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A LOW-RANK IN TIME APPROACH TO PDE-CONSTRAINED

OPTIMIZATION

MARTIN STOLL∗ AND TOBIAS BREITEN†

Abstract. The solution of time-dependent PDE-constrained optimization problems is a chal-
lenging task in numerical analysis and applied mathematics. All-at-once discretizations and corre-
sponding solvers provide efficient methods to robustly solve the arising discretized equations. One
of the drawbacks of this approach is the high storage demand for the vectors representing the dis-
crete space-time cylinder. We here introduce a low-rank in time technique that exploits the low-rank
nature of the solution. The theoretical foundations for this approach originate in the numerical treat-
ment of matrix equations and can be carried over to PDE-constrained optimization. We illustrate
how three different problems can be rewritten and used within a low-rank Krylov subspace solver
with appropriate preconditioning.

Key words. PDE-constrained optimization, low-rank methods, space-time methods, precondi-
tioning, Schur complement, matrix equations.
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1. Introduction. Many complex phenomena in the natural, engineering and life
sciences are modeled using partial differential equations (PDEs). To obtain optimal
configurations of these equations one typically formulates this as a PDE-constrained
optimization problem of the following form

minJ (y, u)

subject to

L(y, u) = 0.

With J (y, u) the functional of interest and L(y, u) representing the differential oper-
ator. Problems of this type have been carefully analyzed in the past (see [46, 81] and
the references therein).

Recently with the advancement of algorithms and technology, research has focused
on the efficient numerical solution of these problems. In this paper we focus on the
efficient solution of the discretized first order conditions in a space-time framework.
The KKT conditions when considered in an all-at-once approach, i.e., simultaneous
discretization in space and time, are typically of vast dimensionality. Matrix-free
approaches have recently been developed to guarantee the (nearly) optimal conver-
gence of iterative Krylov subspace solvers. The focus both for steady [65, 70] and
transient problems [58, 78] has been on the development of efficient preconditioning
strategies for the linear system that typically are of structured form (see [16, 26] for
introductions to the numerical solution of saddle point systems).

One of the obstacles using a space-time discretization is the storage requirement
for the large vectors needed to represent the solution at all times. Approaches such as
checkpointing [37] or multiple shooting [42] are possible alternatives. We here want
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to introduce an alternative to these schemes that can for certain problems provide
an efficient representation with a minimal amount of storage. We are basing our
methodology on recent developments within the solution of large and sparse matrix
equations, see e.g., [4, 13, 24, 27, 35, 47, 48, 51, 67, 71, 74, 82] and references therein.
One classical representative in this category is the Lyapunov equation

AX +XAT = −C̃C̃T

where we are interested in approximating the matrix-valued unknown X. Solving this
system is equivalent to solving the linear system

(I ⊗A+A⊗ I)x = c̃

where x and c̃ are related to X and C̃C̃T , respectively. For details on the relevance
of this equation within control theory, see [3, 41, 49]. In [15, 53, 61, 62, 67] the
authors have introduced low-rank iterative schemes that approximate intermediate
iterates Xk in a low-rank fashion that is maintained until convergence. We can exploit
these technologies for problems coming from PDE-constrained optimization. It is not
expected that these techniques outperforms optimal solvers with a few time-steps.
The more crucial component is that they enable computations with many time-steps
that would otherwise not be possible.

The paper is structured as follows. In Section 2 we introduce the heat equation
as our model problem and discuss its discretization. Section 3 illustrates how this
problem can be reformulated using Kronecker technology and how we need to adapt
a standard Krylov-subspace solver to be able to solve this problem efficiently. As we
need a preconditioner for fast convergence we next discuss possible preconditioners in
Section 3. We provide some theoretical results in Section 4. Section 5 is devoted to
illustrating that our methodology can be carried over to other state equations such
as Stokes equations and the convection-diffusion equation. Finally, in Section 6 we
illustrate the competitiveness of our approach.

2. A PDE-constrained optimization model problem. We start the deriva-
tion of the low-rank in time method by considering an often used model problem in
PDE-constrained optimization (see [44, 46, 81]) that nevertheless reflects the crucial
structure exhibited by many problems of similar type. Our goal is the minimization
of a misfit functional that aims at bringing the state y as close as possible to a desired
or observed state yobs while using a control u, i.e.,

min
y,u

1

2
‖y − yobs‖2L2(Ω1)

+
β

2
‖u‖2L2(Ω2)

, (2.1)

(2.2)

subject to a partial differential equation that connects both state and control, referred
to as the state equation. We start by considering the heat equation with a distributed
control term

yt −∇2y = u, in Ω, (2.3)

y = f, on ∂Ω,

or equipped with Neumann-boundary control

yt −∇2y = f, in Ω, (2.4)

∂y

∂n
= u, on ∂Ω.
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For a more detailed discussion on the well-posedness, existence of solutions, etc. we
refer the interested reader to [44, 46, 81]. Classically these problems are solved using
a Lagrangian to incorporate the constraints and then consider the first order optimal-
ity conditions or KKT conditions [46, 55, 81]. This can be done either by forming a
discrete Lagrangian and then perform the optimization procedure or by first consid-
ering an infinite-dimensional Lagrangian for whose first order conditions we employ a
suitable discretization. We here perform the first approach although much of what we
state in this paper is valid for both cases. Our goal is to build a discrete Lagrangian
using an all-at-once approach [58, 78] using a discrete problem within the space-time
cylinder Ω × [0, T ]. Using the trapezoidal rule in time and finite elements in space
leads to the following discrete objective function

J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u (2.5)

withM1 = blkdiag
(
1
2M1,M1, . . . ,M1,

1
2M1

)
,M2 = blkdiag

(
1
2M2,M2, . . . ,M2,

1
2M2

)

being space-time matrices where M1 is the mass matrix associated with the domain
Ω1 and M2 is the corresponding mass matrix for Ω2. The vectors y = [yT1 . . . yTnt

]T

and u = [uT
1 . . . uT

nt
]T are of vast dimensionality and represent a collection of spatial

vectors for all time steps collected into one single vector.
The all-at-once discretization of the state equation using finite elements in space

and an implicit Euler scheme in time is given by

Ky − τNu = d (2.6)

where

K =








L
−M L

. . .
. . .

−M L







, N =








N
N

. . .

N







, d =








M1y0 + f
f
...
f







.

Here, M is the mass matrix for the domain Ω, the matrix L is defined as L = M+τK,
the matrix N represents the control term either via a distributed control (square
matrix) or via the contributions of a boundary control problem (rectangular matrix),
and the right-hand side d consists of a contribution from the initial condition y0 and
a vector f representing forcing terms and contributions of boundary conditions. The
first order conditions using a Lagrangian formulation with Lagrange multiplier p leads
to the following system





τM1 0 −KT

0 βτM2 τN T

−K τN 0





︸ ︷︷ ︸

A





y
u
p



 =





τM1yobs
0
d



 . (2.7)

Systems of this form have previously been studied in [78, 58, 79, 54]. As these systems
are of vast dimensionality it is crucial to find appropriate preconditioners together
with Krylov subspace solvers to efficiently obtain an approximation to the solution.
The vast dimensionality of system matrices does not allow the use of direct solvers
[25, 22] but we can employ Krylov subspace solvers in a matrix free way by never
forming the matrix A and only implicitly performing the matrix-vector product. The
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main bottleneck of this approach is the storage requirement for the space-time vectors
which can be reduced by working on the Schur-complement if it exists of the matrix
A or to remove the control from the system matrix [73, 42]. Other approaches that
can be employed are checkpointing schemes [37] or multiple shooting approaches [39].
We in the following want to present an alternative that is using the underlying tensor
structure of the first order conditions.

3. A Kronecker view. We noticed earlier that the linear system in (2.7) is of
vast dimensionality and that we only need very few matrices to efficiently perform the
matrix vector multiplication with A and we can approach this in a matrix-free form by
never forming A. Nevertheless, the vectors y, u, and p themselves are enormous and
every storage reduction would help to improve the performance of an optimization
scheme. The goal now is to employ the structure of the linear system to reduce
the storage requirement for the iterative method. Our approach is based on recent
developments for matrix equations [10, 51, 35]. Using the definition of the Kronecker
product

W ⊗ V =






w11V . . . w1mV
...

. . .
...

wn1V . . . wnmV






we note that (2.7) can also be written as




D1 ⊗ τM1 0 −
(
Int

⊗ L+ CT ⊗M
)

0 D2 ⊗ βτM2 D3 ⊗ τNT

− (Int
⊗ L+ C ⊗M) D3 ⊗ τN 0





︸ ︷︷ ︸

A





y
u
p



 =





D1 ⊗ τM1yobs
0
d



 ,

(3.1)

where D1 = D2 = diag
(
1
2 , 1, . . . , 1,

1
2

)
and D3 = Int

. Other choices for these matrices
are of course possible. Additionally, the matrix C ∈ R

nt,nt is given by

C =








0
−1 0

. . .
. . .

−1 0








and represents the implicit Euler scheme. It is of course possible to use a different
discretization in time. So far we have simply reformulated the previously given system.
But our goal was to derive a scheme that allows for a reduction in storage requirement
for the vectors y, u, and p. For this we remind the reader of the definition of the vec
operator via

vec (W ) =











w11

...
wn1

...
wnm











as well as the relation
(
WT ⊗ V

)
vec (Y ) = vec (V YW ) .
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Now employing this and using the notation

Y = [ y1, y2, . . . , ynt
], U = [ u1, u2, . . . , unt

], P = [ p1, p2, . . . , pnt
]

we get that





D1 ⊗ τM1 0 −
(
Int

⊗ L+ CT ⊗M
)

0 D2 ⊗ βτM2 D3 ⊗ τNT

− (Int
⊗ L+ C ⊗M) D3 ⊗ τN 0









vec (Y )
vec (U)
vec (P )





(3.2)

= vec









τM1Y DT
1 − LPITnt

−MPC
τβM2UDT

2 + τNTPDT
3

−LY ITnt
−MY CT + τNUDT

3







 .

So far nothing is gained from rewriting the problem in this form. As was previously
done in [10] we assume for now that if Y, U, and P can be represented by a low-
rank approximation any iterative Krylov subspace solver can be implemented using a
low-rank version of (3.2). We denote the low-rank representations by

Y = WY V
T
Y with WY ∈ R

n1,k1 , VY ∈ R
nt,k1 (3.3)

U = WUV
T
U with WU ∈ R

n2,k2 , VU ∈ R
nt,k2 (3.4)

P = WPV
T
P with WP ∈ R

n1,k3 , VP ∈ R
nt,k3 (3.5)

with k1,2,3 being small in comparison to nt and rewrite (3.2) accordingly to get





τM1WY V
T
Y DT

1 − LWPV
T
P ITnt

−MWPV
T
P C

τβM2WUV
T
U DT

2 + τNTWPV
T
P DT

3

−LWY V
T
Y ITnt

−MWY V
T
Y CT + τNWUV

T
U DT

3



 , (3.6)

where we skipped the vec operator and formulated the problem as a matrix equation
with matrix-valued unknowns. Note that we can write the block-rows of (3.6) as

(first block-row)
[
τM1WY −LWP −MWP

]





V T
Y DT

1

V T
P ITnt

V T
P C



 ,

(second block-row)
[
τβM2WU τNTWP

]
[

V T
U DT

2

V T
P DT

3

]

,

(third block-row)
[
−LWY −MWY τNWU

]





V T
Y ITnt

V T
Y CT

V T
U DT

3



 .

(3.7)

We obtain a significant storage reduction if we can base our approximation of the
solution using the low-rank factors (3.7). It is easily seen that due to the low-rank
nature of the factors we have to perform fewer multiplications with the submatrices
by also maintaining smaller storage requirements. As the usage of a direct solver is
out of the question we here rely on a preconditioned Krylov subspace solver, namely
Minres introduced in [56] as the underlying matrix is symmetric and indefinite.
Before explaining all the intricacies of the method we state the resulting algorithm
and carefully explain the necessary details afterwards. Algorithm 1 shows a low rank
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implementation of the classical preconditioned Minres method as presented in [56].
Note that due to a small truncation tolerance being employed within our algorithm
we treat all quantities as being almost as exact representations of their full-rank
equivalents. In the future this should be investigated and flexible solvers should be
employed to account for the changes in the application of the preconditioner.

It is hard to hide the fact that the low-rank version presented here seems much
messier than its vector-based relative. This is due to the fact that we want to maintain
the structure of the saddle point system, which is reflected in low-rank representations
associated with the state (all matrices with indices 11 and 12), the control (all matrices
with indices 21 and 22), and the Lagrange multiplier (all matrices with indices 31 and
32). Please keep in mind that

vec









Z11Z
T
12

Z21Z
T
22

Z31Z
T
32







 = z

corresponds to the associated vector z from a vector-based version of Minres.

Zero-Initiliazation of V
(0)
11 , . . . , W

(0)
11 , . . . , and W

(1)
11 , . . . .

Choose U
(0)
11 , U

(0)
12 , U

(0)
21 , U

(0)
22 , U

(0)
31 , U

(0)
32

Set V11, V12, . . . to normalized residual
while residual norm > tolerance do

Z
(j)
11 = Z

(j)
11 /γj , Z

(j)
21 = Z

(j)
21 /γj , Z

(j)
31 = Z

(j)
31 /γj ,

[F11, F12, F21, F22, F31, F32] = Amult(Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

δj = traceproduct(F11, F12, F21, F22, F31, F32, Z
(j)
11 , Z

(j)
12 , Z

(j)
21 , Z

(j)
22 , Z

(j)
31 , Z

(j)
32 )

V
(j+1)
11 =

{

F11 −

δj
γj
V

(j)
11 −

γj
γj−1

V
(j−1)
11

}

, V
(j+1)
12 =

{

F12 V
(j)
12 V

(j−1)
12

}

V
(j+1)
21 =

{

F21 −

δj
γj
V

(j)
21 −

γj
γj−1

V
(j−1)
21

}

, V
(j+1)
22 =

{

F22 V
(j)
22 V

(j−1)
22

}

V
(j+1)
31 =

{

F31 −

δj
γj
V

(j)
31 −

γj
γj−1

V
(j−1)
31

}

, V
(j+1)
32 =

{

F32 V (j)
32 V (j−1)

32

}

{

Z
(j+1)
11 , Z

(j+1)
12 , Z

(j+1)
21 , Z

(j+1)
22 , Z

(j+1)
31 , Z

(j+1)
32

}

=

Aprec(V
(j+1)
11 , V

(j+1)
12 , V

(j+1)
21 , V

(j+1)
22 , V

(j+1)
31 , V

(j+1)
32 )

γj+1 =

√

tracepoduct(Z
(j+1)
11 , . . . , V

(j+1)
11 , . . .)

α0 = cjδj − cj−1sjγj

α1 =
√

α2
0 + γ2

j+1

α2 = sjδj + cj−1cjγj
α3 = sj−1γj
cj+1 = α0

α1

sj+1 =
γj+1

α1

W
(j+1)
11 =

{

Z(j)
11 −α3W

(j−1)
11 −α2W

(j)
11

}

, W
(j+1)
12 =

{

Z(j)
12 W (j−1)

12 W (j)
12

}

W
(j+1)
21 =

{

Z
(j)
21 −α3W

(j−1)
21 −α2W

(j)
21

}

, W
(j+1)
22 =

{

Z
(j)
22 W

(j−1)
22 W

(j)
22

}

W
(j+1)
31 =

{

Z
(j)
31 −α3W

(j−1)
31 −α2W

(j)
31

}

, W
(j+1)
32 =

{

Z
(j)
32 W

(j−1)
32 W

(j)
32

}

if Convergence criterion fulfilled then

Compute approximate solution
stop

end if

end while

Algorithm 1: Low-rank Minres
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For Algorithm 1 to be accessible to the reader, we need to dissect its different
parts. Starting with the inner-products of the classical Minres method we see that
(
z(j), v(j)

)
with

vec











Z
(j)
11 (Z

(j)
12 )T

Z
(j)
21 (Z

(j)
22 )T

Z
(j)
31 (Z32)

T









 = z

and similarly for v(j) using that

trace
(
ATB

)
= vec (A)

T
vec (B)

δ (for convenience ignoring the index j) can be computed via

δj =trace
((

Z11Z
T
12

)T (
V11V

T
12

))

(3.8)

+ trace
((

Z21Z
T
22

)T (
V21V

T
22

))

+trace
((

Z31Z
T
32

)T (
V31V

T
32

))

.

Note that so far we have rewritten the vector-problem in matrix form but the inter-
ested reader might have noted that the matrices formed as part of (3.8) are of the
full dimensionality n × nt in the case of a distributed control problem. Due to the
properties of the trace operator we are in luck as

trace
((

Z11Z
T
12

)T (
V11V

T
12

))

= trace
(
ZT
11V11V

T
12Z12

)

allows us to to compute the trace of small matrices rather than of the ones from
the full temporal/spatial discretization. We denote the reformulation of the trace in
Algorithm 1 by the term tracepoduct.

Input: W11,W12,W21,W22,W31,W32

Output: Z11, Z12, Z21, Z22, Z31, Z32

Z11 =
[
τM1W11 −LW31 −MW31

]

Z21 =
[
τβM2W21 τNW31

]

Z31 =
[
−LW11 −MW31 τNW21

]

Z12 =
[
D1W12 Int

W32 CTW32

]

Z22 =
[
D2W22 D3W32

]

Z32 =
[
Int

W12 CW12 D3W22

]

Algorithm 2: Matrix multiplication

We have now defined the matrix vector multiplication in Algorithm 2 and the
efficient computation of the inner products within the low-rank Minres algorithm.
We have not yet defined the brackets {} . The brackets U := {U1 V1 W1} and
{U2 V2 W2} can be understood as a concatenation and truncation, i.e., short for
the truncation of the related trunc

(
U1U

T
2 + V1V

T
2 +W1W

T
2

)
. We now briefly discuss

the possibilities to perform the truncation of two matrices V and U that represent the
low-rank representation of Z = V UT . As discussed in [51] we can perform skinny QR
factorizations of both matrices, i.e., V = QvRv and U = QuRu. We then note that
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Z = QvRvR
T
uQ

T
u . A singular value decomposition [31] of the matrix RvR

T
u = BΣCT

and using a low-rank approximation via B(:, 1 : k)Σ(1 : k, 1 : k)C(:, 1 : k)T leads
to the overall low-rank approximation Vnew = QvB(:, 1 : k) and Unew = QvC(:, 1 :
k)Σ(1 : k, 1 : k). We have implemented this approach in MATLAB R© but noted that
the computation of the skinny QR factorization was rather slow. Alternatively, we
exploited the MATLAB R© function svds function to directly compute a truncated
singular value decomposition of V UT by passing a function handle that allowed the
implicit application of the Z = V UT without ever forming this matrix. This ap-
proach proved advantageous in terms of the time needed for the truncation. Note
that alternative ways to compute the truncated SVD are of course possible [45, 6, 76].

Before discussing the possible preconditioners we state that the vector update
formulas given in Algorithm 1 are straightforward versions of vector versions of Min-

res. The necessity to precondition has not changed in comparison to the classical
algorithm and we devote the next section to a discussion of possible preconditioning
strategies.

Preconditioning for low-rank Minres . The study of preconditioners for the
optimal control subject to parabolic PDEs has recently seen developments that were
aimed at providing robust performance with respect to the many system parameters
such as mesh-size or regularization parameters (see [70, 58, 57, 50]). We start our
derivation of suitable preconditioners based on an approach presented by Pearson et

al. [58, 60] where we start with a block-diagonal preconditioner

P =





A0

A1

Ŝ



 (3.9)

where A0 ≈ τM1 and A1 ≈ τβM2 are approximations to the upper left block of A
and Ŝ is an approximation to the Schur-complement

S = τ−1KM−1
1 KT +

τ

β
NM−1

2 N T .

One approximation that has proven to be very effective [58, 60] is of the form

Ŝ = τ−1
(

K + M̂
)

M−1
1

(

K + M̂
)T

where in the case of a distributed control problem the matrix M̂ is given by

M̂ =
τ√
β
blkdiag (M, . . . ,M) .

This approach will be the basis for the derivation of efficient preconditioners for the
low-rank version of Minres. For this we need the preconditioner P to maintain the
low-rank structure as described in (3.7). Due to the nature of the upper left block of
A given by

[
D1 ⊗ τM1 0

0 D2 ⊗ βτM2

]

we see that an efficient preconditioner given for example by

[
D1 ⊗ τM̂1 0

0 D2 ⊗ βτM̂2

]
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where the mass matrices are approximated by the Chebychev semi-iteration [83], will
naturally maintain the desired structure. But what can be said about the Schur-
complement S of the above system. Starting from the previously used approximation

Ŝ = τ−1
(

Int
⊗ L̂+ C ⊗M

)

M1

(

Int
⊗ L̂+ C ⊗M

)T

,

where L̂ =
((

1 + τ√
β

)

M1 + τK
)

, we see that there already exists an inherent tensor

structure within this approximation. In [78] the authors observe that such a system

can be easily solved as the matrix
(

Int
⊗ L̂+ C ⊗M

)

is of block-triangular nature.

This means one can sequentially pass through the vectors associated with each grid-
point in time. For our purpose the block-triangular nature will not be sufficient to
guarantee the low-rank preserving nature of our algorithm. In simple terms, a low-
rank factorization in time does not allow for a temporal decoupling of the time-steps
as vector for each time-step are not readily identified. In mathematical terms we can

see that it is not possible to explicitly write down the inverse of
(

Int
⊗ L̂+ C ⊗M

)

.

Our starting point is a Block-Jacobi version of the Schur-complement approximation.
This procedure is motivated by the fact that we can simply write

(

Int
⊗ L̂

)−1

=
(

Int
⊗ L̂−1

)

.

The last expression assures us that this preconditioner applied to any vector v =
vec

(
RST

)
can be written as

vec
(

L̂−1RST Int

)

.

We can now simply use the Schur-complement approximation

Ŝ = τ−1
(

Int
⊗ L̂

)

M1

(

Int
⊗ L̂

)T

or when using Ŝ = τ−1
(

Int
⊗ L̂+ C ⊗M

)

M1

(

Int
⊗ L̂+ C ⊗M

)T

approximate

the inverse of
(

Int
⊗ L̂+ C ⊗M

)

by a small, fixed number of steps of a stationary

iteration with the block-diagonal preconditioner
(

Int
⊗ L̂

)

. As was noted in [77] a

time-periodic control problem where y(0, .) = y(T, .) results in the matrix C having
circulant structure and we can then make use of the Fourier transform to obtain a
Schur-complement system with only block-diagonal matrices, that are now of complex
nature.

Similar structures are obtained in [1] for the simultaneous discretization in space
and time. Preconditioning results using tensor structures are found in [2, 23].

A possible and very likely more parameter-robust way for preconditioning is given
by interpreting (Int ⊗ L̂+C ⊗M) as the Kronecker representation of the generalized
Sylvester operator S(X) = L̂X+MXCT . As we already mentioned at the beginning,
there exist several low-rank methods such as the ADI iteration, see e.g. [14], and
projection-based methods, see e.g. [71], that allow to approximately solve linear
matrix equations of this type. Hence, alternative preconditioning techniques would
be to apply a few steps of the ADI iteration to the generalized Sylvester equation
or solve a reduced Sylvester equation resulting from the projection onto a suitable
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smaller (Krylov) subspace. However, due to limitation of the scope of this paper,
here we refrain from these latter ideas and instead propose them as possible topics of
future research. The incorporation of approximate Sylvester solvers is straightforward
and should be complemented by the use of an outer flexible method.

4. Existence result of low-rank solutions. The previously derived low-rank
method of course is only competitive if the solution to the optimal control problem
exhibits a fast singular value decay, allowing to replace it by a low-rank approximation.
It thus remains to show that this is indeed a reasonable assumption for problems of the
form (2.7). For this reason, in this section we establish a direct connection between
(2.7) and the more prominent Sylvester equation

AX +XB = C̃, (4.1)

where A ∈ R
n×n, B ∈ R

m×m and C̃ ∈ R
n×m. For the case that C̃ is of low-rank,

i.e., C̃ = WC̃VC̃T , WC̃ ∈ R
n×k, VC̃ ∈ R

m×k and k ≪ n,m, it is well-known,
see e.g. [35, 34, 52], that there exist approximations Xr = WXV T

X ≈ X, with
WX ∈ R

n×r, VX ∈ R
m×r and r ≪ n,m. Moreover, recently there has been an in-

creased interest in numerical methods that, rather than computing the true solution
and computing an approximation afterwards, solely work on low-rank factors and
iteratively construct approximations Xr converging to the true solution X, making
these approaches feasible for dimensions n,m ∼ 106. Popular methods are projection-
based methods, see [9, 29, 72], ADI-based methods, see [8, 14, 12, 75] and multigrid
methods, see [36].

Let us now consider the second block-row of (2.7) for which we obtain that

(D2 ⊗ βτM2)u+
(
D3 ⊗ τNT

)
p = 0.

Solving this equation for u and inserting the result into the third block-row of (2.7)
gives

− (Int
⊗ L+ C ⊗M) y − 1

β
(D3 ⊗ τN)

(
D−1

2 ⊗M−1
2

) (
D3 ⊗NT

)
p = d

which, due to the properties of the Kronecker product and the definition of D3 can
be simplified to

− (Int
⊗ L+ C ⊗M) y − τ

β

(
D−1

2 ⊗NM−1
2 NT

)
p = d.

Together with the first blow-rock, we thus can reformulate (2.7) in matrix notation
as

τM1Y D1 − LP −MPC = τM1YobsD1

−LY −MYCT − τ

β
NM−1

2 NTPD−1
2 = D.

So far, we have only eliminated the second block-row and rewritten the problem
in its matrix form. For the connection to (4.1), we have to make some additional
assumptions on our initial setup (2.1). Typically, in real-life applications we can only
observe a small portion ỹ of the state rather than the full y. In other words, the
mass matrix M1 in this case can be replaced by a low-rank matrix C̃obsC̃

T
obs = M1,

with C̃obs ∈ R
n1×ℓ determining the observable parts of y. Note that in the context of
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classical control theory, C̃obs simply denotes the measurable output quantity of interest
within the state-space representation of a linear dynamical system, see [3, 41, 49].
Similarly, in case of boundary control, the rectangular matrix N ∈ R

n1×m usually
contains significantly less columns than rows. In summary, this means that we are
often interested in the solution

[
Y P

]
of the linear matrix equation

L
[
Y P

]
[
0 −I
−I 0

]

+M
[
Y P

]
[

0 −CT

−C 0

]

+ C̃obsC̃
T
obs

[
Y P

]
[
τD1 0
0 0

]

+NM−1
2 NT

[
Y P

]
[
0 0
0 − τ

βD
−1
2

]

=

[
τM1YobsD1

D

]

.

(4.2)

Pre- and post-multiplying the previous equation by M−1 and

[
0 −I
−I 0

]

leads to a

generalized Sylvester equation of the form

AX + XB +Q1XR1 +Q2XR2 = E1FT
2 ,

where

A = M−1L, B =

[
CT 0
0 C

]

, Q1 = M−1C̃obsC̃
T
obs,

R1 =

[
0 −τD1

0 0

]

, Q2 = M−1NM−1
2 NT , R2 =

[
0 0

− τ
βD

−1
2 0

]

,

E1 =
[
M1WYobs

WD

]
, F1 =

[
D1VYobs

0
0 VD

]

.

Note that we assumed Yobs = WYobs
V T
Yobs

and YD = WDV T
D to be the low-rank

representations for the right hand side.
In what follows, we proceed as in [10, 21] and use the Sherman-Morrison-Woodburry

formula [31] to simplify the previous equation. Since Q1 = U1VT
1 and Q2 = U2VT

2 , for
the Kronecker structured linear system, we subsequently obtain

(
I ⊗ A+ BT ⊗ I +RT

1 ⊗Q1 +RT
2 ⊗Q2

)
vec (X ) = vec

(
E1FT

1

)

which can be rewritten as






I ⊗ A+ BT ⊗ I
︸ ︷︷ ︸

Ã

+
[
I ⊗ U1 I ⊗ U2

]

︸ ︷︷ ︸

Ũ

[
RT

1 ⊗ VT
1

RT
2 ⊗ VT

2

]

︸ ︷︷ ︸

Ṽ T








vec (X ) = vec
(
E1FT

1

)
.

According to the Sherman-Morrison-Woodburry formula, we alternatively get

Ã vec (X ) = vec
(
E1FT

1

)
− Ũ (I + Ṽ T Ã−1Ũ)−1Ṽ T Ã−1 vec

(
E1FT

1

)

︸ ︷︷ ︸

vec(Y)

.

Since we have

Ũ vec (Y) = Ũ vec

([
Y1

Y2

])

=
[
I ⊗ U1 I ⊗ U2

]
vec

([
Y1

Y2

])

= vec (U1Y1) + vec (U2Y1)
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we can conclude that

Ũ vec (Y) =: vec
(
E2FT

2

)
,

with E2 ∈ R
n1×(l+m), F2 ∈ R

2nt×(l+m). In particular, this implies

Ã vec (X ) = vec
(
E1FT

1

)
− vec

(
E2FT

2

)

or, in other words, X can also be derived as the solution to a regular Sylvester equation
of the form

AX + XB =
[
E1 −E2

]
[
FT

1

FT
2

]

.

We have now established that the PDE-constrained optimization problem can be
written in form of a classical Sylvester equation for which we can use the existence
results for a low-rank solution introduced in [35]. Note that we do not claim to actually
proceed this way in order to compute the solution matrix X . Obviously, determining
the intermediate solution vec (Y) would be a challenge on its own. The previous
steps rather should be understood as a theoretical evidence for the assumption that
X indeed exhibits a very strong singular value decay. Keep in mind that we had to
assume that the desired final state Yobs as well asD are of low-rank and that l,m ≪ n1

which is a reasonable assumption for realistic control problems.

A special case. One might argue that for the distributed control case, i.e., N
begin square together with (almost) entirely observable state, i.e., Cobs = M2, the
previous low-rank assumptions do no longer hold true. Consequently, applying the
Sherman-Morrison-Woodburry formula will not simplify (4.2) and we thus will have
to deal with a linear matrix equation of the form

4∑

i=1

AiXBi = E1FT
1 , (4.3)

where we cannot benefit from additional structure in Ai and Bi. Still, as has already
been (numerically) observed and partially discussed in [10, 11, 21] for the special
Lyapunov type case, i.e., Bi = AT

i , the solution matrix X still seems to exhibit
similar low-rank properties.

Although the most general case certainly is an interesting topic of future research,
we want to conclude by pointing out that for the special case M2 = M1 = N = M
we immediately get an analogous (in fact even stronger) low-rank existence result for
(4.2). This is due to the fact that here (4.2) is equivalent to the Sylvester equation

L
[
Y P

]
[
0 −I
−I 0

]

+M
[
Y P

]
[
τD1 −CT

−C − τ
βD

−1
2

]

=

[
τMYobsD1

D

]

for which we again can apply the low-rank existence results from [35].

5. Other State equations.

Stokes equation. In addition to the heat equation as a test problem we here also
consider the Stokes equation. The discretization of the Stokes control problem can
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be performed similarly to the case for the heat equation and we refer the interested
reader to [26]. The Stokes equations are given by

yt − ν△y +∇p = u in [0, T ]× Ω (5.1)

−∇ · y = 0 in [0, T ]× Ω (5.2)

y(t, .) = g(t) on ∂Ω, t ∈ [0, T ] (5.3)

y(0, .) = y0 in Ω, (5.4)

and the functional we are interested in is defined as

J(y, u) =
1

2

∫ T

0

∫

Ω1

(y − ȳ)2 dxdt+
β

2

∫ T

0

∫

Ω2

u2dxdt. (5.5)

Our goal is to build a discrete Lagrangian using an all-at-once approach [79] where we
setup a discrete problem within the space-time cylinder. Using the trapezoidal rule
and Q2/Q1 finite elements in space leads to the following discrete objective function

J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u (5.6)

with

M1 = blkdiag

(
1

2
M1, 0,M1, 0, . . . ,M1, 0,

1

2
M1, 0

)

,

M2 = blkdiag

(
1

2
M2,M2, . . . ,M2,

1

2
M2

)

where we reuse the notation for the heat equation. Note that for the Stokes case the
vectors yi are split into a velocity v part with d = 2, 3 components and pressure part
p, i.e.,

yi =

[
yvi
ypi

]

.

The all-at-once discretization of the state equation using finite elements in space
and an implicit Euler scheme in time is given by

Ky − τNu = d (5.7)

where

K =








L
−M L

. . .
. . .

−M L







, N =








Ns

Ns

. . .

Ns







, d =












Ly0 + f
0
f
...
f
0












.

Here,

L =

[
L BT

B 0

]
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represents an instance of a time-dependent Stokes problem with B the discrete di-
vergence, M is the mass matrix for the domain Ω, the matrix L is defined as L =
τ−1M +K, the matrix

Ns =

[
N 0
0 0

]

represents the distributed control term control term where N = M , the matrix

M =

[
τ−1M 0

0 0

]

is associated with the discretization in time via the implicit Euler scheme and the
right-hand side d consists of a contribution from the initial condition y0 and a vector
f representing forcing terms and contributions of boundary conditions. Note that all
matrices here correspond to the ones introduced for the heat equation but equipped
with a block form corresponding to the components for the velocity yv and pressure
yp. The first order conditions using a Lagrangian with Lagrange multiplier p lead to
the following system





τM1 0 −KT

0 βτM2 N T

−K N 0





︸ ︷︷ ︸

A





y
u
p



 =





τM1yobs
0
d



 , (5.8)

where again we can switch to a Kronecker structure defined by





D1 ⊗ τM 0 −
(
Int

⊗ L+ CT ⊗M
)

0 D2 ⊗ βτM2 D3 ⊗NT

− (Int
⊗ L+ C ⊗M) D3 ⊗N 0



 . (5.9)

We can now in a similar way to before use the low-rank Minres method. Again, we
here apply a block-diagonal preconditioner of the form

P =





D1 ⊗ τM̂1 0 0

0 D2 ⊗ βτM̂2 0

0 0 Ŝ



 . (5.10)

Here M̂ = blkdiag
(

M̂1, γI
)

, with γ = βτhd (see [79] for details). Here d is the

dimension of the problem (d=2,3) and h the mesh parameter. The matrices M1

and M2 are approximated via a Chebychev semi-iteration [32, 33, 83] or in case of
lumped mass matrices we trivially have M̂1,2 = M1,2. The approximation of the
Schur-complement is much more tricky in this case as for the indefinite M1 the
Schur-complement is not well-defined. Thus, we again use the approximation M̂ =

blkdiag
(

M̂1, γI
)

to form an approximate Schur-complement

S = τ−1KM̂−1
1 KT + τ−1β−1NM−1

2 N T

with M̂1 a block-diagonal involving M̂. We in turn approximate this via

Ŝ = τ−1
(

K + M̂
)

M−1
1

(

K + M̂
)T
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where M̂ = blkdiag
(

1√
β
M1, 0, . . . ,

1√
β
M1, 0

)

for the distributed control case. As in

Section 3 we note that the matrix
(

K + M̂
)

=
(

Int
⊗ L̃+ C ⊗M

)

with L̃ =

[ (
τ−1 + β−1/2

)
M1 +K BT

B 0

]

. We now proceed in the following way. A

stationary iteration scheme with a fixed number of steps is used to approximately solve
(

Int
⊗ L̃+ C ⊗M

)

with preconditioner
(

Int
⊗ L̃

)

and within this preconditioner

systems with L̃ are approximately solved using another Uzawa scheme with a fixed
but small number of iterations. For this inner Uzawa iteration the inverse of the
preconditioner is given by

[
[(
τ−1 + β−1/2

)
M1 +K

]−1

MG
0

0
(
τ−1 + β−1/2

)
[Kp]

−1
MG + [Mp]

−1
MG

]

where the [. . .]
−1
MG indicates the use of a geometric [38, 84] or algebraic multigrid

method [66, 28]. Preconditioners of this type are of so-called Cahouet-Chabard [20]
and the derivation can be done using a least squares commutator approach [26, 79].

Again, for more robustness more sophisticated Sylvester solvers should be used
in the future to guarantee robustness with respect to the system parameters.

Convection-diffusion equation. Before coming to the numerical results we
quickly want to introduce the last state equation considered here. The PDE constraint
is now given by the convection diffusion equation

yt − ε△y + w · ∇y = u in Ω (5.11)

y(:, x) = g on ∂Ω (5.12)

y(0, :) = y0 (5.13)

as the constraint to the following objective function

J(y, u) =
1

2

∫ T

0

∫

Ω1

(y − ȳ)
2
dxdt+

β

2

∫ T

0

∫

Ω2

u2dxdt. (5.14)

Note that the parameter ε is crucial to the convection-diffusion equation as a de-
crease in its value is adding more hyperbolicity to the PDE where the wind w is
predefined. Such optimization problems have recently been discussed in [64, 40, 59]
and for brevity we do not discuss the possible pitfalls regarding the discretization. We
here focus on a discretize-then-optimize scheme using a streamline upwind Galerkin
(SUPG) approach introduced in [19]. Note that other schemes such as discontinuous
Galerkin methods [80] or local projection stabilization [59] are typically more suitable
discretizations for the optimal control setup as they often provide the commutation be-
tween optimize first or discretize first for the first order conditions. Nevertheless, our
approach will also work for these discretizations. Once again we employ a trapezoidal
rule in connection with finite elements and now additionally an SUPG stabilization
the discretized objective function and state equation are given by

J(y, u) =
τ

2
(y − yobs)

T M1 (y − yobs) +
τβ

2
uTM2u,



16

which is the same as for the heat equation case. For the all-at-once discretization of
the convection-diffusion equation we get the same structure as before

Ky − τNu = d (5.15)

with

K =








Ls

−Ms Ls

. . .
. . .

−Ms Ls







, N =








Ms

Ms

. . .

Ms







, d =








M1y0 + f
f
...
f







.

Note that due to the SUPG test functions used we now have Ms which is obtained
entry-wise from evaluating the integrals

(Ms)ij =

∫

Ω

φiφj + δ

∫

Ω

φi (w · ∇φj)

where φ are the finite element test functions and δ is a parameter coming from the
use of SUPG [19, 26]. We then have Ls = Ms + τKs where Ks is the standard
nonsymmetric matrix representing the SUPG discretization of the convection-diffusion
equation. We can now see that this again is of the desired Kronecker-form





D1 ⊗ τM1 0 − (Int
⊗ Ls + C ⊗Ms)

T

0 D2 ⊗ βτM2 D3 ⊗ τMT
s

− (Int
⊗ Ls + C ⊗Ms) D3 ⊗ τMs 0









y
u
p



 =





D1 ⊗ τM1yobs
0
d



 .

(5.16)

Again, we employ the low-rank version of Minres to solve this system. Note that for
nonsymmetric formulations such as the one obtained from an optimize-then-discretize
strategy we can also use low-rank versions of nonsymmetric Krylov solvers such as
Gmres [69] or Bicg [30]. A preconditioner is of the form

P =





D1 ⊗ τM̂1 0 0

0 D2 ⊗ βτM̂2 0

0 0 Ŝ



 (5.17)

where the two blocks involving mass matrices are as before and the Schur-complement
of A

S = (Int
⊗ Ls + C ⊗Ms) (D

−1
1 ⊗ τ−1M−1

1 ) (Int
⊗ Ls + C ⊗Ms)

T
(5.18)

+ (D3 ⊗ τMs)
(
D−1

2 ⊗ β−1τ−1M−1
2

) (
D3 ⊗ τMT

s

)
.

The technique introduced in [60] for the steady case can now be extended here as well
to give the following Schur-complement approximation

Ŝ =
(

Int
⊗ L̂s + C ⊗Ms

)

(D−1
1 ⊗ τ−1M−1

1 )
(

Int
⊗ L̂s + C ⊗Ms

)T

(5.19)

where

L̂s =

(

1 +
1√
β

)

Ms + τKs.
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As with the previous problems a multigrid approximation [63] is suitable for the
evaluation of the inverse of Ls. These preconditioners need to be adapted when other
discretizations are used but we expect our results to carry over to these cases as well.
We again use a stationary iteration to approximate the parts of the Schur-complement
and a more sophisticated solver is recommended for the future.

6. Numerical Results. We are now going to present results for the low-rank
in time solution of certain PDE-constrained optimization problems. The results
presented in this section are based on an implementation of the above described
algorithms within MATLAB R© whereas we perform the discretization of the PDE-
operators within the deal.II [7] framework using Q1 finite elements for the heat equa-
tion and convection diffusion equation. The Stokes equation is discretized with Q2
elements for the velocity and Q1 elements for the pressure component. For the al-
gebraic multigrid approximation, we used HSL MI 20 [18]. For some preconditioner
we used backslash within MATLAB R© for the innermost solution within the precon-
ditioner. Our implementation of Minres is based on a vector version presented in
[26] and was stopped with a tolerance of 10−4 for the relative pseudo-residual. Our
experiments are performed for a final time T = 1 with a varying number of time-steps.
As the domain Ω we consider the unit cube but other domains are of course possible.
We specify the boundary conditions for each problem separately. Throughout the
results section we fixed the truncation at 10−8 for which we observed good results.
Additionally, we also performed not listed experiments with a tolerance of 10−10 for
which we also observed fast convergence. Larger tolerances should be combined with
a deeper analysis of the algorithms and a combination with flexible outer solvers. All
results are performed on a standard Ubuntu desktop Linux machine with Intel(R)
Xeon(R) CPU W3503 @ 2.40GHz and 6GB of RAM.

6.1. The heat equation.

Distributed Control. As the first example shown in this section we use the
heat equation with a distributed control term. We choose the boundary conditions
for this problem to be of zero Dirichlet type. We first show how well the desired state

yobs = −64 exp
(

−
(

(x0 − 0.5t)
2
+ (x1 − 0.5t)

2
))

is approximated in low-rank form. Figure 6.1 illustrates this for grid point 10 in time
where the right hand side vec−1 (τM1yobs) = B11B

T
12 is approximated by low-rank

factors of rank 2.
Table 6.1 shows first results for the comparison of the full-rank Minres versus

the low-rank version. We want to point out that here we use the backslash operator in
MATLAB R© to evaluate the matrix L within the preconditioner but this can easily be
replaced by a multigrid approximation and in fact is done later. Before interpreting
the results it has to be noted that the comparison is not entirely fair as due to
the poor performance within MATLAB R© using for loops, we implemented both the
preconditioner and the matrix-vector multiplication in a matrix way as shown in
(3.2). For simplicity we only used a block-diagonal approximation for the matrix K
and hence the scaling with respect to changes in the number of time-steps is not given.
This would typically be the case and our results using deal.II and C++ in [78, 58]
indicate robustness with respect to the number of time-steps. Nevertheless, every
increase in the number of time-steps also results in an increase in the matrix size and
so one would expect when the number of time-steps is increased five-fold that the same
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Fig. 6.1: Desired state in full-rank and low-rank form.

happens for the time needed to solve the linear system. Going back to the results in
Table 6.1 where both the timings and iteration numbers are shown for a variety of
mesh-sizes and two different orders of grid points in time, that both methods perform
mesh-independent and that we can see that the low-rank method shows almost no
increase when the number of time-steps is drastically increased. Note also the degrees
of freedom given here are only for the spatial discretization. The overall dimension
of the linear system is then given by 3nnt where n represents the spatial degrees of
freedom. We see that the iteration times for the full rank solver go up and using the
non-optimal preconditioners we additionally see that the times increase more than
just by a factor of five. We also see that due to the cost of performing a low-rank
truncation the full-rank method always outperforms the low-rank scheme for a small
number of time steps. Nevertheless, the low-rank method can easily solve problems
that are no longer tractable for full-rank methods.

DoF FR (20) FR (100) LR (20) LR (100)
# it(t) # it(t) # it(t) # it(t)

289 17(0.2) 31(1.1) 15(5.6) 19(7.6)
1089 19(0.7) 33(5.56) 17(8.9) 21(11.9)
4225 19(3.5) 35(26.6) 17(19.7) 23(26.3)
16641 21(17.5) 35(125.8) 19(72.1) 23(97.6)
66049 23(81.8) OoM 19(324.8) 25(427.4)

Table 6.1: Results for full-rank (FR) Minres vs. low-rank (LR) Minres for 20 or 100
time-steps and a variety of different meshes. Both iteration numbers and computing
times in seconds are listed. OoM indicates Out of Memory in MATLAB R©.

Next we compare how both the full-rank and the low-rank method perform when
the number of time-steps is further increased. We therefore consider a fixed mesh for
a varying time-discretization. Table 6.2 shows the results for both the full-rank and
the low-rank method. We additionally show the rank of the three components of the
state, control, and adjoint state. We started computing the truncation process using a
maximum size of the truncated SVD of 20, which was sufficient for all discretizations
in time using a truncation tolerance of 10−8. In order to keep the iteration numbers
from growing too much with an increase in the number of time-steps we increased
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Fig. 6.2: Singular values of the approximate solution during the iteration before trun-
cation.

the number of stationary iterations for the preconditioner from 2 to 3 for the last two
columns in Table 6.2. We see again that the full-rank method exceeds the memory
limit in MATLAB R©. It can also be seen that the increase in rank and computing
time is typically moderate. Note that the system dimension considering a full-rank
solution is ranging from 998460 to 29953800 unknowns.

DoF 20 100 200 400 600
16641 # it(t) # it(t) # it(t) # it(t) # it(t)

LR 19(108.2) 21(307.8) 25(432.7) 43(671.9) 61(937.3)
(ranks) 8/10/10 10/11/11 12/13/13 11/14/14 14/15/15
FR 21(18.3) 35(124.0) 63(434.3) OoM OoM

Table 6.2: Results for full-rank (FR) Minres vs. low-rank (LR) Minres for a fixed
mesh with 16641 unknowns in space. We show varying time-steps and additionally
the rank of the state/control/adjoint state. Both iteration numbers and computing
times in seconds are listed. OoM indicates Out of Memory in MATLAB R©. Results
are shown for β = 10−4.

In order to illustrate the distribution of the singular values we show in Figure
6.2 how the relative value of the singular values behaves throughout the iteration.
Shown are the scaled singular values (σj/σ1) of the approximation to the state for the
problem with 4225 unknowns and 100 grid-points in time. So far the preconditioners
introduced have used a direct solver for the solution of the systems with

L̂ =

((

1 +
τ√
β

)

M1 + τK

)

both in the full-rank method and the low-rank one. We now illustrate that we can
easily approximate this matrix using an algebraic multigrid technique by also showing
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Fig. 6.3: Desired state and computed state for a boundary control problem.

that our preconditioner performs robustly with respect to the regularization param-
eter β. We here compute the truncated singular value decomposition up to the order
20 and then cut off corresponding to the truncation tolerance. We additionally in-

creased the number of stationary iteration steps for the matrix
(

Int
⊗ L̂+ C ⊗M

)

with preconditioner
(

Int
⊗ L̂

)

to 4.

DoF 1089 (100) 4225 (100) 16641 (100)
β # it(t) # it(t) # it(t)

10−2 37(79.1) 37(226.1) 39(943.7)
10−4 17(36.6) 19(111.6) 19(448.2)
10−6 17(34.7) 17(94.4) 19(406.7)

Table 6.3: Results for low-rank (LR) Minres with 100 time-steps and a varying regu-
larization parameter on three different meshes. Both iteration numbers and computing
times in seconds are listed.

Boundary Conrol. In the following we quickly demonstrate that our approach
also works for the case of a boundary control problem. The desired state is shown
in Figure 6.3a and the computed state wanting to approximate this in Figure 6.3b.
In Table 6.4 we show results for the low-rank Minres approximation for a variety
of mesh-parameters and regularization parameters. Details on the preconditioners
used can be found in [58]. As in the last example for the distributed control case we
choose 4 Uzawa iterations and a tolerance of 10−4 for the iterative solver. We here
evaluate L̂ again using the backslash operator in MATLAB R© but the use of AMG is
straightforward.

6.2. Stokes equation. The configuration for the Stokes equation is taken from
[79] and originally appeared in [43]. The spatial domain is the unit cube Ω = [0, 1]d

with a time domain [0, 1]. The target flow is the solution for an unsteady Stokes
equation with Dirichlet boundary conditions, i.e. y = (1, 0) when the second spatial
component x2 = 1 and y = (0, 0) on the remaining boundary for the two-dimensional
case. For the control problem we now consider the following time-dependent boundary
conditions. For the top-boundary where x2 = 1 we get y = (1+ 1

2 cos(4πt−π), 0) and
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DoF 289 (100) 4225 (100) 16641 (100)
β # it(t) # it(t) # it(t)

10−2 49(137.3) 61(236.18) 79(802.7)
10−4 67(179.8) 99(406.6) 151(1510.6)
10−6 63(169.2) 95(380.4) 147(1448.6)

Table 6.4: Results for low-rank (LR) Minres with 100 time-steps and a varying
regularization parameter on three different meshes for a boundary control example.
Both iteration numbers and computing times in seconds are listed.

(a) Desired state at grid point 10 in time.
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Fig. 6.4: Desired state and computed pressure for the Stokes flow problem.

zero elsewhere in two space dimensions and we set viscosity to 1/100. For the results
shown in Table 6.5 we note that we needed to set the number of stationary iteration
steps for both the outer-iteration to 30 as well as the inner one for the small saddle
point system to 5. We believe that the outer iteration can be replaced by a robust
Sylvester solver.

DoF 578+81 (100) 2178+289 (100) 8450+1089 (100)
β # it(t) # it(t) # it(t)

10−1 11(224.4) 12(624.8) 14(3601.9)
10−5 15(290.2) 15(737.6) 17(4091.5)

Table 6.5: Results for low-rank (LR) Minres with 100 time-steps and a varying
regularization parameter on three different meshes for a Stokes control example. Both
iteration numbers and computing times in seconds are listed.

Apart from the approximation of the Neumann-Laplacian on the pressure space
whose inverse was evaluated using an algebraic multigrid scheme we simply used
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Fig. 6.5: Computed state for β = 10−6 at grid point 10 in time.

the backslash operator to evaluate the remaining components. A further increase in
computational efficiency can be gained when these are replaced by multigrid approx-
imations.

6.3. Convection diffusion equation. The configuration for the convection-
diffusion equation is taken from [26] and is typically referred to a the double glazing
problem. The spatial domain is the unit cube Ω = [−1, 1]2 with a time domain [0, 1].
The wind w is given by

w =
(
2y(1− x2),−2x(1− y2)

)

We here set the parameter to ε to 1/200 and the boundary condition is a Dirichlet
zero condition with the exception of y = 1 when x2 = 1. The desired state is set to
zero throughout the domain [59]. In Figure 6.5 we show the computed state for grid
point 10 in time. Due to the nonsymmetric nature of the PDE-operator we have not
employed the recommended multigrid technique [63] and simply used the backslash
operator here. The results shown in Table 6.6 indicate a robust performance of the
low-rank Minres method. We here set the number of stationary iterations to 15.

DoF 1089 (100) 4225 (100) 16641 (100) 4225 (200) 16641 (200)
β # it(t) # it(t) # it(t) # it(t) # it(t)

10−2 18(58.2) 18(195.5) 18(1278.1) 32(371.6) 32(2266.5)
10−5 8(26.2) 10(95.3) 12(820.7) 10(115.4) 12(858.8)

Table 6.6: Results for low-rank (LR) Minres with 100 or 200 time-steps and a varying
regularization parameter on a variety of meshes for a convection-diffusion control
example. Both iteration numbers and computing times in seconds are listed.

7. Outlook. We believe that the research presented here opens some interest-
ing angles that should be studied in the future. The incorporation of additional
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constraints such as control and state constraints is typically very important for real-
world scenarios. We plan to investigate a technique introduced in [42] where the state
and adjoint state are computed first and hence amenable to low-rank techniques and
then the constrained control is computed. It is further desired to investigate more
complicated discretizations in time. Of particular interest we want to study back-
ward differentiation formulas (BDF) [5] as these can be easily incorporated simply
modifying the C matrix in (3.1). We further plan to incorporate more sophisticated
generalized Sylvester equation solvers for (Int

⊗ L+ C ⊗M) , which we believe allows
for more robustness with respect to the system parameters and should be combined
with a flexible outer method [68]. It is further crucial to investigate how the low-
rank techniques can be extended to incorporate non-linearities of both the objective
function and the PDE-constraint such as [17].

8. Conclusions. In this paper we proposed the use of a low-rank methodology
for the solution to PDE-constrained optimization problems. We in particular intro-
duced a low-rank in time approach that allows to significantly reduce the storage
requirements in time for a one-shot solution of the optimal control problem. We were
also able to rewrite the problem in such a way that we can obtain low-rank existence
results from classical Sylvester equation theory. We additionally discussed a station-
ary iteration as a preconditioner for the Schur-complement approximation within the
overall block-diagonal preconditioner. We further illustrated that this technique can
be used for many well-known PDEs. Our numerical results illustrated that even with
the rather crude Schur-complement approximation a rather robust performance could
be obtained. The low-rank method presented enabled computations that are no longer
possible to perform with the full-rank approach, which we see as a crucial feature of
our methodology.
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[66] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid methods, vol. 3 of Frontiers
Appl. Math., SIAM, Philadelphia, PA, 1987, pp. 73–130.

[67] Y. Saad, Numerical solution of large Lyapunov equation, in Signal Processing, Scattering,
Operator Theory and Numerical Methods, M. A. Kaashoek, J. H. van Schuppen, and
A. C. M. Ran, eds., Birkhauser, 1990, pp. 503–511.

[68] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific
Computing, 14 (1993), pp. 461–461.

[69] Youcef Saad and Martin H. Schultz, GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput, 7 (1986), pp. 856–869.
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