
Max Planck Institute Magdeburg
Preprints

Peter Benner André Schneider
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Abstract

The model reduction method introduced in [Benner, P. and Schneider, A.;
Balanced Truncation Model Order Reduction for LTI Systems with many Inputs

or Outputs, in A. Edelmayer: Proceedings of the 19th International Symposium
on Mathematical Theory of Networks and Systems, 2010, ISBN/ISSN: 978-963-
311-370-7] shows how to reduce linear time-invariant (LTI) continuous-time state
space systems with either many inputs or many outputs using the well-known
balanced truncation approach. We call this method balanced truncation for many
terminals (BTMT). In this work we generalize BTMT to descriptor systems of
the form

Eẋ(t) = Ax(t) +Bu(t), A,E ∈ R
n×n

, B ∈ R
n×m

,

y(t) = Cx(t) +Du(t), C ∈ R
p×n

, D ∈ R
p×m

,

where m ∈ O(n) and p ≪ n, or vice versa. We show how to obtain a reduced
order model by solving one Lyapunov equation and using the Gauss-Kronrod
quadrature to compute the needed projection matrices. In particular, we discuss
the case when E is singular and show numerical results.
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1 Introduction

Throughout this work, we consider linear time-invariant continuous-time descriptor
systems of the form

Eẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t).
(1)

Here, E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, x(t) ∈ R
n contains internal

state variables, u(t) ∈ R
m is the vector of input variables, y(t) ∈ R

p is the output
vector, x0 ∈ R

n is the initial value and n is the number of state variables, called the
order of the system. W.l.o.g., we assume the so-called feed-through term D ≡ 0, as
we can always re-write (1) as a system with nonzero feed-through term so that D = 0,
see [1].
In model order reduction (MOR), the number of inputsm and the number of outputs

p of descriptor systems are mostly assumed to be much smaller than the order of the
system n itself [2]. Numerical problems in solving large-scale matrix equations or
in building up Krylov subspaces efficiently are the reasons [3]. Especially if further
calculations require the knowledge of the full state while the control of the system is
bounded to a few inputs leads to a system structure with a number of outputs similar
or equal to the number of states. An application is the thermal driven deformation of
a workpiece which heats-up during the manufacturing process [4, 5]. To calculate this
deformation, the solution of the heat equation in every point of the discretized domain
is required. In contrast to these many outputs, a heat input is given only in sparse
points of the domain, e.g., at the boundary or the tool center point of the workpiece.
Another area of interest is flow simulation [6, 7]. Dealing with such problems, it is often
of significance to know the fluid velocity or the pressure in every point of the domain.
Mathematically, this means nothing else than the output matrix C of the system (1)
is equal to the identity In. The numerical algorithms introduced here also perform if
the system is subjected to distributed control, maybe even controlled everywhere, i.e.
B = In, while C is of low rank. For example, such systems arise also in fluid flow
control [8]. Domain decomposition approaches, e.g., in electromagnetic simulation [9]
or flow problems [6, 7], may also lead to system structures described above.

The aim of this paper is to introduce a numerical methodology how to reduce many
terminal descriptor systems by applying balanced truncation (BT) [10]. In Section 2 we
review the basics of BT for descriptor systems [11]. We show which Lyapunov equations
(LE) need to be solved and where the problems with high rank input or output matrices
arise. In Section 3 we show how to overcome these problems by solving only the
“cheap” LE in low rank factor form. This information is combined with an integral
representation of the systems Gramians and the Gauss-Kronrod quadrature formula.
Applying a Schur decomposition approach to the computed matrix product, the needed
projection matrices are computed. In Section 4 we introduce two test problems. One
model deals with the heat transfer within a hollow cylinder, which is simulated via a
state space system, i.e., E = In. The second system is a mechanical damped mass-
spring system, see [11]. This differential algebraic equation (DAE) has additional
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constraints and is of index 3. We show difficulties and results of the reduction. We
conclude in Section 5.

2 Balanced Truncation

A detailed knowledge of the BT MOR approach for descriptor systems is important
to understand this work. Therefore, we repeat in detail basic knowledge based on
previous work, e.g., [12, 13, 10, 11]. We assume the matrix pencil λE − A to be
regular, i.e., det(λE−A) 6= 0 for some λ ∈ C. Additional to regularity, we assume the
pencil to be asymptotically stable, i.e., its finite eigenvalues have negative real parts.
There exists a transformation of the pencil to Weierstrass canonical form [14] with

E =W

[
Inf

0
0 N

]

T and A =W

[
J 0
0 In∞

]

T. (2)

The matrices J and N are of Jordan canonical form, N is nilpotent with nilpotency in-
dex ν, and the numbers nf and n∞ are the dimensions of the deflating subspaces of the
pencil corresponding to the finite and infinite eigenvalues of the system. The spectral
projections onto the right and the left deflating subspaces of the pencil corresponding
to the finite eigenvalues have the form

Pr = T−1

[
Inf

0
0 0

]

T and Pl =W

[
Inf

0
0 0

]

W−1.

By means of this transformation it is possible to partition the system matrices following
the block structure of (2) such that a coordinate transformation enables decoupling of
the system in the so-called slow subsystem and the fast subsystem which contains the
information about the dynamics. More details including solution theory can be found
in [15, 11]. We apply the Laplace transform L : f(t) −→

∫∞

0
e−stf(t)dt to (1). With

respect to L(ẋ(t)) = sx(s)− x(0), we get

y(s) = C(sE −A)−1Bu(s) + C(sE −A)−1Ex(0),

where s ∈ C and x(s), u(s), and y(s) are the Laplace transforms of x(t), u(t), and
y(t), respectively. If Ex(0) = 0, the input to output rational matrix valued function

G(s) = C(sE −A)−1B

is called transfer function of (1). It is possible to derive a general resolvent of the
pencil by means of the Weierstrass canonical form and a Laurent expansion at infinity

(λE −A)−1 =

∞∑

k=−∞

Fkλ
−k−1,

with the coefficients Fk = T−1

[
Jk 0
0 0

]

W−1 for k ∈ N0 and

Fk = T−1

[
0 0
0 −N−(k+1)

]

W−1 for k < 0. Using this, the transfer function can be
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expressed as

G(s) =

∞∑

k=−∞

CFkBs
−(k+1). (3)

Since N is nilpotent with index ν, i.e., Nν−1 6= 0, Nν = 0, it follows that Fk = 0,
∀k < −ν. The number ν is called the (algebraic) index of the DAE. Consequently, the
transfer function can be split into the strictly proper part

Gsp(s) =

∞∑

k=0

CFkBs
−(k+1)

and the polynomial part

P (s) =

ν∑

k=1

CF−kBs
(k−1).

Furthermore, the proper observability Gramian Gpo, the proper controllability Gramian
Gpc, the improper observability Gramian Gio, and the improper controllability Gramian
Gic are defined as

Gpo =

∫ ∞

0

FT (t)CTCF(t)dt,

Gpc =

∫ ∞

0

F(t)BBTFT (t)dt,

Gio =

−1∑

k=−ν

FT
k C

TCFk, and

Gic =

−1∑

k=−ν

FkBB
TFT

k ,

where F = T−1

[
etJ 0
0 0

]

W−1 is the fundamental solution matrix of system (1).

As an example, we discuss the square root variant of balanced truncation. The way
to reduce the system is to transform it into a so-called balanced form, which means
that after a transformation

T : [E,A,B,C]→
[

W̃ET̃ , W̃AT̃ , W̃B,CT̃
]

, (4)

the systems proper Gramians as well as the improper Gramians satisfy

G̃po(:= ETGpoE) = Gpc =

[
Σp 0
0 0

]

and

G̃io(:= ATGioA) = Gic =

[
0 0
0 Σi

]

,

such that Σp = diag(θp1 , . . . , θ
p
nf
) and Σi = diag(θi1, . . . , θ

i
n∞

) consist of the so-called

proper and improper Hankel singular values (HSVs). These HSVs can be interpreted as
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a measure of how difficult to observe or how hard to reach a generalized state is. Similar
to the truncation of the singular values performing a best low rank approximation,
the proper Hankel singular values can also be truncated by means of the SVD. The
improper ones need to be retained due to stability reasons [11]. The matrices W̃ and
T̃ are not unique for descriptor systems. For example, in [11], these matrices are given
as

W̃ =
[

RpUpΣ
− 1

2

p , RiUiΣ
− 1

2

i

]

, T̃ =
[

SpVpΣ
− 1

2

p , SiViΣ
− 1

2

i

]

, (5)

with Σ
−1/2
p = diag( 1√

θp
1

, ..., 1
√

θp
nf

), Σ
−1/2
i = diag( 1√

θi
1

, ..., 1√
θi
n∞

). Here, θp and θi are

the proper and improper HSVs respectively, and

Gpc ≈ SpS
T
p , Gpo ≈ RpR

T
p , (6a)

Gic ≈ SiS
T
i , Gio ≈ RiR

T
i . (6b)

Moreover, RT
p ESp = UpΣpV

T
p as well as RT

i ASi = UiΣiV
T
i , such that the transformed

realization (4) represents the system in balanced form. Please notice that, e.g., SpS
T
p

with Sp ∈ R
n×npc is a rank npc approximation to Gpc. Equivalently, Rp ∈ R

n×npo ,
Si ∈ R

n×nic , and Ri ∈ R
n×nio with npc, npo, nic, nio ≪ n.

Based on [16] and [11], the Gramians can alternatively be defined as

Gpo =
1

2π

∫ ∞

−∞

(−iωE −A)−TPT
r C

T × (7a)

CPr(iωE −A)−1dω,

Gpc =
1

2π

∫ ∞

−∞

(iωE −A)−1PlB × (7b)

BTPT
l (−iωE −A)−T dω,

Gio =
1

2π

∫ 2π

0

(e−iωE −A)−T (I − Pr)
TCT × (7c)

C(I − Pr)(e
iωE −A)−1dω, and

Gic =
1

2π

∫ 2π

0

(eiωE −A)−1(I − Pl)B × (7d)

BT (I − Pl)
T (e−iωE −A)−T dω.

For a numerical computation of the HSVs it is essential to know that Gpc and Gpo
are the unique, symmetric, positive semidefinite solutions of the projected generalized
continuous-time algebraic Lyapunov equations

ETGpoA+ATGpoE = −PT
r C

TCPr, (8a)

Gpo = PT
l GpoPl,

EGpcAT +AGpcET = −PlBB
TPT

l , (8b)

Gpc = PrGpcPT
r ,
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see [17]. The improper Gramians Gio and Gic are the unique, symmetric, positive
semidefinite solutions of the projected generalized discrete-time algebraic Lyapunov
equations

ATGioA− ETGioE = (I − Pr)
TCTC(I − Pr), (9a)

0 = PT
l GioPl,

AGicAT − EGicET = (I − Pl)BB
T (I − Pl)

T , (9b)

0 = PrGicPT
r .

If E is nonsingular, then Pr = Pl = I. Hence, it is sufficient to solve the dual Lyapunov
equations

AGpcET + EGpcAT +BBT = 0

and
ATGpoE + ETGpoA+ CTC = 0.

If the index of the pencil is given by ν = 1, the algorithms proposed in [18] can be used.
Due to symmetry and positive semidefiniteness, we compute the approximate factors
Rp, Ri, Sp, and Si of the Gramians in (6). The low rank solution of LEs without
projection is explained, e.g., in [19, 20, 21, 22]. In [23], the Bartels-Stewart algorithm
and Hammarling’s method generalized to projected LEs are presented. Recently, [24]
introduces Krylov subspace methods to solve projected Lyapunov equations numeri-
cally and [25] presents solvers for projected generalized Lyapunov equations based on
matrix equations subroutines that are available in the Subroutine Library In COntrol
Theory (SLICOT)1. A generalization of the alternating direction implicit method and
the Smith method for large-scale projected generalized Lyapunov equations is pre-
sented in detail in [26]. The proposed methods work iteratively and can be employed
for large-scale problems with right hand sides of small and moderate rank. The nu-
merical experiments presented in this work use these algorithms whenever a projected
LE with a suitable right hand side is to be solved. In Section 3 we see that all methods
become numerically unfeasible if the right hand sides of the LEs become too large.
After calculating the required low rank factors Rp, Ri, Sp, and Si, the reduction

process continues for the proper and improper parts separately. We calculate the
balancing transformations as in (5) and the insignificant information of the proper
part is truncated. Consequently, singular value decompositions of the form

RT
p ESp = [Up1

, Up2
]

[
Σp1

0
0 Σp2

]

[Vp1
, Vp2

]
T

(10)

with Σp1
= diag(θp1 , . . . , θ

p
r ), Σp2

= diag(θpr+1, . . . , θ
p
rp),

rp = rank(RT
p ESp) ≤ max(npo, npc), and

RT
i ASi = UiΣiV

T
i (11)

1http://www.slicot.org/
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Algorithm 2.1 Balanced truncation generalized square root method, see [11, Algo-
rithm 3.3.1.]

Input: Realization A,E,B,C, such that λE −A is regular and stable.
Output: Reduced order realization Ar, Er, Br, Cr.
1: Compute Sp and Rp of (6a) as solution of (8).
2: Compute Si and Ri of (6b) as solution of (9).
3: Perform the SVDs in (10) and (11).
4: Compute truncated balancing transformation (12a) and (12b).
5: Calculate the reduced system by projection as in (13).

with Σi = diag(θi1, . . . , θ
i
ri) and ri = rank(RT

i ASi) ≤ max(nio, nic) are computed.
Defining the balancing transformations as

W̃r =
[

RpUp1
Σ

− 1

2

p1
, RiUiΣ

− 1

2

i

]

and (12a)

T̃r =
[

SpVp1
Σ

− 1

2

p1
, SiViΣ

− 1

2

i

]

, (12b)

we truncate everything belonging to Σp2
. The reduced realization of order r + ri is

calculated via

[Er, Ar, Br, Cr] =
[

W̃T
r ET̃r, W̃

T
r AT̃r, W̃

T
r B,CT̃r

]

. (13)

Summarizing, the square root method of balanced truncation for usual descriptor sys-
tems follows Algorithm 2.1, see [11]. Since balancing sometimes leads to ill-conditioned
matrices W̃r and T̃r, there, the authors also propose a balancing free method based
on [27].
Unfortunately, Step 1 and Step 2 of Algorithm 2.1 become computationally infeasible

if either the system has many inputs or outputs as the complexity grows at least by an
order of magnitude and the memory requirements become too high. This motivates
the new BTMT approach.

3 Balanced Truncation for Many Terminals (BTMT)

The up to now established iterative approaches to solve large-scale Lyapunov equations
assume that the rank of the right hand side is much smaller than the size of the large
and sparse coefficient matrices E and A. The rank of the Gramian factors and hence
the efficiency of the reduction process depend on the rank of the right hand side.
In practice, a typical challenge is to observe the dynamical system in every possible
generalized state. In this case C = In, where In is the identity matrix of size n.
Consequently, rank(PT

r C
TCPr) ∈ O(n) and/or rank((I − Pr)

TCTC(I − Pr)) ∈ O(n).
W.l.o.g., we assume these rank properties in this article. Technically, the approach
also holds if the assumption is violated regarding the inputs, i.e., the ranks of the right
hand sides with matrix B involved might be of order n. As a result of this problem,
a computation of the HSVs, and thus also the introduced BT approach, becomes
ineffective.
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3.1 Hankel singular value approximation

Assuming that C having high rank (e.g., C = In), p ∼ n, and m≪ n, the observability
Gramians as solutions of (8a) and (9a) are hardly computable. Returning to (7a) and
(7c) based on the original formulation of Moore [12], W̃r and T̃r can also be computed
by means of ST

p E
TGpoESp or ST

i A
TGioASi via the proper and improper HSVs θp and

θi, respectively. The nonzero positive proper HSVs θpj are computable as

θ
p
j =

√

λj(G̃poGpc) =
√

λj(G̃poSpST
p )

=
√

λj(ST
p E

TGpoESp),

where G̃po = ETGpoE and λj(·) denotes the j-th eigenvalue of matrix (·). With

G̃io = ATGioA, the improper HSVs θij are available via

θij =

√

λj(G̃ioGic) =

√

λj(G̃ioSiS
T
i )

=
√

λj(ST
i A

TGioASi).

Replacing Gpo in (7a) by ST
p E

TGpoESp and Gio in (7c) by ST
i A

TGioASi leads to

ST
p G̃poSp =

1

2π

∫ ∞

−∞

ST
p E

T (−iωE −A)−TPT
r C

T ×

CPr(iωE −A)−1ESpdω

=
1

π

∫ ∞

0

ST
p E

T (−iωE −A)−TPT
r C

T ×

CPr(iωE −A)−1ESpdω, (14)

and

ST
i G̃ioSi =

1

2π

∫ 2π

0

ST
i A

T (e−iωE −A)−T (I − Pr)
TCT ×

C(I − Pr)(e
iωE −A)−1ASidω. (15)

By means of a suitable quadrature rule, the approximation of the matrix products

ST
p G̃poSp ≈

1

2π

Np∑

l=0

λlfp(ωl) (16)

and

ST
i G̃ioSi ≈

1

2π

Ni∑

l=0

λlfi(ωl) (17)
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with
fp(ω) = ST

p E
T (−iωE −A)−TPT

r C
T CPr (iωE −A)−1ESp

︸ ︷︷ ︸

a.)
︸ ︷︷ ︸

b.)
︸ ︷︷ ︸

c.)

(18)

and
fi(ω) = ST

i A
T (e−iωE −A)−T P̃r

T
CT CP̃r (e

iωE −A)−1ASi
︸ ︷︷ ︸

a.)
︸ ︷︷ ︸

b.)
︸ ︷︷ ︸

c.)

(19)

with P̃r = I − Pr can be performed with reasonable numerical effort. In detail, the
evaluation of (18) and (19) exploits symmetry of fp and fi and therefore only needs the
3 emphasized basic steps a.), b.) and c.). Step a.) is equivalent to solving a large-scale
but sparse linear system of equations with only a few right hand sides, recalling that
we assume Sp and Si to be low rank factors, which facilitates the numerical treatment
of this step. Although the solution does not need to be sparse anymore (most likely
sparsity is lost), step b.) consists only of a manageable number of matrix vector
multiplications. If the matrix C is equal to the identity matrix, this step simplifies
even more. If not explicitly given, step b.) in (19) requires matrix subtraction in
P̃r, so that we have to take care of possible catastrophic cancellation. Step c.) then
uses the symmetry of the functions fp and fi, such that the temporary result just
needs to be multiplied by its conjugate transpose. Using an efficient quadrature rule
to approximate the matrix product, these three steps become sufficient. Efficiency
in this spirit means the quadrature rule needs to be adaptive, highly accurate, and
should provide an error estimation. We choose the Gauss-Kronrod quadrature formula
explained in the next section. The goal to compute the reduced system requires an
additional intermediate step during the evaluation of fp and fi which causes acceptable
numerical extra costs. This additional step is explained in Section 3.3.

3.2 The Gauss-Kronrod quadrature formula

We want to approximately calculate the value of the integrals (14) and (15) by means
of the Gauss-Kronrod quadrature formula. A basis is the n-point Gaussian quadrature
rule for the integration over a domain [a, b]

∫ b

a

f(x)dx ≈
n∑

i=1

αif(x
G
i ) =: Gn

with n quadrature points xGi (roots of the n-th Legendre polynomial) and nonnegative
weights αi. The Gauss quadrature approximates polynomials of degree 2n− 1 or less
exactly. The Gauss-Kronrod quadrature (GK) is an enlargement of the n-point Gauss
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Figure 1: Quadrature points and weights of G7K15.

quadrature with n+1 new quadrature points and different weights ai and bi such that

∫ b

a

f(x)dx ≈
n∑

i=1

aif(x
G
i ) +

n+1∑

i=1

bif(x
K
i ) =: K2n+1.

GK is a nested quadrature rule because it uses the same evaluation points as the Gauss
quadrature, which is embedded in GK but of lower order. The Gauss points do not
require additional function evaluations. GK leads to exact results for polynomials up to
degree 3n+1. Figure 1 shows n = 7 Gauss and 2n+1 = 15 Gauss-Kronrod evaluation
points and quadrature weights in the interval [−1, 1]. This so-called Gauss-Kronrod
pair (G7,K15) is a standard choice referring to the number of supporting points and
hence the method we apply. The difference between the Gauss approximation and
the GK quadrature gives an error estimation. Here, err = (200|Gn − K2n+1|)1.5 is
the standard choice how to compute this estimation. Since this choice is based on
experiences and there is no guarantee for correctness, we consider err = |G7 −K15|,
which mostly overestimates the error, as sufficient. For details see [28, Section 5.5].
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We combine this very efficient method to approximate general integrals with an
adaptive refinement of the integration domain, such that in each subdomain [αk, βk] of
[0,∞] or [0, 2π], respectively, the estimated approximation error is smaller then a user
defined threshold. Alternatively, the sum of the errors over all subintervals is smaller
than a given threshold. Both guarantees a certain accuracy within the entire interval.
The refinement itself happens within the interval [0, 1]. Therefor, we transform the
evaluation points {xGi }

⋃
{xKi } =: xGK

i ∈ [−1, 1], i = 1, . . . , 15 to elements of the
particular k-th subdomain yki ∈ [ak, bk] ⊂ [0, 1] via

yki = φ(xGK
i ) =

bk − ak
2

xGK
i +

bk + ak

2
,

such that
∫ bk

ak

f(y)dy =
bk − ak

2

∫ 1

−1

f

(
bk − ak

2
x+

bk + ak

2

)

dx.

Next, we map these points to the respective integration domain. In the proper case,

yki ∈ [ak, bk] is mapped to ωk
i ∈ [αk, βk] ⊂ [0,∞) by means of ωk

i = ψ(yki ) =
yk
i

1−yk
i

2 ,

such that

∫ ∞

0

fp(ω)dω =
∑

k

∫ βk

αk

fp(ω)dω

=
∑

k

∫ bk

ak

1 + y2

(1− y2)2 fp
(

y

1− y2
)

dy.

The improper case with [αk, βk] ⊂ [0, 2π] leads by means of ωk
i = ξ(yki ) = 2πyki to

∫ 2π

0

fi(ω)dω =
∑

k

∫ βk

αk

fi(ω)dω =
∑

k

2

∫ bk

ak

fi (2πy) dy.

In this way, we apply the GK quadrature scheme adaptively. We check by means
of the error estimate if the values are below the given threshold. If this holds, we
are done. If not, we bisect the corresponding interval [ak, bk] and repeat the whole
process, including the mapping of the evaluation points for each refined subdomain.
We iterate this procedure until the approximation satisfies the desired error tolerance.
Numerical results can be found in Section 4. For more details of the computation of
the Gauss-Kronrod quadrature, see [29, 30].

3.3 Getting the reduced order model

Although we know approximations to ST
p G̃poSp and ST

i G̃ioSi, obtaining a reduced
order model requires additional calculation steps. The goal is to obtain the projection
matrices W̃r and T̃r of (13). In the remainder of this subsection, we concentrate on
the proper part. All techniques explained hold for the improper part, too.
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Following the BT Schur method approach in [13] and its application in [31], W̃r and
T̃r are the result of a Schur decomposition of

ST
p G̃poSp ∈ R

npc×npc and ST
i GioSi ∈ R

nic×nic (20)

with npc, nic ≪ n, see (6). This means we solve a small-size eigenvalue problem

from whose solution W̃r and T̃r can be recovered. Assuming, we want to reduce the
proper part of the system to order rp, we need to compute the left and right invariant
subspaces corresponding to the rp largest (magnitude) eigenvalues by means of both
Gramians, i.e.,

(GpcG̃po)Vr = VrΛp, (21)

with Λp = diag(λ1, λ2. . . . , λrp), |λ1| ≥ |λ2| ≥ · · · ≥ |λrp | > 0 and

V T
l (GpcG̃po) = ΛpV

T
l . (22)

The order rp of the reduced proper part of the system can, for example suggested in

[31], be determined by the ordered eigenvalues λi of S
T
P G̃poSP (only of size npc × npc

with npc ≪ n and therefor cheaply computable) and a given tolerance, such that

min
rp∈N



2

n∑

i=rp+1

λi ≤ tol



 . (23)

To derive the small eigenvalue problems belonging to the matrices in (20), considering
(6), we study in detail the underlying right and left eigenvalue problems (21) and (22).
We multiply (21) with ST

P G̃po from the left

ST
P G̃poSpS

T
P G̃poVr = ST

P G̃poVrΛp

and additionally substitute Ṽr := ST
P G̃poVr, such that

(ST
P G̃poSp)Ṽr = ṼrΛp. (24)

We know an approximation to ST
P G̃poSp, see (16), so we can easily solve this problem.

The goal is to compute Vr, the required right dominant invariant subspace of the
system. Consequently, multiplying (24) with Sp from the left

SpS
T
P G̃poSpṼr = SpṼrΛp (25)

leads by
Vr := SpṼr (26)

to (21). That means we solve (24) and compute Vr via (26). It needs to be clarified
that, as z 6= 0 in (24) with z ∈ colspan(Ṽr), the statement x 6= 0 with x ∈ colspan(Vr)
holds in (21). Assume x = 0 in (26), i. e.,

Spz = 0.

11



Algorithm 3.1 Evaluation of fp(ω) including additional step

1: for l← 1, Np do

2: f := (iωlE −A)−1(ESp);
3: f := CPrf ;
4: g := (−iωlE −A)−T (PT

r C
T f);

5: f := fT f ;
6: end for

It follows, that
SpS

T
p G̃poSpz = 0,

and by (25) we get λz = 0. Due to λ 6= 0, the only option is z = 0.
The analog arguments are valid for the calculation of the left dominant invariant

subspace. Consider the large-size left eigenvalue problem (22). By multiplication with
Sp from the right and again a substitution Ṽ T

l := V T
l Sp, we derive a small eigenvalue

problem, i.e.,
Ṽ T
l (ST

P G̃poSP ) = ΛpṼ
T
l . (27)

After calculating Ṽ T
l , we determine V T

l by multiplying ST
P G̃po from the right

Ṽ T
l S

T
P G̃po

︸ ︷︷ ︸

V T
l

SPS
T
P G̃po = Λp Ṽ

T
l S

T
P G̃po

︸ ︷︷ ︸

V T
l

,

such that
Vl := G̃poSP Ṽl = ETGpoESP Ṽl. (28)

Here, it is also easy to show, that 0 6= x ∈ colspan(Vl) is guaranteed if 0 6= z ∈
colspan(Ṽl), but the knowledge of ETGpoESP is required in (28). Fortunately, this
information is cheaply available by an additional computational step. We approximate
GpoESP (and if needed later multiply ET from the left), such that we can calculate

V̂l = GpoESP Ṽl. We simply add Step 4 referring to function g in Algorithm 3.1 while
evaluating fp(ω), see (18).
Knowing the bases of the left and right dominant invariant subspaces, we continue

following the approach of [13] generalized to descriptor systems. We apply the SVD
to the product of V T

l and Vr, such that

V T
l Vr = UpΣpV

T
p . (29)

We show that, in comparison to the BT square root approach, the matrices in (10)
and (29) span the same subspaces. We assume Gpc = SpS

T
p and Gpo = RpR

T
p with

Sp, Rp ∈ R
n×nf to be exact low rank factorizations. If the pencil λE − A is regular

and stable, it follows by [11, Thm. 3.2.8.] that

rank(GpcG̃po) = rank(GpcETGpoET )

= rank(ST
p E

TGpoETSp) = nf . (30)

12



Algorithm 3.2 BTMT for m≪ n and O(p) = O(n).
Input: Realization A,E,B,C, such that λE − A is regular and stable with m ≪ n

and O(p) = O(n).
Output: Reduced order realization Ar, Er, Br, Cr.
1: Compute Sp and Si of (6) as solution of (8b) and (9b).

2: Approximate ST
p G̃poSp and ST

i G̃ioSi by (16) – (19).

3: Compute W̃r and T̃r in (31) by means of the explained Schur and singular value
decompositions.

4: Calculate the reduced system by projection in (13).

Using that, from (24) and (27) we know Ṽl, Ṽr ∈ R
nf×nf are of full rank. Regard-

ing (26) and using that Ṽr is invertible, we get span(Vr) = span(Sp). Due to (30),

rank(RT
p ESp) = nf , such that RT

p ESpṼl is of full rank. From (28) it follows, that

span(Vl) = span(ETRp), which implies that span(V̂l) = span(Rp).
Analogously, for the improper part we calculate

(ST
i G̃ioSi)Ṽ

i
r = Ṽ i

rΛi with V i
r = SiṼ

i
r ,

Ṽ i
T

l (S
T
i G̃ioSi) = ΛiṼ i

T

l with V i
l = ATGioASiṼ

i
l ,

and also V̂ i
l = GioASiṼ

i
l . Please note that there is no truncation in the improper part.

We keep all ri improper eigenvalues λi 6= 0 and their corresponding eigenvectors.
Again, applying the SVD leads to

V iT

l V
i
r = UiΣiVi

T .

Similar to (12), the projectors Wr and Tr are defined as

W̃r =
[

V̂lUpΣ
− 1

2

p , V̂ i
l UiΣ

− 1

2

i

]

and (31a)

T̃r =
[

VrVpΣ
− 1

2

p , V i
r ViΣ

− 1

2

i

]

. (31b)

The reduced model of order r := rp+ri is determined by (13). The complete approach
is summarized in Algorithm 3.2. The case when we have many inputs and only a few
outputs can be treated in the same way.

4 Numerical Investigations

4.1 Heat transfer within a hollow cylinder

In [5], the solution of an inverse heat transfer problem is investigated. One of the
introduced models is a cylinder in which, due to a drilling process, a heat source
exists. The goal is to find out the initial temperature by means of measurements on

13
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the outside. The underlying equations can be written as

Eẋ = Ax+Bu+ f,

y = Cx,

where f is an additional linear perturbation term which has no influence on the re-
duction process of the coefficient matrices. It contains for example the influence of the
external temperature and only needs to be adapted to the reduced state space as a
final step. For more details see [5]. Let us now assume we know the initial tempera-
ture at the inner boundary of the hollow cylinder but want to know how the material
expands over time with changing temperatures. Therefore, it is necessary to know the
temperature at each point of the discretization grid. Consequently, the output matrix
is given by C = In. We now reduce by means of the BTMT approach. Figure 2
shows the spectral norm of the original (n = 73452) and the reduced system (r = 19)
along the imaginary axis. In Figure 3, the absolute and relative approximation error
is shown. The BT error bound computed as 2

∑n
i=r+1

√
λi with λi as in (23) holds

for all frequencies. Depending on the quality of the approximation of the Gramians
information this is not necessarily always the case in BTMT. We see that the reduced
model is much better than typically needed in mechanical heat transfer applications.

4.2 Constrained damped mass-spring system of index 3

As a second example, we consider a constrained damped mass-spring system intro-
duced., e.g., in [11, eq. (3.34)], see Figure 4. In contrast to [11], the wish to observe
every mass in terms of position and velocity leads to the following system:

ṗ(t) = v(t),

Mv̇(t) = Kp(t) +Dv(t)−GTλ(t) +B2u(t),

0 = Gp(t),

y1(t) = C1p(t), and y2(t) = C2v(t).

(32)

Here, p(t) ∈ R
g denotes the position and v(t) ∈ R

g the velocity of the masses mi,
i = 1, . . . , g. Furthermore, λ(t) ∈ R

2 is the Lagrange multiplier, M the mass matrix,
D the damping matrix, K the stiffness matrix, and G = [1, 0, ..., 0,−1] the matrix
containing the constraint of the fixed bonding of the first and the last mass. The
projectors Pl and Pr can be computed explicitly. For details see [11]. The input
matrix is B2 = e1, where e1 denotes the first column of Ig. This means, as input we
can influence the velocity of the first mass. The output matrices C1 = C2 = Ig give
the velocity and the position of every mass. In form of (1), i.e.,

x =





p(t)
v(t)
λ(t)



 , E =





Ig 0 0
0 M 0
0 0 0



 , and A =





0 Ig 0
K D −GT

G 0 0



 ,

system (32) is an index 3 descriptor system with one input but 2g outputs. To get
comparable results we take the same setting for the masses and the spring and damping
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constants as in [11]. Choosing g = 106, we get n = 2 · 106 + 1, m = 1, and p = 2 · 106.
That huge number n makes the Bartels-Stewart algorithm and Hammarling’s method
unusable. Figure 5 shows the estimated error err = |G7 − K15| depending on the
level of integration domain refinement. In Figure 7 we see the relative and absolute
reduction error as well as the BT error bound. In the used setting this bound holds
for all frequencies. Figure 6 shows the magnitude and the phase plot of the input to
third output (position of the third mass) component.

5 Conclusions

We introduced a new balanced truncation approach for descriptor systems with either
many inputs or many outputs, called BTMT. The approach mainly enables the re-
duction of these systems which can be used to test different model settings like the
influence of the external temperature in Example 4.1. Remember, that we can not ex-
pect, e.g., the observability Gramian to be representable in low rank form. Due to the
introduced approach of using the GK quadrature, this problem for usual large-scale
Lyapunov solvers is circumvented. Nevertheless, the solution of the linear systems
in steps 2 and 4 of Algorithm 3.1 remains the numerical bottleneck and leads to a
time consuming reduction process. The computational complexity of evaluating, e.g.,
fp(ω) in (16) explained in Algorithm 3.1, is, assuming that all matrices are dense,
O(Np(

4
3n

3 + 12n2npc + 3n2)). The n3 and n2 terms are caused by the dense LU fac-
torization. Theses costs reduce for sparse computations. We see that npc ∈ [1, nf ] ⊂ Z

makes a difference between quadratic or nearly cubic complexity. Consequently, we
want npc to be as small as possible, which motivates the usage of the algorithm intro-
duced in [32]. Additionally, the question rises how accurate the known low rank factor
approximation of the (in this case) controllability Gramian needs to be. Another way
of saving costs might be the replacement of step 4 of Algorithm 3.1 by the once-only
computation of a pseudoinverse of Sp and multiplying this matrix from the left to
fp(ω) at the end. These problems are worth future investigations.
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