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Abstract

In this paper, we study possible low rank solution methods for generalized Lyapunov
equations arising in bilinear and stochastic control. We show that under certain
assumptions one can expect a strong singular value decay in the solution matrix
allowing for low rank approximations. Since the theoretical tools strongly make use
of a connection to the standard linear Lyapunov equation, we can even extend the
result to the d-dimensional case described by a tensorized linear system of equations.
We further provide some reasonable extensions of some of the most frequently used
linear low rank solution techniques such as the alternating directions implicit (ADI)
iteration and the Krlyov-plus-inverse-Krylov (KPIK) method. By means of some
standard numerical examples used in the area of bilinear model order reduction, we
will show the efficiency of the new methods.
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1 Introduction

In this paper, we want to study a certain class of generalized Lyapunov equations of the
form

m
AX + XA" +> N;XN] + BB =0, (1)
j=1

where A, N; € R"*", B € R™™"™. This type of equation has been shown to arise in the
context of bilinear and special linear stochastic differential equations, see e.g. [6, 12} 20].
For the latter type of systems, the matrices IN; are associated with uncertainties described
by independent zero mean real Wiener processes and usually are small compared to the
system matrix A. In more detail, there is a direct relation between the solution X of
being positive definite and mean-square-stability of the system, see e.g. [I]. Moreover,
one can define certain energy functionals which can be characterized by means of X and
the solution of a dual Lyapunov equation. This allows to determine the importance of the
system states w.r.t. an input-output map and thus opens up the way to generalize model
reduction methods such as balanced truncation for linear systems. For bilinear control
systems, control concepts as well as the meaning of X is far less obvious. For example,
stability and controllability have to be defined locally and X might become indefinite
although the system is locally stable. Nevertheless, there has recently been given an
interpretation which also makes use of energy functionals, see [6]. Furthermore, the
so-called generalized reachability Gramian X has been extensively used in the context
of model order reduction for bilinear systems as well, see e.g. [0 10, 20]. Note that,
although bilinear control systems belong to the class of nonlinear control systems, the
reachability Gramian X is defined as the solution of a linear matrix equation and thus
one might extend some well-known results for linear systems. Hence, let us for a moment
consider the more prominent case given by the standard Lyapunov equation

AX + XAT + BBT =, (2)

where A € R™*" B € R™™ which arises e.g. in the stability analysis of linear continu-
ous time-invariant control systems. In the following, whenever we speak of the standard
case, we will refer to eq. . Here, if the pair (A, B) is controllable, there is a one-to-
one-correspondence between the location of the eigenvalues of A and the property of the
solution matrix X = X7 € R™*" being positive definite.

If the number of inputs is small, i.e. m < n, the singular values of X often tend to
decay exponentially fast, see e.g. [2,[19,[30], meaning that there exists a matrix L € R™*"
with r < ns.t. X &~ X = LLT. Over the last years, this has caused the development of
several different iterative methods like e.g. KPIK (see [33]) and the ADI iteration (see
e.g. [7,29,30]) that work solely on the low rank factor L and therefore allow to compute
solutions for dimensions up to n ~ 10. Other low rank techniques rely on considering
the explicit system of linear equations corresponding to . To be more precise, for
m = 1, we obtain the following tensor product structure

I®A+A®I)vec(X)=—-B® B. (3)



As has been shown in [19, 26], the main advantage now is that most of the low rank
approaches dealing with the above structure can be even generalized to the d-dimensional
case with additional mass matrices appearing within the tensor structure

d d
(ZEl®"'®Ei—1®Ai®Ei+l®"'®Ed> vec(X):®bi. (4)
i=1

i=1

Since the special structure of allows to diagonalize the left-hand side by a matrix of
tensor rank 1, the approximation procedure amounts to approximating the function

1

TlyeoyXg) = —————.
e ) r1+---+ x4

Our intention now is to generalize the above ideas to . Hence, let us come back
to the more general situation. Except in the case that the N; commute with A, little
is known about the singular value decay of X. However, as already observed in [6], the
solution X still seems to exhibit similar properties as in the standard case. Moreover, in
the context of high-dimensional eigenvalue problems, in [28], the authors already have
proposed some methods for the d-dimensional case that expect the solution X to possess
good low rank approximations. The goal of this paper is to give a theoretical explanation
for this phenomenon in case that some restrictions are imposed on the matrices. This
will justify the generalization of some linear low rank solution methods which will be
suggested in this paper as well. Moreover, we will briefly address the d-dimensional
tensor product case, i.e.

d k
Y E® RE 1041 @B+ Y Nj®-®Nj, | vec(X) =)
i=1 j=1 j

In more detail, we will now proceed as follows. In Section 2, we will briefly review
the basic results known from the standard case. This will include a short discussion
on the tensor rank of a vectorized matrix, which will be an essential tool throughout
the rest of the paper. Subsequently, in Section 3, we will motivate the need for effi-
cient numerical treatment of large-scale generalized Lyapunov equations by means of
giving some detailed background on model order reduction of very large-scale bilinear
and stochastic linear control systems. In Section 4, we will make use of the Sherman-
Morrison-Woodbury formula to show the desired exponential decay of the singular values
of the solution matrix X. Starting with the special case d = 2, we will transfer the ideas
to the multidimensional case. Based on these results, several low rank solution methods
for d = 2, will be proposed in Section 5. Here, this will lead to a generalization of
some rational Krylov subspace methods as well as the low rank Cholesky-factor ADI
iteration. Finally, in Section 6, the new methods will be evaluated by means of several
numerical examples reaching up to dimensions n = 500 000. We will conclude with a
short summary and a discussion of future research perspectives in Section 7.



2 Preliminaries

We will start with the following definitions of the vec ()-operator as well as the Kronecker
product of two matrices.

Definition 2.1. ([22]) Let X = [z1,...,xmn] € R and Y € RP*9. Then

T z11Y ... xT1mY
vec(X):=| : | eR"™ XeY=| : D | e R

Tm Tn1Y ... TpmY

Note the very useful link between the vectorization of matrix products and the Kro-
necker product operation

vec (ABC) = (CT @ A) vec (B). (6)

These properties immediately yield a proof for the equivalence of equations and .
Furthermore, throughout the rest of this paper, we will make use of the tensor rank of
a vectorized matrix.

Definition 2.2. ([25]) Let x = vec (X) € R™. Then the minimal number k s.t.

k
T = E U; X v;,
i=1

where u;,v; € R™, is called the tensor rank of the vector x.

Remark 2.1. Due to the properties of the Kronecker product, it is easily seen that the
tensor rank of a vectorized matriz X coincides with rank (X) .

Let us now return to the tensor product representation highlighted in . For linear
systems with such a structure, in [19] it is shown that there exists a vector xj of tensor
rank k that fulfills a profitable error bound. The basic idea is to make use of the integral
representation of the inverse of the matrix in for which the use of a certain quadrature
formula leads to the following lemma.

Lemma 2.1. [19] Let A denote a matriz of tensor product structure as in (4) with tensor
right-hand side B. Assume that the sum of the spectra of the Ei_lAZ- s contained in the
strip Q = [Amin, Amax] D i[—p, u] € C_. Let k € N and define the following quadrature
weights and points

hst = ﬁ’ (7)
tj == log (exp(jhst) + v 1+exp (2jhst))> (8)
w; fat (9)

- \/1 + exp (—thst).



Then 3 Cygt s.t. the solution x to Ax = B can be approrimated by

k d

7o 2w; 2t ~1

Fi= ) ) exp B A B (10)
1 max

A
]:—k,‘ max i=

with approximation error

e 2uNl 41 A A
||z —z|| < Ttexp (“—Wﬁ)£||>\l—2 || dpA \|®E 'bill.
X =1

ma: )\max

Obviously, in the special case d = 2, the above statement immediately reveals that
the solution to the Lyapunov equation

AXET + EXAT + BBT =0,

can be approximated by a low rank matrix X = LLT, L € Rk with exponentially
decreasing approximation error || X — X||. The basic ideas for proving the assertion are,
on the one hand, the exponential character of the solution matrix A~! corresponding
to a system of linear equations Ax = B as well as the Dunford-Cauchy representation
of the underlying matrix exponential. On the other hand, one can exploit the special
tensor structure which allows to decompose the approximant & and thus leads to the
above tensor structure. However, for a more detailed analysis, we refer to [19].

Remark 2.2. The quadrature weights and points from Lemma[2.1] go back to the quadra-
ture formula of Stenger, see e.g. [35]. Note that the constant Cg is independent of the
individual problem and has been experimentally determined as Cs =~ 2.75, see [20)].

Remark 2.3. As has been shown in [26], at least for the symmetric and supersymmetric
case, respectively, one can construct even better approximations T that, although depend-
ing on the condition number of A, exhibit an exponentially decreasing approximation
error which is not slowed down by a square root term.

A somewhat different explanation for the singular value decay that is dedicated to the
2-dimensional case makes use of the error expression of the ADI iteration and additional
properties of Cauchy matrices. Although the corresponding theory is interesting as well,
we want to stick with the tensor product formulation and therefore only refer to |2, [30 [34]
for these alternative error expressions.

3 Generalized Lyapunov Equations Arising in Bilinear Model
Reduction

Now that we have reviewed the main theoretical concepts, we want to discuss the origin
of generalized Lyapunov equations of the form . For this, let us have a look at
an interesting subclass of nonlinear control systems which naturally appear in certain
boundary controlled dynamic processes, see e.g. [0, [9]. These so-called bilinear control



systems have already been studied for some years and have the following state-space
representation

z(t) = Azx(t) + Nix(t)u;(t) + Bu(t),
(t) (t) ;a()a() (t) a1

y(t) = Ca(t), 2(0) = o,

where A, N; € R™*", B € R"™™ (C € RP*". The concepts of reachability and observ-
ability, respectively, which are known from linear system theory have been shown (see
e.g. [1I}, [13]) to possess bilinear analogs that can be constructed iteratively as follows.
Let

Pl(tl) = eAtlB,
Pi(tl,...,ti)zeAti [Nlpi—l Nsz‘—l]; i:2,3,...

Then the reachability Gramian corresponding to is defined as

P:Z/O /0 PPdty - dt; (12)
=1

if it exists. Moreover, P then satisfies the bilinear Lyapunov equation specified in .
Similarly, the observability Gramian of satisfies the dual equation

ATQ+ QA+ NIQN;+CTC =o.
j=1

A nice property of these equations is given by their close relation to the problem of
model order reduction. As was shown in [6, [12], under certain reasonable assumptions,
the solutions P and () are symmetric positive-definite matrices, offering the possibility of
computing Cholesky decompositions P = UU* and Q = LL*, respectively. By means of a
singular value decomposition of the product of the two Chollesky factors Ul*L =ZSY* it
is possible to construct a state-space transformation T'= Sz Z*U~! = §72Y*L~! which
converts the system into a balanced realization, allowing to neglect states that are hard to
reach and, at the same time, difficult to observe, without influencing the systems transfer
behavior significantly. However, due to their rather complicated structure, solutions of
those Lyapunov equations so far can be computed only up to an order of n ~ 103 — 10%.
Nevertheless, it is often the case that the singular values of P and @) decay rather rapidly,
raising the question if there exists a theoretical explanation for this phenomenon.

Although belonging to a quite different class of control systems, Ito-type stochastic
linear systems

dr = Ax dt—{—ZAjm dw; + Bu dt, y=Cx,
j=1



with w; = wj(t) denoting independent zero mean real Wiener processes on a probability
space (2, F,u), lead to the same generalized Lyapunov equations, see e.g. [12l 21].
Finally, since one can interpret linear parameter-varying systems as a special class of
bilinear systems (see [4]) and hence construct reduced balanced realizations as well,
there is certainly a wide range of areas where these Lyapunov equations play a crucial
role.

4 Existence of Low Rank Approximations

In order to get a better understanding for the problems that occur in showing the
existence of low rank approximations to the solution of equations of the form

m
I@A+A®I+Y N;®N; | vec(X) = —vec (BB"), (13)
j=1
let us at first again have a look at the main aspects used in the standard case. As we

already mentioned in the beginning, one way of constructing low rank approximations is
based on the possibility of alternatively considering the approximation of the function

1
T1,T9) = :
f( ! 2) 1+ X2

This equivalence is easily seen as follows. Let A = QAQ ™! be the eigenvalue decompo-
sition of A. Then for the linear Lyapunov equation we have

(I®A+A®I)vec(X) = —vec (BBT)
which is the same as

QRQUIA+ASI) (Q'® Q") vec (X) = —vec (BBT).

However, this means that we can solve the transformed linear system of equations

(I®A+A®I)vec<)2'>:—Vec<f3B’T>, (14)

with vec (f() = (Qil ®Q*1) vec(X) and B = Q7 'B. In , we have to invert a
1

diagonal matrix leading to expressions of the form P
Obviously, to obtain an at least similar structure in the bilinear case, one has to impose
severe restrictions on the matrices A and IV;. Indeed, what one needs is a simultaneous
diagonalization as A = QAQ! and N; = QT';Q . As is well-known, see e.g. [22], this
means that A and N; must commute which in practice is almost never the case.
Hence, let us consider what happens if we want to make use of the integral represen-
tation of the solution of a system of linear equations. If we denote the coefficient matrix

in () with M, following [19], the inverse

Mlz/ exp (tM)dt,
0



can be approximated by

k
Z wj exp (t; M), (15)
i=—k

with the quadrature points ¢; and weights w; as specified in Section 2. Once more, in the
standard case the computation of the above matrix exponentials (see [22]) boils down to

exp(ti(Il @ A+ AR 1)) =exp (t;A) @ exp (t;A).

This in turn means that the approximate inverse of the matrix M is of tensor rank 2k+1,
leading to an approximative solution vec (X) of tensor rank or, equivalently, of column
rank (2k + 1) - m, where m is the number of columns of B. Again, for the bilinear case
there arise some problems. Here, we end up with expressions of the form

m
exp ti<I®A+A®I+ZNj®Nj> : (16)
j=1

where we can neither make an assertion on their tensor ranks nor on the column rank of
the solution X. As we can see, the crucial point is that the matrix exponential cannot
be split up into its components if the matrices do not commute, i.e.

exp | t; <I® A+A® —l—ZNj ®Nj> # (exp (t;A) ® exp (t;A)) exp tZ-(ZNj ®Nj>
j=1 j=1

However, in case of commutativity and additional low rank structure of the matrices N;,
we obtain a first simple result.

Proposition 4.1. Let A, N; € R™" be diagonalizable and assume they commute.
m

Further assume that r = Zrank (N;j) < n. Then the inverse of
—_————

—
J "

m
M=I®A+A®I+Y N;®N,
j=1

can be approximated by a matriz of tensor rank not greater than (2k + 1) - (r + 1) with
approzimation error decreasing proportionally to exp (—F\/E).

Proof. Due to commutativity, the matrix exponentials given in simplify according
to the aforementioned splitting. Thus, we only need to check the exponential term of
the INV; summands. However, since we assumed commutativity, all N; = TD]-T_1 can be



diagonalized simultaneously, leading to

m m
exp ti<ZNj®Nj> =(T'®T)exp tz<ZD ®D> (ToT)™!

Jj=1
m T"j

— (T&T)exp tl-(z S iy el ® Dj> (T o)

j=1 k=1

with jgi denoting the index of the k-th nonzero diagonal entry of D;. The assertion now
trivially follows by the definition of the matrix exponential and the fact that e;,, eg;k is
an idempotent matrix.

Remark 4.1. Note that the idea of the proof is not influenced if we replace the terms
N; ® N;j by N;j ® R;, where R; is a matriz of full rank. Moreover, by inspection we
observe that an equivalent assertion is true if N; has full rank and R; is a low rank
matric.

Although we already discussed the absence of commutative matrices in practice,
Proposition not only explains the singular value decay of the solution P of the
generalized Lyapunov equation , but yields an approximation of low tensor rank to
the inverse M~ as well. Obviously, in general this is more complicated than showing
the singular value decay of P. However, for our purposes it will be sufficient to show the
property for P. Let us now assume that the matrices N; have a low rank representation
given by matrices U;, V; € R"*"i st. N; = UjVjT. As discussed in [12], we can make
use of the splitting

m
IRA+ARI+) N;®N;
——
L j=1
in order to apply the Sherman-Morrison-Woodbury formula which will help us to prove
our main result.

Theorem 4.1. Let A denote a matrix of tensor product structure as in with right-
hand side B = — vec (BBT) . Assume that the spectrum ofA is contained in the strip
Q = [Amin, Amax) ® i[—p, p] € C_. Let further Nj = U; V , with U;, V; € R™"5 and let
r = E?:N‘j and U = [U1®U1 Um®Um] and V = [V1®V1 Vm®Vm].
Then the solution x to Ax = B can be approximated by a vector of tensor rank (2 -k +
1) - (m+r) of the form

z:= zk: /\2::( (exp ()\215;14> ® exp <)\?ZXA>) B -UY], (17)

l=—k

where Y is the solution of

(Le+VILT'U) Y =VTL7'B (18)



and wy, ty are the quadrature weights and points from Lemma |2.1. The corresponding
approrimation error is given as

C, 2uN=t o+ 1
o — 7| < —ot eXp( FAmax + —m/E)]f\|M—2 A r dea
s s T

)\max )\max

m (19)
T -1 T
< ||BBY +Y " Ujvec™ (V) U,
j=1
where Yy, denotes the 7“]2- elements ranging from Zg;ll 7“12 +1 to g:l 7“12.

Proof. Let us consider the tensor structure

<I®A+A®I+§:Nj®Nj)x:B.

C Jj=1
———
UvT

Making use of the low rank structure and the Sherman-Morrison-Woodbury formula,
the computation of the inverse of A simplifies to

A =L - LU (L + VT L) T VT L
Hence, solving Az = B is equivalent to solving

I@A+A®ae=B-U(L.+ VL 'U) " VIL B,
Yy

However, the last equation is a standard Lyapunov equation for which we can apply
the results from Lemma Nevertheless, for the assertion on the tensor rank of z, it
remains to show that the tensor rank of B — U) is m + r. This is easily seen by the

definition of U = [Ul QU ... Unp,® Um] . In fact, what we obtain is
UY=[Uh@U ... Un@Uy) Y=Y Ujvec™" (W) UJ
=1 =Y 7T
J

Ty

m m Tj
= Z UJZY]Tl = Z ZY]Z ® Uj;.

j=1i=1 j=1i=1

In the last line, the second subscript 7 denotes the i-th column of the matrices. By
assumption the r; sum up to r, leading to a tensor rank of (2-k + 1) - (m + r). The
approximation error trivially follows by the same inversion of the vec ()-operator and
applying well-known linear results, e.g. [2, 19, B0], for a modified right-hand side
—vec (BBT) —UY. O

10



Remark 4.2. Obviously, there exist special cases where the N; are full-rank matrices
and we still can expect a strong singular value decay of the solution X. Here, one might

think of
AX + XAT 4+ AX AT + BBT =0,
or the even easier case
AX+XAT + X +BBT =0.

Both of the above equations reduce to a modified linear Lyapunov equation with right-
hand side of rank m. However, note that each time N commutes with A. Nevertheless, so
far it remains an open question if it is possible to extend decay results for a more general
setting as well. The numerical results shown in Section 6 indicate that there seem to be
conditions for low rank properties also in this case.

Although for the higher dimensional case the tensor rank will increase exponentially
with the dimensions, it might be worth noting that we can still expect low rank approx-
imations as stated in the following corollary. For this, let

d
Li=) Ei1® - ®FE 10A®E.Q - QF,
=1

Corollary 4.1. Let A denote a matrixz of tensor product structure as in (@ with tensor
right-hand side B = ®f:1 b; and Nj, = Nj, with rank (N;) = r;. Assume that the sum
of the spectra of the E;lAi is contained in the strip  := [Amin, Amax] ® i[—p, p] C
C_. Let further N; = UjVjT, with U, V; € R™ " and let r = E;n:l ri and U =
[®?:1 U ... ®§l:1 Um} and V = [@?:1 i ®?:1 Vm} . Then the solution x
to Az = B can be approzimated by a vector of tensor rank (2-k+ 1) - (m +r4=1) of the
form

k d
~ 2’[1)[ 2t£ -1
z:= Z -~ ®exp <)\main Ai> B -UY], (20)
{=—k i=1
where Y 1is the solution of
(La+VTL7'U)Y=VTL]'B (21)

and wy, t; are the weights from Lemma[2.1. The corresponding approzimation error is
given as

. C, 2uN=t 1 A
[ exp( HAmax T —W\/E)jfw—z I+ drA
7r 0 r A

AI‘Ila.)( max
m d
X HB+Z (@U}) Vlla-
j=1 \i=1

(22)

11



Proof. The assertion on the tensor rank easily follows by iteratively applying the pro-
cedure from the proof of Theorem E to the terms <®§l:1 Uj> Y, eg. for d = 3, we
obtain

(Uj ®Uj ®Uj)y = [Uj1 ® (Uj ®Uj)y1 - Uj'r ® (Uj ®Uj)yr] .

Since each of the terms (U; ® Uj) Y is of tensor rank r, it is clear that (U; ® U; @ U;) Y
is of tensor rank r2. All other results can be proved analogously as before. O

Remark 4.3. Though the rank of the approximation increases exponentially with d, so
does the mazimum possible tensor rank which is n®'. Hence, the ratio between full and

. . d—1
approximate solution is ~ (%) .

5 Low Rank Solution Methods

Now that we have seen that we indeed can expect a singular value decay of the solution
matrix X of , we want to discuss possible extensions of existing linear low rank
Lyapunov solvers that have been proven to yield accurate low rank approximations
LLT ~ X. Here, we will point out the LRCF-ADI iteration, KPIK together with the
more general rational Krylov framework and finally approaches that rely on solving the
explicit linear system in tensorized form by iterative solvers like e.g. BiCGstab. As has
been pointed out in [12], for the generalized Lyapunov equation

m
AX + XAT+Y N;XN] +BB" =0,
j=1
£ N———
11

it makes sense to demand that the spectral radius p (E_lﬂ) < 1 since we otherwise
cannot ensure that X is positive semi-definite. However, at least in the bilinear case
there exist a lot of interesting applications that lead to indefinite solution matrices X
and we therefore will address problems that might occur in these cases.

5.1 The Low Rank ADI iteration

Let us now focus on the low rank version of the alternating directions implicit iteration.
We will take for granted that the reader is familiar with the main concepts in the standard
case which go back to solving elliptic and parabolic partial differential equations (see
[36, B7]). In general, the main idea is that for any parameter p > 0, the Lyapunov
operator £ can be shifted according to

AX + X AT = 21p (A+p)X(A+pD)T — (A-pD)X(A-pD)T). (23)

12



In [12], for a given set of shift parameters {pg,p1,...}, this circumstance was used to
solve (|1]) via the following fixed-point iteration

Xir1 = (A—pe) M A+ pr D Xp(A+ pr )T (A — pp D)7

m
+2pr(A—pid)™H | Y N; XN + BB" | (A—ppI)™".
j=1

However, for dimensions n larger than 103 the above scheme will not be feasible since
in each step we have to solve a linear system with a matrix right-hand side which might
easily become too expensive. Moreover, for even larger dimensions, the simple storing of
the generally dense matrix X will cause serious memory problems. On the other hand,
we can take advantage of the fact that we know the solution matrix X is symmetric and,
according to the previous section, tends to have a strong singular value decay as well.
For this reason, as in the standard case, suggested in [7, 29] B0], instead of the full-rank
version, it is reasonable to start with a symmetric initial guess, e.g. Xy = BBT, and
then only compute the low rank factors Z; according to

Zyrr = (A=) (A+pD)Zy V2pk(A—pid) "' N;Zy 2pk(A —pp D)~ B].
Obviously, the advantage is that we now only have to solve 2 + m systems of linear
equations with low rank right-hand side. In the standard case, it has been shown that
the iteration can be rewritten in such a way that Zx11 = [Zk Vk] , with V;, € R™*™,
making an appropriate algorithm much cheaper to evaluate. Unfortunately, due to non-
commutativity of A and N;, in our case this is not possible. If we assume that the iterate
Zy, consists of r columns, at least theoretically Zj,1 consists of (m+1) -7+ m columns.
However, we often obtain a deflation in the column spaces such that a so-called column
compression can prevent a too strong column increase. Another problem might arise in
case of the already mentioned absence of a convergent splitting which is quite common
for real-life examples of bilinear control systems. Here, it should be noted that the ADI
iteration will not converge and we therefore recommend the use of one of the other low
rank solvers which we will discuss in the next subsections. Let us now briefly take a look
at the choice of the shift parameters pi. While for linear systems the search for a set of
q optimal parameters is equivalent to the rational min-max problem

q
oy e 11

A—py
A+ pe

)

for the generalized version from above, we have to take into account that the additional
N; matrices will influence the speed of convergence. In more detail, let us consider the
case n =1 and j = 1, s.t. we are looking at the scalar equation

AX + XAT + NXNT + BBT = (24 + N)X + B* = 0.
In order to obtain convergence of the ADI iteration after the first step, we want to have
that X7 = X. However, this means that we have to compute a p which fulfills
B2

13



Solving this equation for p, the optimal parameter p,,; can be easily derived to satisfy

[popt + (A + N?)| = N\/2A + N2,

Hence, once more we have to realize that the non-commutativity of A and IN; does
not allow to generalize linear concepts like the min-max problem in an obvious way.
However, for linear systems it has recently been observed that the interpolation points
which minimize the Hs-norm between the original and a reduced-order system often
turn out to be good shifts for the ADI iteration as well, see e.g. [14, 17, 18]. A more
detailed explanation for this phenomenon is given in [5], where it is actually shown
that for symmetric state space systems these points are optimal w.r.t. a certain energy
norm naturally induced by the Lyapunov operator. Since the Hs-interpolation problem
was shown to possess a bilinear analog (see [3]), in Section [6 we will show that the
corresponding interpolation points have a positive effect on the convergence rate of the
bilinear ADI iteration as well.

5.2 Low Rank Solutions by Projection

A somewhat different approach for obtaining low rank approximate solutions of is
based on Krylov subspace methods. Following [32], one constructs a projection matrix
V € R™*? and, due to a Galerkin condition on the residual, solves a reduced Lyapunov
equation of much smaller size which is determined by

VIAVP + PVTATV + VIBBTV =0,

with P € R7%?. Assuming that A is dissipative, i.e. 27 (A+AT)z < 0, one can show that
the reduced Lyapunov equation possesses a unique symmetric positive definite solution
P = PT and the approximation to the full solution then is given by P = VPVT. The
question arises how to choose the subspace V' which should contain as much information
of the solution subspace as possible. For linear systems, as a fast and reliable method,
one should certainly mention the Krylov-plus-inverse-Krylov (KPIK) which has been
introduced in [33]. Here, one computes the two (block)-Krylov subspaces

K4(A,B), K, A A'B)

and then constructs V as an orthogonal basis of the union of the corresponding column
spaces. Alternatively, this may be achieved by the following iterative procedure

Vi= [B7A_1B]7
Vi=[AVio, A7), i<q
Usually, the above subspaces are generated by a modified Gram-Schmidt process which

leads to orthonormal bases in each step. In order to extend the approach to our gener-
alized setting, we suggest to proceed as follows

Vi=[B,A™'B],
Vi=[AVio1, A Wiy, N;Viq], i<q, j=1,...,m.
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Again, the Galerkin condition demands an orthogonal V, such that we have V :=
orth (V;) . Moreover, similar to the ADI iteration discussed in the previous section, one
should perform a column compression which keeps the rank increase in each step at a
compatible level. Analog to the discussions on the standard case given in [23| 24} 32, 33],
one can use the nestedness of the subspaces generated during the process to prove the
following useful result that allows to replace the computation of the residual R; € R™*™
by a matrix of smaller dimension.

Theorem 5.1. Let R; := AX,; + X;AT + Z;nzl NinNJT + BBT denote the residual
associated with the approximate solution X; = ViXiViT, where XZ 1s the solution of the
reduced Lyapunov equation

m
VIAVX; + X VEATV + Y VIN VX VENTV + VP BBV, = 0.
j=1

Then it holds range (R;) = range (Vi+1) and ||R;|| = ||V;{1 RiVis1]|.

Proof. The first assertion follows from the fact that, due to the iterative construction of
Vi1, we have
Vi C Vi1, AV, CViga, N;jV; CVigr.

Moreover, with the same argument and the orthonormality of V;11, it holds
R; = VinVi RiVi Vigy.
This implies ||R;|| = [|[VE RiVig]|. O

Note that in contrast to the standard case it seems to be impossible to further simplify
the expression for the residual. Here, the problem is that the Hessenberg structure of
the projected system matrix T = V;TAVZ- is lost.

Another possibility is to project onto a rational Krylov subspace

V=[oI-A)B,... (0,0 —A)'B],

where o1, ..., 04 are prespecified interpolation points. Although the computational costs
are higher, this method allows to speed up convergence rates significantly, provided a
clever choice of the interpolation points is known. For the standard case, a detailed
analysis on this topic can be found in [14]. As has been shown in [3], the rational
Krylov framework can be extended to the bilinear case by making use of the idea of
tangential interpolation. To be more specific, if interpolation points o1, ..., 0, together
with tangential directions B € R9*™ and Nj € R?9%? are chosen, the projection matrix
V is given by

-1

vec (V) = diag(al,...,aq)®fn—Iq®A—ZNj®Nj (B@B) vec (I,) .
j=1
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However, so far there is no theory about a priori choices of good interpolation points
and at this point we thus leave it as a topic of further research. Before we proceed, we
want to point out that the previous method does not require o (£*1H) < 1. This is due
to the fact that the reduced Lyapunov equation is of much smaller size and thus might
be solved by forming the explicit system of linear equations.

5.3 lterative Linear Solvers

Finally, in this section we want to address the possibility of efficiently solving the ten-
sorized linear system of equations by iterative solvers like CG (symmetric case) or
BiCGstab (unsymmetric case). Here, the crucial point is to note that we can incorporate
the to-expected low rank structure of P into the algorithm which will allow to reduce
the complexity significantly.

The Symmetric Case

Since a quite similar discussion for more general tensorized linear systems can be found
in [27], we will follow the notations therein and only briefly discuss how to adapt the
main concepts to our purposes. Assuming that the matrices A and N; are symmetric,
we can modify the preconditioned CG method. For this, let us have a look at Algorithm
which has already been studied in [27] in the context of solving equations of the form

(1)

Algorithm 1 Preconditioned CG method
Input: Matrix functions A, M : R™*" — R™*" low rank factor B of right-hand side
B = —BB”. Truncation operator 7 w.r.t. relative accuracy €,;.
Output: Low rank approximation X = LDLT with ||A(X) — B||r < tol.
1. Xo =0, Ry =B, Zo = M~ (Ry), Py = Zo, Qo = A(Pp), & = (Po,Qo),k =0

2: while ||Rg||r > tol do

3: Wi = Utﬁéifw

40 Xpy1 = Xp + wp Py, X1 < T(Xkt1)
5 Rpy1=B— A(Xkt1), Optionally: Ryy1 < T (Ry41)
6 Zky1 = M (Riy1)

7 By =— <Zk-2:Qk>

8 Pry1 = Zrt1 + Bl Piy1 < T(Pry1)
9 Qirt1 = A(Pgt1), Optionally: Qr+1 <+ T (Qk+1)
10: &gyt = (Pry1, Qrr1)

11: k=k+1

12: end while

13: X = X,

The application of the matrix function A to a matrix X here should denote the
operation AX + XAT + Z;nzl N; X N]T . As a preconditioner M~ we will use the low
rank version of the bilinear ADI iteration which we studied in Subsection[5.1] whereas the
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truncation operator 7 should be understood as a simple column compression as described
in e.g. [27]. The only point to clarify is that we indeed can ensure a decomposition
X = LkaLZ, with diagonal matrix D, in each step of the algorithm. We start with
Ry = B = —BBT which obviously can be decomposed into Ry = Lg, Dg, L%O by setting
Lr, = B and Dg, = —I,,,. Next, we note that the bilinear ADI iteration is not restricted
to a factorization of the form ZZT but can also be applied to low rank decompositions
LDLT, see [8]. This is easily seen as follows. Recalling the iteration procedure, we
formally assume that Zj, = L;+/D;, and obtain the new iterate

Ziw1 = (A—pi) " [(A+ peI) Liv/Dr V2pkN;jLig/Dy, v/2px VD],

where Lv/D is the initial input to the ADI iteration. However, forming the product
Zk+1Zk+1, it is clear that we can replace the step by setting

Lis1=(A—pel) 7' [(A+peD) L v20eN;Li, v2piL]

D, 0 O
Dyy1=10 D O
0 0 D

Now we only have to check for a possible decomposition of the matrix which is returned
after applying the matrix function A to a factorized matrix LDL”T. By the definition of
A, it follows

m
A(LDL") = ALDL" + LDL" A" + Y " N,LDL" N}

j=1
0 D 0
—[AL L N;L]|D 0 0|[AL L N;I]"
[0 0 D >
N —— LT
D

Even though D is not a diagonal matrix any more, it is a symmetric monomial matrix.
However, in this case LDLT is also symmetric and thus can be factorized by LDLT,
where D again is diagonal. All other computations in Algorithm [1 I do not influence the
diagonal structure of D allowing to preserve the desired factorization and solely operate
on the low rank factors L and D, respectively.

The Unsymmetric Case

Similarly, one might implement more sophisticated algorithms, which are also applicable
in the case that A and NN; are unsymmetric. Obviously, there are numerous possible
iterative solvers which can be used. However, in this paper we will restrict ourselves to
the BiCGstab algorithm. Again, we refer to [27], for a similar discussion on Algorithm
Once more, note that the only difference is that our version here is dedicated to
solving equations of the form which has to be taken care of in evaluating A and the
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special preconditioner M ™! given by the bilinear ADI iteration. As has been discussed
n [15] [16] for the standard case, unsymmetric matrices might also be tackled by a low
rank variant of the GMRES method together with a suitable preconditioning technique.

Just as solving the Lyapunov equation by a projection onto a smaller subspace, the
use of an iterative linear solver has the advantage that we do not need the assumption
o ([flﬂ) < 1 as long as we refrain from preconditioning with the bilinear ADI iteration
which in case of o ([fll'[) > 1 will not converge. If this is the case, we can still precon-
dition with a number of linear ADI iterations which we assume to be at least a rough
approximation to the inverse of the bilinear Lyapunov operator, see also the discussion
n [12].

Algorithm 2 Preconditioned BiCGstab method
Input: Matrix functions A, M : R"*™ — R™ " low rank factor B of right-hand side
B = —BBT. Truncation operator 7 w.r.t. relative accuracy €,;.
Output: Low rank approximation X = LDL" with |[A(X) = Bl|p < tol.
1: Xo=0,Ry=B, R=B, po = (R,Ry), Py = Ry, Py = M~ (Py), Vo = A(Fy), k=0
2: while ||Rg||r > tol do

R,R
e = G
4: Sk = Rp — wi Vi Optionally: Sk «— T(Sk)
5. Sp=MTLS), Optionally: Sy, + T(Sk)
6: T = A(S), Optionally: Ty < T (Ty)
7 if ||Sk||r <tol then
8: X=X+ wkpk,
9: return,
10:  end if
e &= (g
120 Xgq1 = Xy + wi P + &Sk, Xp1 < T(Xg41)
13: Rpy1 =B — A(Xg+1), Optionally: Rpi1 < T (Rga1)
14:  if ||Rg||Fr <tol then
15: X = Xy,
16: return,
17 end if

18 pri1 = (R, Riy1),

P
Y

20: Py1 = Rip1 + B(Br — & Vi), Pri1 < T (Pry1)
21:  Ppyp = M_Al(Pk-s-l)? Optionally: Py < T(Pyy1)
22:  Viy1 = A(Pri1), Optionally: Vi1 < T (Viy1)
23 k=k+1

24: end while
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6 Numerical Examples

In this section, we will now study the performance of the proposed methods by means
of some standard numerical test examples. The first and the second benchmark fulfill
the assumptions stated in Theorem meaning that the bilinear coupling matrix N
is of low rank compared to the system dimension n. Hence, we know that we can in-
deed expect low rank approximations of the generalized Lyapunov equations as well.
However, the third benchmark contains a coupling matrix N which has full rank. Nev-
ertheless, we show that there still seems to be a significant singular value decay in
the solution matrix X which allows for low rank approximations. All simulations were
generated on an Intel®Xeon® Westmere X5650 with 2.66GHz, 48GB DDR3 RAM and
MATLAB® Version 7.11.0.584 (R2010b) 64-bit (glnxa64).

Heat equation

The first example we want to discuss is the heat equation subject to the following mixed
boundary conditions

T = Ax in 2=(0,1) x (0,1),
n-Vr=05 ulx—1) on I'y,
z=0 on FQ,Fg,F4,

where I'1,I'2,I'3 and I'y denote the boundaries of ). Since the above benchmark has
been studied a couple of times in the literature, we omit a detailed description of the
model and instead only refer to e.g. [0, O, 12]. As is shown in Figure [1, we solve the
generalized Lyapunov equation up to a system dimension of n = 562 500, corresponding
to a grid consisting of 750 grid points in each direction. For the bilinear extension of the
ADI iteration, we test several choices for the shift parameters. As previously indicated,
we compare the interpolation points resulting from a locally Hs-optimal reduced order
model obtained by the procedure proposed in [3] with the optimal shifts for the standard
case derived by Wachspress, see [37]. While for a smaller number of parameters, the
convergence rate is worse than for the optimal parameters for the linear problem, for
an increasing number of He-interpolation points, the convergence improves significantly.
Note that this effect has already been observed for the standard Lyapunov equations, see
[5]. Furthermore, in Figure [1, we see that the approximations obtained by using a low
rank implementation of the CG method perform the best for this specific example. Note
that the rank of the final iterate is only 63, while the corresponding relative residual is
smaller than 107, On the other hand, the extension of the KPIK method stagnates at
a relative residual of the order 1072.

A nonlinear RC circuit

Our second example has also been studied several times in the literature, especially in
the context of nonlinear model order reduction. The system is a scalable RC ladder
with k resistors whose voltage-current dependency is given by an exponential term.
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Figure 1: Heat equation. Comparison of low rank solution methods for n = 562 500.

Since the original system is in fact nonlinear, we perform a second order Carleman
bilinearization, see also [6, 1], leading to a system dimension n = k + k2. Here, the
bilinearization process leads to a bilinear coupling matrix N which is only of rank k.
The computations were done for k¥ = 500 and consequently n = 250 000. Moreover, we
scale the matrix IV by a factor of 0.5 in order to ensure a positive semi-definite solution
P of the associated generalized Lyapunov equation. In Figure [2, we again compare
the performance of the bilinear ADI iteration for two different sets of shift parameters.
In contrast to the previous example, here the optimal linear parameters proposed by
Wachspress clearly outperform a larger set of Ho-optimal shifts. Although the latter
ones lead to a fast decrease of the residual within the first steps of the algorithm, we
then obtain an almost stagnating residual curve which after 300 steps does not reach a
standard stopping criterion of 10~8. Moreover, in Figure [2, we see the results for two
different preconditioners for the low rank implementation of the BiCGstab method. The
first one is the low rank version of the bilinear ADI iteration which we have previously
discussed in detail and for which we only compute the first two iterates in each step of the
BiCGstab algorithm. The same is done for the standard low rank ADI iteration which
we expect to approximate only the inverse of the standard Lyapunov operator. However,
as can be seen in Figure[2] there is no visible advantage which might allow recommending
the first method. In fact, using the standard ADI iteration as a preconditioner results in
a much smaller final low rank approximation which at least in this example should thus
be preferred. Nevertheless, since both variants converged to a relative residual of 1078
after 9 iterations, they seem to be reasonable choices for preconditioning. Finally, the
extension of the KPIK method converged to a relative residual of 1077. It is interesting
to note that the ranks of the approximations decrease at the later stage of the algorithm.
This is due to the fact that we solved the reduced Lyapunov equation by means of the
bilinear ADI iteration as well so that in some cases the ranks of the solutions can be
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Figure 2: RC circuit. Comparison of low rank solution methods for n = 250 000.

further reduced.

Fokker-Planck equation

In order to show that in some cases one might obtain a fast singular value decay even if
the bilinear coupling matrix is of full rank, as a final example we consider an application
from stochastic control which was already studied in [21]. There the authors discuss a
model for a dragged Brownian particle whose one-dimensional motion is described by
the stochastic differential equation

dX; = —VV(Xy, t)dt + V20dW;,

with V(z,u) = W(z,t)+ ®(z,u;) = (2> — 1) —zu — z. Here, we use o = 5 and spatially
discretize the underlying probability distribution function with n = 10 000 points. As
shown in [21], this setting leads to a bilinear matrix N of rank 10 000. In Figure (3| we
see the convergence history for the bilinear ADI iteration using only 2 Wachspress shifts.
The relative residual of the final iterate is 10719 while the rank is only 31, indicating that
the full solution X indeed exhibits a very strong singular value decay. However, at least
for this example, using Hs-optimal shifts for the iteration does not lead to satisfying
convergence results and, hence, are neglected in the figure. On the other hand, the
low rank implementation of the BiCGstab method as well as the bilinear KPIK variant
converged to relative residuals of 10710, although the approximation of the latter one
resulted in having the largest rank.

Remarks on the Computational Complexity

Based on the above results, at a first glance it seems reasonable to recommend the use
of an iterative linear solver since the number of iterations as well as the rank of the final
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Figure 3: Fokker-Planck. Comparison of low rank solution methods for n = 10 000.

approximation often is the smallest. However, when choosing a numerical algorithm,
the computational complexity clearly has to be taken into account. Unfortunately, a
rigorous complexity analysis of our algorithms is hardly possible. This is due to the
fact that if the theoretical costs were actually reached, all our algorithms would no
longer be feasible. Let us for example consider the bilinear ADI iteration from Section
5. We have already seen that in each step we have to solve (2 4+ m) systems of linear
equations. The point is that the corresponding right-hand side theoretically grows from
size k up to size (m + 1) - kK + m, where m is the number of inputs. Hence, performing
the truncation operation, that keeps the growth of the low rank approximation at a
descent level, becomes more and more expensive. Nevertheless, the actual growth of the
iterates cannot be specified in general and usually is much smaller than the theoretical
expectation. Further, the computation of good shift parameters is even more complicated
than in the standard case such that the total costs often might exceed those of the other
methods, depending on the speed of convergence.

Regarding the costs of an iterative solver like CG or BiCGstab, one has to keep in
mind that using an appropriate preconditioner is essential for obtaining a small iteration
number. Since here we proposed to precondition with one step of the bilinear ADI
iteration, the complexity also depends on the rank of the current iterate. To be more
specific, we can record that the major costs result from the truncation operator and,
in case of the projection-based approach, from the necessary orthogonalization by a
modified Gram-Schmidt process of the generated Krylov subspaces.

7 Conclusions

In this paper, we have studied a class of generalized Lyapunov equations which natu-
rally arise in the context of model order reduction of bilinear control systems and linear
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parameter-varying systems as well as for the stability analysis of linear stochastic differ-
ential equations. Under certain low rank assumptions on the involved matrices, we have
shown that one can expect a rapid decrease of the singular values of the solutions, justify-
ing the construction of low rank approximations of the form X = ZZ7 and X = LDLT,
respectively. We have further proposed some extensions of successful linear low rank
approximation procedures and have investigated their usefulness by means of certain
large-scale numerical test examples which to some extent fulfill the low rank properties
we needed to prove our main results. While the performance is quite good and allows for
solving generalized Lyapunov equations of up to the order 562 500, some problems are
still open. Here, we think of the generalization of the rational Zolotarev problem which
in the standard case leads to optimal shift parameters for the ADI iteration. Moreover,
it seems to be an interesting topic of further research to give an explanation for the ob-
served fast singular value decay of the solution matrix X although the bilinear coupling
matrix N is of full rank.
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