triangular system solve, and symmetric rank-b update.
All operations except the first two and the last one are performed in the GPU. There-
fore, the algorithm requires a couple of transfers of the b× b block A11 between GPU
and CPU and back per iteration.

5 Inversion of symmetric indefinite matrices

Symmetric indefinite matrices can be inverted in-place, at a cost of s3 flops, following
a three-step (-sweep) procedure (though, for high performance, an additional s × b
array is required.) First the matrix is decomposed as the product A = LDLT , where
L ∈ R

s×s is lower triangular and D ∈ R
s×s is diagonal with 1 × 1 or 2 × 2 diagonal

blocks [13]; then, the lower triangular and diagonal factors are explicitly inverted:
L → L−1 = L̄ and D → D−1 = D̄; and finally, the inverse is obtained from A−1 :=
L̄T D̄L̄ = L−TD−1L−1. In practice, the LDLT factorization includes pivoting to
attain numerical stability close to that of partial pivoting (not included in the following
presentation, for simplicity). Also, only the contents of the lower triangular part of A
are overwritten with the lower triangle of the inverse.
Figure 5 introduces a simplified version of the updates performed in the algorithms

9

for the first and third steps. The second step is performed following a transposed
variant of the algorithm to invert an upper triangular matrix (see Section 3). The
procedure in the left of the figure computes the factorization. To do this, at each
iteration it obtains the entries of the lower triangular factor L corresponding to the

panel
(

AT
11, A

T
12

)T
while, simultaneously, building the product of this factor times the

corresponding diagonal blocks into W . Because of the symmetric structure of the
matrix, and the need to reference only its lower triangle, the computation of this
panel factorization is quite elaborate. The update of the trailing submatrix A22 also
needs to be carefully done. In particular, to reduce the arithmetic cost, to avoid
modifying the contents in the strictly upper triangular part of the array A22, and
to still deliver fair performance, the update proceeds by panels of b columns. At
each iteration, the upper b × b block of this panel is updated column-wise, using
(repeated invocations to) kernel gemv (one per column), while the subdiagonal block
of the panel is performed with a single invocation to kernel gemm and comprises the
major part of the computational cost of the update. The algorithm in the right of
the figure computes the inverse of A from its LDLT factorization. Assume that the
lower triangular part of A already contains L̄ = L−1 and consider a partitioning of
D̄ = D−1 = diag(D̄0, D̄1, D̄2) conformal with that of A. Then, at each iteration,
the algorithm performs two triangular matrix-matrix multiplications (to update the
workspace W1 and A21) and a matrix-matrix product (to update A11) on the GPU
plus a few additional minor operations.

6 Optimizing the hybrid execution of matrix inversion
kernels

In this section we describe several techniques which, in general, render higher perfor-
mance if incorporated into the basic hybrid CPU-GPU algorithms for matrix inversion
presented in the previous three sections. For clarity, when necessary we will illustrate
the corresponding technique using the GJE approach for matrix inversion of general
matrices in Figure 3 (left).
Padding. Previous studies [2] have demonstrated the performance benefits of utilizing
GPU kernels that operate with arrays of dimension(s) that are integer multiples of 32.
This is due to the number of arithmetic units in current GPUs and, when employing
dense linear algebra libraries of GPU kernels, to the routines in these libraries being
specially optimized for such problem sizes. For other problem dimensions, one simple
solution is to “pad” the arrays to the next integer multiple of 32. For the inversion of
A ∈ R

s×s, this can be easily done by embedding the data of the matrix into an array
of dimension v × v = (s+ r)× (s+ r), with 0 ≤ r < 32 and v an exact multiple of 32,
initialized to the identity matrix. When s is moderately large, the overhead incurred
by padding is negligible while the benefits clearly pay off.
Blocked kernels for the CPU. Most of the algorithms presented earlier involved
a sort of “recursive” call to process a block or a panel of the matrix in the CPU. In
the case of the GJE inversion algorithm, e.g., this is the call to GJE to factorize the

10

current s × b panel. To enhance performance of GPU kernels, in practice b is often
chosen to be large, around 512 or even larger. Therefore, it is usually recommended to
perform the execution of the CPU operation using a blocked algorithm, with a smaller
block size, let’s say b̄ ≈ 128 < b, and a highly tuned, possibly multi-threaded CPU
implementation for the operation, e.g., from LAPACK or BLAS.
Overlapping communication and computation (double-buffering). In the pre-
sentation of the inversion algorithms, we assumed that the matrix was already stored
on the GPU, which required an initial transfer of the matrix contents from the main
memory to the device. This overhead can certainly be hidden by employing double-

buffering so that the transfer of the data proceeds concurrently with the arithmetic
operations. However, given that our matrix inversion algorithms are repeatedly in-
voked from the Newton iteration (1), we can neglect the costs of the initial transfer
of the data between the main memory (in the host) and the GPU memory and the
final retrieval of the result from device to the host. While double-buffering can also be
employed to hide the latency of the data transfers that occur inside the iteration loop,
in most cases the cost of this transfer is negligible compared with the actual number
of operations performed during the iteration.
Look-ahead. The algorithms for the LU factorization, the GJE for general matrices,
and the LDLT factorization operate on a large-and-narrow panel, which stands in the
critical path of the computation and limits the concurrency of the algorithm. For
example, in the GJE the current panel has to be factorized before any of the matrix
products can proceed. The next panel then presents a critical point, which marks
a new synchronization point. As the number of computational resources grows, the
factorization (which is basically sequential or, at least, offers a much more limited
degree of parallelism than the rest of the operations) becomes a bottleneck. One
partial solution to this is to overlap the factorization of the k + 1-th panel with the
updates associated with the factorization of the current one. Specifically, consider the
factorization of the k-th panel is done resulting in b “Gauss-Jordan transforms”. We
can then update only the columns in the k+1-st panel, and perform the factorization
of this panel concurrently with the update of the remaining part of the matrix with
the previous Gauss-Jordan transforms. This technique is known as “look-ahead” and
can be applied with different degrees of depth [19].
Concurrent CPU-GPU execution. Most hybrid platforms are equipped with a
powerful GPU but also an appreciable computational power associated with one or
more general-purpose multi-core processors. Clearly more performance can be attained
if both resources are employed for the computation of the algorithms involved in matrix
inversion, and specially, if the two resources can operate in parallel. Given that GPU
kernels are asynchronous, this can be e.g. combined with the look-ahead technique
just described.

7 Experimental Results

In the following, we perform an experimental evaluation of several ad-hoc routines for
matrix inversion based on the hybrid CPU-GPU algorithms introduced in Sections 3–5,

11

optimized with the techniques described in Section 6. For comparison, our study also
includes numerical kernels from diverse dense linear algebra libraries for multi-core
processors, many-core GPUs, and hybrid architectures:

• Intel’s MKL (v11.1) implements LAPACK and BLAS for multi-core architectures
(results were obtained using 8 threads). For those LAPACK-level routines that
are not in MKL, we employed the legacy codes available at www.netlib.org/lapack
(v3.4).

• NVIDIA’s CUBLAS (v4.0) provides BLAS for single-GPU systems.

• EM Photonics’ CULA (R13a) is a commercial product which partially imple-
ments LAPACK and BLAS for hybrid platforms equipped with a single GPU.

• UTK’s MAGMA (v1.1.0), like the previous case, implements LAPACK and
BLAS partially, targeting the same class of hybrid platforms.

Hereafter, we will refer to the ad-hoc implementations as the basic variants. Routines
from CUBLAS, CULA or MAGMA can be expected to include advanced optimization
techniques to deliver similar or higher performance than the basic ones. The experi-
ments do not evaluate UT’s FLAME, because the runtime in the libflame library is
tailored for multi-GPU platforms.
All experiments were performed on a platform consisting of two Intel Xeon E5520

quad-core processors (8 cores) at 2.27GHz, connected to an NVIDIA Tesla C2050,
using ieee double-precision arithmetic. All operands were always square, with their
dimensions being integer multiples of 32 as padding ensures similar efficiency for other
problem sizes. Performance is compared in terms of GFLOPS (109 flops/secs.), using
the standard flops count for each operation. The cost of data communication between
the CPU and the GPU memories is always counted, except for the initial transfer of
the original matrix to the GPU and the final retrieval of the result (see Section 6).

Let us start with the inversion of general matrices (see Section 3). Our first experi-
ment, with results in Figure 6, evaluates the performance attained by the operations
corresponding to the three steps for the inversion of general matrices based on the LU
factorization with partial pivoting (LUpp), and the complete matrix inversion proce-
dures via LUpp and GJE. Specifically, the plot in the top-left corner compares the
performance attained by the implementations for LUpp in MKL, MAGMA, CULA;
and a basic variant which employs kernels from CUBLAS and MKL. The routine from
MAGMA is the fastest one for larger matrices, while the CULA variant attains higher
performance for matrices of dimension up to 2,000. Similarly, the plot in the top-
right corner displays the results obtained by four implementations for the triangular
matrix inversion, with the basic variant clearly outperforming the routines in MKL,
MAGMA and CULA. The plot in the bottom-left corner illustrates the performance of
the kernels for the solution of lower triangular systems provided by CUBLAS, CULA,
MAGMA and MKL, reporting MAGMA as the best choice. Finally, the plot in the
bottom-right corner compares the efficiency obtained by the fastest implementations
of the complete LUpp-based and GJE-based matrix inversion algorithms including,

12

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Matrix dimension

MAGMA
CULA
BASIC

MKL

LUpp factorization

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

MAGMA

Matrix dimension

U → U−1 = Ū
CULA
BASIC

MKL

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Solve A−1L = Ū

Matrix dimension

CULA
MAGMA

CUBLAS

MKL

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Matrix dimension

MKL

GJE-based
LUpp-based

Inversion of general matrices

Figure 6: Inversion of general matrices. Top-left: LUpp; top-right: triangular matrix
inversion; bottom-left: solution of lower triangular systems; bottom-right:
Complete algorithm.

13

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Matrix dimension

MAGMA
CULA
BASIC

MKL

Cholesky factorization

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

MAGMA

Matrix dimension

BASIC
U → U−1 = Ū

CULA

MKL

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Matrix dimension

MAGMA
MKL

A−1 := Ū ŪT

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Matrix dimension

MAGMA

CHOL-based

MKL

GJE-based

Inversion of s.p.d. matrices

Figure 7: Inversion of s.p.d. matrices. Top-left: Cholesky factorization; top-right:
triangular matrix inversion; bottom-left: multiply A−1 := Ū ŪT ; bottom-
right: Complete algorithm.

for reference, MKL (routines dgetrf+dgetri). In this case, the GJE-based imple-
mentation is a hybrid variant that employs the gemm kernel from MAGMA for the
matrix-matrix products on the GPU while all other computations are performed on the
CPU using kernels from MKL. The LUpp-based routine is also an ad-hoc implemen-
tation which employs MAGMA for the LUpp and the solution of the lower triangular
system, and the basic variant for the inversion of the triangular factor U . The last
plot demonstrates the superior performance of the GJE-based inversion algorithm on
the hybrid CPU-GPU architecture.
Consider next the inversion of s.p.d. matrices (see Section 4). Figure 7 summarizes

the results obtained for the two inversion algorithms of this class of matrices and the
operations involved in the procedure based on the Cholesky factorization. The results
in the top-left plot correspond to the computation of the Cholesky factorization, using
routines from CULA, MAGMA and MKL, as well as an ad-hoc basic variant that em-
ploys kernels from CUBLAS. The best results are obtained by the MAGMA routine
for matrices larger than 2,000, while for smaller problems, the CULA and MKL imple-

14

mentations are faster. The second step of the algorithm, as in the general matrix case,
requires the inversion of an upper triangular matrix. The results in the top-right plot
thus replicate those in the figure for the general case. The plot in the bottom-left cor-
ner rehearses the performance of the implementation in MAGMA for the computation
A−1 := Ū ŪT , including MKL for reference. (No other implementation is available, at
the moment, for this particular operation). The plot in the bottom-right corner shows
the GFLOPS obtained with the Cholesky-based and the GJE-based approaches. In
particular, the first variant utilizes the MAGMA kernels for the computation of the
Cholesky factorization and the product Ū ŪT , and the basic routine for the inversion
of the triangular factor. The alternative procedure, based on the GJE method, em-
ploys kernels from CUBLAS for the major GPU operations, and MKL for other minor
operations, like the factorization or the inversion of small blocks. As in the general
case, the best performance is obtained with the GJE algorithm.

Let us finally move to the third case, the inversion of symmetric indefinite matri-
ces (see Section 5). Among the libraries considered, only MKL implements the full
procedure for the inversion of this class of matrices. The algorithm for the first stage
(computation of the factorization A = LTDL) is hardly suitable for many-core archi-
tectures, due to the intricacies of the application of pivoting in the symmetric case.
This also explains the low performance obtained by MKL in the multi-core architec-
ture: less than 30 GFLOPS for the larger matrices; see left plot in Figure 8. For
this particular operation, we have developed an optimized version for multi-threaded
CPUs, which merges the updates performed to each panel of A22 into a single call to
gemm, and extracts parallelism by distributing the iteration space among the cores
using a simple OpenMP pragma omp parallel for, yielding a higher GFLOPS rate.
The second stage is primarily dedicated to the inversion of the (lower) triangular fac-
tor, and can be accomplished using a transposed variant of our basic routine for the
inversion of an upper triangular factor. (The inversion of D, also carried out in this
stage, is straight-forward.) The third stage (A−1 := L̄T D̄L̄ = L−TD−1L−1) exhibits
higher concurrency and can be executed in a GPU with moderate efficiency. The left-
hand side plot in the figure also collects the performance obtained for the second+third
stages (lines labelled as A−1 := L−TD−1L−1) by the routine from MKL and a basic

implementation that employs kernels from MKL and CUBLAS. The hybrid variant
clearly outperforms MKL for larger matrices, but it hardly attains 70 GFLOPS. The
right-hand side plot shows the results for the inversion of symmetric indefinite ma-
trices. There, the basic variant employs our tuned CPU factorization (dsytrf) and
the ad-hoc hybrid implementation to obtain the inverse from the factors. This imple-
mentation outperforms the MKL+LAPACK code (dsytrf from MKL and dsytri2x

from LAPACK) for matrices of dimension larger than 2,000. However, its performance
is poor if we compare it, e.g., with that observed for the inversion of general matrices
(see Figure 6). Consequently, with the implementations available at the moment, it
is faster to calculate the inverse of a symmetric indefinite matrix using the general
matrix inversion algorithm, even if that implies doubling the number of flops.

15

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Matrix dimension

LDLT fact. / A−1 := L−TD−1L−1

MKL LDLT fact.
BASIC LDLT fact.

LAPACK A
−1 := L

−T
D

−1
L

−1
BASIC A

−1 := L
−T

D
−1

L
−1

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

G
F
L
O
P
S

Inversion of symmetric indefinite matrices

Matrix dimension

MKL+LAPACK
BASIC

Figure 8: Inversion of symmetric indefinite matrices (right) and the computation of
the inverse of a matrix from its LDLT factorization (left).

8 Concluding Remarks

In this paper we have studied the inversion of large-scale, dense matrices, on hybrid
CPU-GPU platforms, with application to the solution of matrix equations arising in
control theory. Borrowing the notation of the FLAME project, we have presented
several matrix inversion algorithms, based on common matrix factorizations and the
GJE method, for general, s.p.d. and symmetric indefinite problems. The performance
of our practical implementations of these algorithms has been compared with anal-
ogous kernels from CPU and hybrid CPU-GPU dense linear algebra libraries, on a
representative high performance platform.
The results for the general and s.p.d. case on this architecture expose the per-

formance advantage of the GJE-based matrix inversion methods over their LU- and
Cholesky-based counterparts. Combined with their extreme simplicity, the result is
a wide-appeal GJE-based approach to leverage the hardware concurrency of current
hybrid platforms. As for the symmetric indefinite case, the need to preserve the struc-
ture of the problem during the application of pivoting stands in the way of an efficient
concurrent implementation of the method so that further work remains to be done to
turn this into a competitive method for tackling this class of problems.

References

[1] A.C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM Pub.,
Philadelphia, PA, 2005.

[2] S. Barrachina, M. Castillo, F.D. Igual, R. Mayo, E.S. Quintana-Ort́ı, and
G. Quintana-Ort́ı. Exploiting the capabilities of modern GPUs for dense ma-
trix computations. Conc. Comp.: Prac. Exp., 21:2457–2477, 2009.

16

[3] P. Benner, P. Ezzatti, D. Kressner, E.S. Quintana-Ort́ı, and A. Remón. A mixed-
precision algorithm for the solution of lyapunov equations on hybrid CPU-GPU
platforms. Parallel Comp., 37(8):439–450, 2011.

[4] P. Benner, P. Ezzatti, D. Kressner, E.S. Quintana-Ort́ı, and A. Remón. Acceler-
ating model reduction of large linear systems with graphics processors. In Lecture

Notes in Computer Science, State of the Art in Scientific and Parallel Computing,
volume 7134, pages 88–97. Springer, 2012. (on-line version available).

[5] P. Benner, P. Ezzatti, E.S. Quintana-Ort́ı, and A. Remón. High performance
matrix inversion of SPD matrices on graphics processors. In Workshop on Ex-

ploitation of Hardware Accelerators–WEHA 2011, pages 640–646. IEEE, 2011.

[6] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. State-space truncation
methods for parallel model reduction of large-scale systems. Parallel Computing,
29:1701–1722, 2003.

[7] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solving linear-quadratic
optimal control problems on parallel computers. Optimization Methods Software,
23(6):879–909, 2008.

[8] P. Bientinesi, J.A. Gunnels, M.E. Myers, E.S. Quintana-Ort́ı, and R.A. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM Trans. Math.

Soft., 31(1):1–26, March 2005.

[9] P. Bientinesi, B. Gunter, and R. A. van de Geijn. Families of algorithms related to
the inversion of a symmetric positive definite matrix. ACM Trans. Math. Softw.,
35:3:1–3:22, July 2008.

[10] CULA project home page. http://www.culatools.com/.

[11] P. Ezzatti, E. Quintana-Ort́ı, and A. Remón. Using graphics processors to ac-
celerate the computation of the matrix inverse. The Journal of Supercomputing,
pages 1–9, 2011. 10.1007/s11227-011-0606-4.

[12] J.D. Gardiner and A.J. Laub. A generalization of the matrix-sign-function solu-
tion for algebraic Riccati equations. Internat. J. Control, 44:823–832, 1986.

[13] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 3rd edition, 1996.

[14] J.A. Gunnels, F.G. Gustavson, G.M. Henry, and R.A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–
455, December 2001.

[15] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University
Press, Oxford, 1995.

[16] MAGMA project home page. http://icl.cs.utk.edu/magma/.

17

[17] E.S. Quintana-Ort́ı, G. Quintana-Ort́ı, X. Sun, and R.A. van de Geijn. A note
on parallel matrix inversion. SIAM J. Sci. Comput., 22:1762–1771, 2001.

[18] J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equa-
tion by use of the sign function. Internat. J. Control, 32:677–687, 1980. (Reprint
of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engi-
neering Department, 1971).

[19] P. Strazdins. A comparison of lookahead and algorithmic blocking techniques
for parallel matrix factorization. Technical Report TR-CS-98-07, Department
of Computer Science, The Australian National University, Canberra 0200 ACT,
Australia, 1998.

[20] University of Texas, http://www.cs.utexas.edu/~flame/.

18

