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Abstract

We consider the efficient solution of the Cahn-Hilliard variational inequal-
ity using an implicit time discretization, which is formulated as an optimal
control problem with pointwise constraints on the control. By applying a
semi-smooth Newton method combined with a Moreau-Yosida regularization
technique for handling the control constraints we show superlinear conver-
gence in function space. At the heart of this method lies the solution of large
and sparse linear systems for which we propose the use of preconditioned
Krylov subspace solvers using an effective Schur complement approximation.
Numerical results illustrate the competitiveness of this approach.
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1. Introduction

The Cahn-Hilliard equation is a partial differential equation of fourth
order which is used in materials science [38, 23], image processing [17] or
chemistry [48]. It was originally introduced to model phase separation in
binary alloys [30, 14] which occurs when the temperature of such a homo-
geneous mixture is rapidly quenched below a critical temperature. For time
t ∈ (0, T ), with T > 0 fixed, we consider a binary mixture of components
A and B and define u as the difference of the local concentrations between
the two components. Hence u satisfies u ∈ [−1, 1] with u ≡ 1 in the pure
phase A and u ≡ −1 in the pure phase B. We here study a diffuse phase
transition, i.e. the region between the two phases has a certain width b, the
so-called interface (phase field model). There is also the limit case b ↓ 0
which gives the Mullins-Sekerka system (sharp interface model) [13, 23, 40].
Phase separation is modelled either by a smooth free energy, e.g. double-well
potentials [18] such as

ψ(u) :=
1

4
(u2 − 1)2,

logarithmic potentials [15], or by a non-smooth double obstacle potential
[8, 9]

ψ(u) :=

{
1
2
(1− u2), |u| ≤ 1

∞, |u| > 1.
(1)

Because of the disadvantage of the former that physically non-admissible
values |u| > 1 can be attained during the evolution we consider the latter
(on which we can control the restriction |u| ≤ 1 more precisely). Moreover,
Oono and Puri found that in the case of deep quenches the double obsta-
cle potential is better suited than the other potentials mentioned above, see
[39]. After discretization in time, this leads to an optimal control problem
with pointwise constraints on the control. In [31], Hintermüller, Hinze and
Tber propose a function space-based algorithm which combines a Moreau-
Yosida regularization technique for handling the control constraints with a
semi-smooth Newton (SSN) method for solving the optimality systems of
the resulting subproblems. This method allows for a convergence analysis
in function space [32, 45], for which one expects a mesh-independent be-
haviour of the algorithm [33]. Hintermüller et al. use a semi-implicit time
discretization, i.e. in particular an explicit treatment of the potential (1). In
[6, 7, 13] it is shown, that even though the time step can be arbitrarily large
for semi-implicit systems, the results obtained for large time steps are highly
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inaccurate for capturing the evolution of the sharp interface model. Moreover
in [5], Blank, Sarbu and Stoll relax the time step restriction arising from the
implicit time discretization for the scalar Allen-Cahn variational inequalities
with non-local constraints. This motivates us to use a fully implicit scheme
for the discretization in time and the treatment of the potential (1).

As we will show in the course of this paper the solution of a linear system
Ax = b with A a real symmetric matrix is at the heart of this method. The
sparse linear systems are usually of very large dimension and in combination
with three-dimensional experiments the application of direct solvers such as
UMFPACK [16] becomes infeasible. As a result iterative methods have to
be employed (see e.g. [27, 42] for introductions to this field). We propose
the use of a Krylov subspace solver. The convergence behaviour of the it-
erative scheme typically depends on the conditioning of the problem and
the clustering of the eigenvalues. These properties can be enhanced using
preconditioning techniques P−1Ax = P−1b, where P is an invertible matrix
that is easy to invert and resembles A. In this paper, we provide an efficient
preconditioner P for the solution of Cahn-Hilliard variational inequalities us-
ing an effective Schur complement approximation and (algebraic) multigrid
developed for elliptic systems [20, 42, 41]. The linear systems arising in the
semi-smooth Newton method have the following saddle point block-structure

A =

[
−L M

M K

]

with M ∈ RN×N being symmetric and positive definite, K ∈ RN×N sym-
metric and positive semi-definite and L ∈ RN×N symmetric and possibly
indefinite. Due to the possible indefiniteness of L, a non-symmetric Krylov
subspace solver is our method of choice. For moderate sizes of A and three-
dimensional problems direct solvers such as UMFPACK [16] can show out-
standing performance.

The paper is organized as follows. In Section 2 we introduce the Cahn-
Hilliard variational inequality. In sections 3–6 we follow the analysis pre-
sented in Hintermüller et al. [31], in which we emphasize the differences
between the semi-implicit time-discrete problem therein and the implicit
time-discrete problem which we explore. In detail, an implicit time-discrete
problem is considered in Section 3. We show, that the time-discrete problem
is equivalent to an optimal control problem whose regularized version is in-
troduced and analysed in Section 4. In Section 5, we consider a semi-smooth
Newton method to solve the regularized subproblems. We derive the linear
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systems arising from discretization using finite elements in Section 6. In Sec-
tion 7, we analyse the linear systems and propose preconditioning strategies
for the saddle point problems. We additionally introduce preconditioners
for the semi-implicit scheme derived in [31]. Section 8 illustrates the com-
petitiveness of our preconditioners for both problem setups. In Section 9,
we discuss alternative approaches and their properties in comparison to our
method. Section 10 summarizes our findings.

2. Cahn-Hilliard model

The Cahn-Hilliard equation is derived as the H−1-gradient flow of the
Ginzburg-Landau energy

E(u) =

∫

Ω

γε

2
|∇u|2 + 1

ε
ψ(u) dx,

where ε > 0 is proportional to the thickness of the interfacial region and
γ > 0 is a constant related to the interfacial energy density. Using the
obstacle potential ψ in (1), which can be written via the indicator function
as

ψ(u) = ψ0(u) + I[−1,1](u),

where ψ0(u) =
1
2
(1− u2), we get the following Cahn-Hilliard system

∂tu = ∆w (2)

w = −γε∆u+ 1

ε
(ψ′

0(u) + µ) (3)

µ ∈ ∂β[−1,1](u) (4)

|u| ≤ 1 (5)

∂u

∂n
=
∂w

∂n
= 0 on ∂Ω, (6)

where ∂β[−1,1](u) is the subdifferential of the non-smooth part β[−1,1](u) :=∫
Ω
I[−1,1](u) of the energy E. The system (2)–(6) can be formulated as a

variational inequality

〈∂tu, v〉+ (∇w,∇v) = 0 ∀v ∈ H1(Ω) (7)

(w, v − u) ≤ γε(∇u,∇(v − u)) +
1

ε
(ψ′

0(u), v − u) ∀v ∈ H1(Ω), |v| ≤ 1

(8)

|u| ≤ 1 a.e. in Ω (9)
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for which existence, uniqueness and regularity of a solution was shown in [8].
Here (·, ·) and 〈·, ·〉 stand for the L2(Ω)-inner product and the duality pairing
of H1(Ω) and H1(Ω)∗, respectively.

3. Time-discrete Cahn-Hilliard system

In contrast to Hintermüller et al. [31], we apply an implicit time discretiza-
tion, i.e. we use the backward Euler discretization for the time derivative ∂tu
and treat all the other terms in (7)–(9) implicitly. In particular, the poten-
tial ψ. Let τ > 0 denote the time step size and tn−1 = (n − 1)τ, n ∈ N,
discrete times, then for every time step we have to solve the time-discrete
Cahn-Hilliard system

(u, v) + τ(∇w,∇v) = (u(n−1), v) ∀v ∈ H1(Ω) (10)

(w, v − u) ≤ γε(∇u,∇(v − u)) +
1

ε
(ψ′

0(u), v − u) ∀v ∈ H1(Ω), |v| ≤ 1

(11)

|u| ≤ 1 a.e. in Ω, (12)

where we write u(n) = u and w(n) = w.

Remark 1. The difference between the implicit and semi-implicit system is
the discretization of the potential ψ. In the semi-implicit case we have

(u, v) + τ(∇w,∇v) = (u(n−1), v) ∀v ∈ H1(Ω)

(w, v − u) ≤ γε(∇u,∇(v − u)) +
1

ε
(ψ′

0(u
(n−1)), v − u) ∀v ∈ H1(Ω), |v| ≤ 1

|u| ≤ 1 a.e. in Ω.

We now want to rewrite (10)–(12) as the first-order optimality system of
an optimization problem. For this we define

K :=
{
v ∈ H1(Ω) : |v| ≤ 1 in Ω

}

V0 :=
{
v ∈ H1(Ω) : (v, 1) = 0

}
.

Choosing v = 1 in (10) we obtain the conservation of mass, i.e. (u, 1) =
(u(n−1), 1) = m ∀n ∈ N, which is a specific feature of the Cahn-Hilliard
model. Without loss of generality, we assume that m = 0 and |Ω| = 1 hold
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true. We further use the notation ‖ · ‖ for the L2-norm. For (10)–(12) we
obtain the following minimization problem

min
(u,w)∈K×V0

J(u, w) :=
γε

2
‖∇u‖2 + 1

ε

∫

Ω

ψ0(u) +
τ

2
‖∇w‖2 subject to (10).

(P)
Let

F = {(u, w) ∈ K × V0 : (u, w) achieves (10)}
be the admissible set of (P). Analogous to Lemma 3.1 in [31] we have the
following result.

Lemma 1. The following properties hold true:

(i) F 6= ∅ and F ⊂ V0 × V0.

(ii) F is a closed convex set of H1(Ω)×H1(Ω).

(iii) J is strictly convex on F , if τ < 4γε3.

(iv) For every sequence (um, wm)m∈N in F such that limm→∞ ‖um‖H1 = ∞
or limm→∞ ‖wm‖H1 = ∞, we have limm→∞ J(um, wm) = ∞, if τ <

4γε3.

Proof. The proof for (i)–(ii) is the same as in [31].

(iii) Let (u1, w2), (u2, w2) ∈ F and α ∈ (0, 1). Setting

r(α) := αJ(u1, w1)+(1−α)J(u2, w2)−J(αu1+(1−α)u2, αw1+(1−α)w2),

we have

r(α) =
α(1− α)

2

(
γε‖∇(u1 − u2)‖2 + τ‖∇(w1 − w2)‖2 −

1

ε
‖u1 − u2‖2

)
.

For (u1, w2), (u2, w2) ∈ F we choose v = u1 − u2 ∈ H1(Ω) in (10),
subtract both equations from each other and get

−‖u1 − u2‖2 = τ(∇(w1 − w2),∇(u1 − u2)). (13)

Applying Young’s inequality to (13), we obtain

r(α) ≥ α(1− α)

2

[(
γε− τ

4βε

)
‖∇(u1 − u2)‖2 +

(
τ − τβ

ε

)
‖∇(w1 − w2)‖2

]
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for all (u1, w2), (u2, w2) ∈ F and for all β > 0. For the strict convexity
we require τ < 4γε3 and choose β such that γε− τ

4βε
> 0 and τ− τβ

ε
> 0.

Moreover, r(α) = 0 leads to (u1, w1) = (u2, w2), see [31]. Consequently,
J is strictly convex on F , provided that τ < 4γε3.

(iv) Let (u, w) ∈ F . First of all, we have

J(u, w) >
γε

2
‖∇u‖2 + τ

2
‖∇w‖2 − 1

2ε
‖u‖2.

Choosing v = u ∈ H1(Ω) in (10) and apply Young’s as well as Poincaré-
Friedrichs inequality (note that F ⊂ V0 × V0), we get

J(u, w) >

(
γε

2
− τ

8β1ε
− Cp

8β2ε

)
‖∇u‖2+

(
τ

2
− τβ1

2ε

)
‖∇w‖2−β2

2ε
‖u(n−1)‖2

for all (u, w) ∈ F and for all β1, β2 > 0. Again we require τ < 4γε3

and choose β1, β2 such that γε

2
− τ

8β1ε
− Cp

8β2ε
> 0 and τ

2
− τβ1

2ε
> 0.

Remark 2. Note the necessity of the time step restriction τ < 4γε3 for
the implicit scheme, which has not to be claimed for the semi-implicit one.
Even though, the results obtained for large time steps with the semi-implicit
system are highly inaccurate for capturing the evolution of the sharp interface
model, see Section 8.2 or [13, 5, 11].

The relation between (P) and (10)–(12) is established next.

Theorem 2. Let τ ∈ (0, 4γε3). The problem (P) has a unique solution
(u∗, w∗). Moreover, there exists a unique Lagrange multiplier p∗ ∈ H1(Ω),
such that w∗ = p∗−(p∗, 1) and (u∗, p∗) is a solution of (10)–(12). Conversely,
if (u∗, p∗) is a solution of (10)–(12), then (u∗, w∗) with w∗ = p∗ − (p∗, 1) is
the unique solution of (P).

Proof. The proof follows analogously to Theorem 3.2 in [31].
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4. Moreau-Yosida regularized problem

Variational inequalities like (11) may be reformulated by introducing La-
grange multipliers associated with the constraints in K. However, they are
elements of H1(Ω)∗ and not allow a pointwise interpretation, which compli-
cates the numerical treatment, see [5]. Motivated by [31], we replace the
above optimization problem by its Moreau-Yosida regularized version

min
(u,w)∈H1(Ω)×V0

Jc(u, w) subject to (10) (Pc)

with the objective

Jc(u, w) = J(u, w) +
1

2c
‖max(0, u− 1)‖2 + 1

2c
‖min(0, u+ 1)‖2,

where 0 < c≪ 1 denotes the associated regularization/penalty parameter.

Theorem 3. Let τ ∈ (0, 4γε3). The problem (Pc) has a unique solution
(uc, wc). Moreover, there exists a unique pc ∈ H1(Ω) such that

pc − (pc, 1) = wc (14)

τ(∇pc,∇v) + (uc, v)− (u(n−1), v) = 0 ∀v ∈ H1(Ω) (15)

γε(∇uc,∇v) + (λc(uc), v)− (pc, v)−
1

ε
(u, v) = 0 ∀v ∈ H1(Ω), (16)

where λc(uc) := λ+c (uc) + λ−c (uc) with

λ+c (uc) :=
1

c
max(0, uc − 1) and λ−c (uc) :=

1

c
min(0, uc + 1).

Conversely, if (uc, pc) is a solution of (15)–(16), then (uc, wc) with wc =
pc − (pc, 1) is the unique solution of (Pc).

Proof. By using the note in the proof of Theorem 4.1 in [31], that the func-
tionals u → ‖max (0, u− 1)‖2 and u → ‖min (0, u+ 1)‖2 are convex and
Fréchet-differentiable on H1(Ω), we can show that Fc and Jc satisfy the
analogue of Lemma 1 for (Pc). Hence, (Pc) has a unique solution (uc, wc),
provided that τ < 4γε3. The rest of the proof follows analogously to Theorem
4.1 in [31].
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Proposition 4. Let {(uc, wc)}c>0 be a sequence of solutions of (Pc) as c→ 0,
where τ < 4γε3. Then there exists a subsequence still denoted by {(uc, wc)}c>0

such that
(uc, wc) −→ (u∗, w∗) in H1(Ω)

as c → 0, where (u∗, w∗) is the unique solution of (P). In particular, u∗ is
the order parameter corresponding to the solution of (10)-(12).

Proof. Using the estimate for J(u, w) in (iv) of Lemma 1, the proof follows
analogously to Proposition 4.2 in [31].

5. Semi-smooth Newton method

We apply the function space-based algorithm motivated in [31] for solving
the time-discrete Cahn-Hilliard problem. For a specified sequence c → 0 we
solve the optimality system (15)–(16), compactly written as

Fc(uc, wc) = (F (1)
c (uc, wc), F

(2)
c (uc, wc)) = 0, (17)

for every c by a semi-smooth Newton algorithm. In (17), the components
are defined by

〈
F (1)
c (u, w), v

〉
= τ(∇w,∇v) + (u, v)− (u(n−1), v)

〈
F (2)
c (u, w), v

〉
= γε(∇u,∇v) + (λc(u), v)− (w, v)− 1

ε
(u, v)

for all u, w, v ∈ H1(Ω). Due to the presence of the max- and min-operators
in the definition of λc, Fc is not Fréchet-differentiable. However, it satisfies
the weaker notion of Newton differentiability, see [32, 31].

Definition 1 (Definition 5.1 in [31]). Let X and Z be Banach spaces,
D ⊂ X an open subset. A mapping F : D → Z is called Newton-differentiable
in U ⊂ D if there exists a family of mappings G : U → Z such that

lim
h→0

‖F (x+ h)− F (x)−G(x+ h)h‖Z
‖h‖X

= 0 ∀x ∈ U.

The operator G is called a Newton derivative of F on U .
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For such mappings, the following convergence result for the (semi-smooth)
Newton iteration

x(k+1) = x(k) −G(x(k))−1F (x(k)), k = 0, 1, . . . (18)

holds true, where G is a Newton derivative of F . For its proof we refer to
Theorem 1.1 in [32].

Theorem 5. Let x∗ be a solution of F (x) = 0 and suppose that F : D ⊂ X →
Z is Newton-differentiable in a neighbourhood U of x∗ with {‖G(x)−1‖L(Z,X) :
x ∈ U} bounded. Then the sequence {x(k)}k∈N generated by (18) converges
superlinearly to x∗ provided that ‖x(0) − x∗‖X is sufficiently small.

Lemma 6. The mapping Fc : H
1(Ω)×H1(Ω) → H1(Ω)∗×H1(Ω)∗ is Newton-

differentiable. Furthermore, the operator Gc(u, w) given by

〈Gc(u, w)(δu, δw), (φ, ψ)〉 =
(

τ(∇δw,∇φ) + (δu, φ)
γε(∇δu,∇ψ) + 1

c
(χA(u)δu, ψ)− (δw, ψ)− 1

ε
(δu, ψ)

)

serves as a Newton-derivative for Fc, where χA(u) is the characteristic func-
tion of the set

A(u) := {x ∈ Ω : |u(x)| > 1}.

For the proof we refer to Lemma 5.3 in [31] and Proposition 4.1 in [32].

Lemma 7. Let τ < 4γε3. For given u ∈ H1(Ω) and (y1, y2) ∈ H1(Ω)∗ ×
H1(Ω)∗, the optimization problem

min
(δu,δp)∈H1(Ω)×V0

J(δu, δp) +
1

c
(χA(u)δu, δu)− 〈y2, δu〉

subject to τ(∇δp,∇φ) + (δu, φ) = 〈y1, φ〉 ∀φ ∈ H1(Ω)

(PGc
)

admits a unique solution (δu, δp). Moreover, there exists a unique δw ∈
H1(Ω) such that

τ(∇δw,∇φ) + (δu, φ) = 〈y1, φ〉 (19)

γε(∇δu,∇ψ) + 1

c
(χA(u)δu, ψ)− (δw, ψ)− 1

ε
(δu, ψ) = 〈y2, ψ〉 (20)

for all φ, ψ ∈ H1(Ω). Conversely, if (δu, δw) is a solution of (19)–(20), then
(δu, δp) with δp = δw − (δw, 1) is the unique solution of (PGc

).
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Proof. One proceeds as in the proofs of Theorems 2 and 3.

Lemma 8. The semi-smooth Newton method (18) (with F and G replaced by
Fc and Gc) converges superlinearly to (uc, wc), the solution of (17), provided
that ‖(u(0), w(0))− (uc, wc)‖H1(Ω)×H1(Ω) is sufficiently small and τ < 4γε3.

Proof. From Lemma 7 we deduce that for all (u, w) ∈ H1(Ω) × H1(Ω),
Gc(u, w) is invertible, i.e. for given (y1, y2) ∈ H1(Ω)∗ × H1(Ω)∗, there ex-
ists a unique pair (δu, δw) ∈ H1(Ω)×H1(Ω), such that (19)–(20) is satisfied.
Taking (φ, ψ) = (δw, δu) in (19)–(20) and adding the two equations, we
obtain

γε ‖∇δu‖2 + τ ‖∇δw‖2 = 〈y1, δw〉+ 〈y2, δu〉 −
1

c

(
χA(u)δu, δu

)
︸ ︷︷ ︸

≥0

+
1

ε
‖δu‖2

≤ 〈y1, δw〉+ 〈y2, δu〉+
1

ε
‖δu‖2 .

Choosing φ = δu in (19) and applying Young’s inequality with β1 ∈
(

τ
4γε2

, ε
)

(note that τ < 4γε3), we get

(
γε− τ

4β1ε

)

︸ ︷︷ ︸
≥0

‖∇δu‖2 +
(
τ − τβ1

ε

)

︸ ︷︷ ︸
≥0

‖∇δw‖2

≤ 〈y1, δw〉+ 〈y2, δu〉+
1

ε
〈y1, δu〉

≤ 1

4β2

(
‖δw‖2 + ‖∇δw‖2

)
+

1

4β3

(
‖δu‖2 + ‖∇δu‖2

)
+ C

(
‖y1‖2H1(Ω)∗ + ‖y2‖2H1(Ω)∗

)
,

(21)

where we used Cauchy-Schwarz’s and Young’s inequality for the last result
and the constant C > 0 possibly depends on ε, γ, τ, c, β1, β2 or β3, but not
on δu or δw. Taking (φ, ψ) = (1, 1) in (19)–(20), we get

(δu, 1) = 〈y1, 1〉 (22)

(δw, 1) =
1

c
(χA(u)δu, 1)−

1

ε
〈y1, 1〉 − 〈y2, 1〉. (23)

From (22)–(23) and (21), Poincaré-Friedrichs and again Young’s inequality,
it follows that

‖(δu, δw)‖H1(Ω)×H1(Ω) ≤ C
(
‖y1‖H1(Ω)∗ + ‖y2‖H1(Ω)∗

)
.
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For max
(
‖y1‖H1(Ω)∗ , ‖y2‖H1(Ω)∗

)
≤ β for some constant β > 0, we conse-

quently have
∥∥G−1

c (u, w)
∥∥
L((H1(Ω)∗)2,(H1(Ω))2)

≤ Ĉ ∀(u, w) ∈ H1(Ω)×H1(Ω)

with some constant Ĉ > 0 possibly depending on ε, γ, τ, c, β1, β2, β3 or β, but
not on u or w. Thus Fc with associated Newton derivative Gc fulfills the
conditions of Theorem 5, which completes the proof.

We now want to discretize the optimization problem and then discuss its
efficient solution.

6. Finite-element approximation

We discretize (15)–(16) by finite elements [44]. In the following we as-
sume for simplicity that Ω is a polyhedral domain. Generalizations to curved
domains are possible using boundary finite elements with curved faces. Let
{Rh}h>0 be a triangulation of Ω into disjoint open rectangular elements. The
use of rectangles is established by the fact, that we perform the implemen-
tation with deal.II [1]. Furthermore, we define Rh to have maximal element
size h := maxR∈Rh

{diam(R)} and we set Jh to be the set of nodes of Rh and
pj ∈ Jh to be the coordinates of these nodes. We approximate the infinite
dimensional space H1(Ω) by the finite dimensional space

Sh := {φ ∈ C0(Ω̄) : φ |R ∈ Q1(R) ∀R ∈ Rh} ⊂ H1(Ω),

of continuous, piecewise linear functions, where e.g. for dimension d = 2 we
have Q1 = span{xαiyαi : αi ∈ {0, 1}, i = 1, 2}. To each pj ∈ Jh we associate
the nodal basis function ϕj ∈ Sh with the property ϕj(pi) = δij, i, j =
1, . . . , N . The discretized version of the penalized problem (15)–(16) consists
in finding (uc,h, wc,h) ∈ Sh × Sh such that

〈
F

(1)
c,h (uc,h, wc,h), vh

〉
= 0 ∀vh ∈ Sh (24)

〈
F

(2)
c,h (uc,h, wc,h), vh

〉
= 0 ∀vh ∈ Sh, (25)

where the components are
〈
F

(1)
c,h (uc,h, wc,h), vh

〉
= τ(∇wc,h,∇vh) + (uc,h, vh)h − (u

(n−1)
h , vh)h

〈
F

(2)
c,h (uc,h, wc,h), vh

〉
= γε(∇uc,h,∇vh) + (λc(uc,h), vh)h − (wc,h, vh)h −

1

ε
(uc,h, vh)h.

12



The semi-inner product (·, ·)h on C0(Ω̄) is defined by

(f, g)h :=

∫

Ω

πh(f(x)g(x)) dx =
N∑

i=1

(1, ϕi)f(pi)g(pi) ∀f, g ∈ C0(Ω̄),

where πh : C0(Ω̄) → Sh is the Lagrange interpolation operator. Within
our finite-element framework, for a given (uh, wh) ∈ Sh × Sh, every step of
the semi-smooth Newton method for solving (24)–(25) requires to compute
(δuh, δwh) ∈ Sh × Sh satisfying

τ(∇δwh,∇vh) + (δuh, vh)h = −F (1)
c,h (uh, wh)

(26)

γε(∇δuh,∇vh) +
1

c
(χh

A(uh)
δuh, vh)h − (δwh, vh)h −

1

ε
(δuh, vh)h = −F (2)

c,h (uh, wh)

(27)

for all vh ∈ Sh, where χ
h
A(uh)

:=
∑N

i=1 χ
h
A(uh)

(pi)ϕi with χh
A(uh)

(pi) = 0 if

−1 ≤ uh(pi) ≤ 1 and χh
A(uh)

(pi) = 1 otherwise. In matrix form, the linear

system (26)–(27) reads

[
−γεK − 1

c
GAMGA + 1

ε
M M

M τK

] [
u(k+1)

w(k+1)

]

=

[
−1

c
(GA+MGA+e−GA−MGA−e)

Muold

]
, (28)

where e = (1, . . . , 1) ∈ RN , u(k+1), w(k+1) ∈ RN and uold ∈ RN is the solution
from the previous time step. The lumped mass matrix and the stiffness
matrix are defined as

Mi,j := (ϕi, ϕj)h and Ki,j := (∇ϕi,∇ϕj) ∀i, j = 1, . . . , N,

respectively, and

GA = GA(u
(k)) = diag

(
1, if |u(k)(pi)| > 1
0, otherwise

)

GA+ = GA+(u(k)) = diag

(
1, if u(k)(pi) > 1
0, otherwise

)

GA− = GA−(u(k)) = diag

(
1, if u(k)(pi) < −1
0, otherwise

)
,

13



where i = 1, . . . , N , representing the matrix representations of the gener-
alized derivatives. Note that M is a diagonal symmetric positive definite
matrix and K is symmetric and positive semi-definite.

7. Preconditioning

For the system matrix in (28), which we write as

A =

[
−L M

M τK

]
, (29)

we propose the block-triangular preconditioner

P =

[
−L 0
M −S

]
.

Here, S is the Schur complement τK + τML−1M . Preconditioners of this
form have proven to perform well based on the simple observation that the
preconditioned matrix P−1A has a small number of distinct eigenvalues. It
is obvious that we never want to form the Schur complement explicitly as
the storage requirements for realistic scenarios would be not feasible. For S
we suggest the following approximation

Ŝ = Ŝ1L
−1Ŝ2 =

̂(M +
√
τK)L−1 ̂(M +

√
τL),

where we use an algebraic multigrid (AMG) preconditioner for the approxi-
mation of the inverse of Ŝ1 and Ŝ2. Algebraic multigrid methods typically ex-
hibit geometric multigrid-like properties by only using algebraic information.
This has the advantage that it works well in general even for complicated
geometries and meshes. We refer to [41, 20] for more information on AMG.
We also want to emphasize that geometric multigrid (GMG) approximations
are also well suited to approximate Ŝ1 and Ŝ2. In the following we want
to illustrate the performance of Ŝ−1S. We therefore consider the eigenvalue
problem

Sv = λS̃v

with
S̃ = (M +

√
τK)L−1(M +

√
τL)

via Matlab and analyse the robustness of the Schur complement approx-
imation with respect to the penalty parameter c and the mesh parame-
ter h. For the former we keep ε, τ and h fix and vary c by the sequence

14



c ∈ {10−2, 10−4, 10−6, 10−8} whereas for the latter we fix ε, τ and c and vary
h ∈ {2−4, 2−5, 2−6}. We choose ε relative small and set τ big enough such
that τ ∈ (0, 4γε3) holds true. For larger ε we obtain similar results to Figure
5. In the following we present the different types of eigenvalue distributions
which we have observed.

We start with the very small choice ε = 10−5 and τ = 4 · 10−15. For this
case we only obtain real eigenvalues.
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Figure 1: Eigenvalues for the Schur complement approximation (ε =
10−5, τ = 4 · 10−15).
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Figure 2: Eigenvalues for the Schur complement approximation (ε =
10−3, τ = 4 · 10−9).
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In Figure 1 one can clearly see at most two eigenvalue clusters both for
varying c and for varying h, which are bounded below by one. With slowly
increased ε we get similar eigenvalue distributions, see Figure 2 and [11]. The
number of eigenvalue clusters remains constant for varying c and h.

Next, we will see that also complex eigenvalues appear, see Figure 3. We
set ε = 6 · 10−3 and τ = 8 · 10−7.
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Figure 3: Eigenvalues for the Schur complement approximation (ε = 6 ·
10−3, τ = 8 · 10−7).
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Figure 4: Real part of eigenvalues for the Schur complement approximation
(ε = 6 · 10−3, τ = 8 · 10−7).
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For varying c and h the complex eigenvalues are clustered in a circle with
radius about 0.5 around the centre 2. One can see zero imaginary part for the
cases h ∈ {2−4, 2−6} on the right. The real parts are considered separately
in Figure 4. In Figure 4(a), we plot the real part of the eigenvalues of Figure
3(a) and observe (possibly except for the case c = 10−2) almost the same
clustering for varying c. More precisely, we have a cluster around 1 and 2.
The real parts with respect to Figure 3(b) are considered in Figure 4(b).
Here, we have different eigenvalues for varying h, but the small number of
clusters stays almost constant.

Finally, at a certain ε, we get very good results for the Schur complement
approximation because there appears only one eigenvalue cluster around 1.
In Figure 5, we show such an example for the choice of ε = 2 · 10−1 and
τ = 3 · 10−2. Except for only a few outliers there is just one eigenvalue
cluster around 1 independent of c and h.

0 500 1000

10
−2

10
−1

10
0

10
1

Index

M
ag

ni
tu

de
 e

ig
en

va
lu

es

 

 

c=10−2

c=10−4

c=10−6

c=10−8

(a) Varying c.

0 100 200
10

−2

10
−1

10
0

10
1

Index

M
ag

ni
tu

de
 e

ig
en

va
lu

es

 

 

h=2−4

h=2−5

(b) Varying h.

Figure 5: Eigenvalues for the Schur complement approximation (ε = 2 ·
10−1, τ = 3 · 10−2).

We have seen that we obtained different eigenvalue distributions for sev-
eral examples. However, we also observed only a small number of eigenvalue
clusters, which justifies our choice of Ŝ.

For the application of P it remains to analyse the computational solving
of a linear system with the block L. The aim of a preconditioner is to re-
semble the original matrix by also being easy to invert. Hence, we need to
approximate the matrix L efficiently. A typical approximation for L would
be the use of a multigrid method of geometric (GMG) [47, 28] or algebraic
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nature (AMG) [41, 20]. Similar to our Schur complement approximation we
focus here on the use of algebraic multigrid. More precisely, for all AMG
preconditioners in P we use the smoothed aggregation AMG implemented
as part of the Trilinos [29] ML package [24]. The ML package allows for
a variety of smoothers and in our experiences 10 steps of the Chebyshev
smoother were superior to similar or smaller numbers of Gauss-Seidel or Ja-
cobi smoothing steps. The Chebyshev smoother is the recommended option
for the discretization of elliptic operators, see e.g. [29]. The use of two AMG
V-cycles was always sufficient for our experiments and in fact we did not
observe improvements when a larger number of V-cycles was used.

The matrix L = γεK + 1
c
GAMGA − 1

ε
M can easily become indefinite. In

this case, L is similar to a discrete Helmholtz operator. In [19] it is de-
scribed how difficult it is to solve Helmholtz problems with classical iterative
methods. For this reason and also because of the demand of a positive defi-
nite preconditioner for symmetric Krylov subspace methods we switch to the
non-symmetric system matrix

Ã =

[
M −L
τK M

]
. (30)

Note that as the block L is indefinite we would have to use non-symmetric
iterative methods anyway. As before, we propose the block-triangular pre-
conditioner

P̃ =

[
M 0
τK −S

]
.

For the Schur complement M + τKM−1L we use a similar approximation as
for system (29):

Ŝ = Ŝ1M
−1Ŝ2 =

̂(M +
√
τK)M−1 ̂(M +

√
τL).

Note, that we not need to solve a linear system with the difficult block L

anymore because the approximation ofM+
√
τL reduces the influence of the

indefiniteness of L. More precisely, the positive definiteness of M +
√
τL is

guaranteed for τ < ε2. Finally, we also would like to state explicitly that we
can use the same preconditioning strategy for the case of the semi-implicit
Cahn-Hilliard model. In this case, we have the preconditioner

Psi =

[
−Lsi 0
M −S

]
=

[
−γεK − 1

c
GAMGA 0

M −S

]
,
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where we suggest the Schur complement approximation

Ŝ = Ŝ1L
−1
si Ŝ2 =

̂(M +
√
τK)L−1

si
̂(M +
√
τLsi),

as well as

L̂si =

{
̂Lsi + ετI, if GA = 0

L̂si, otherwise
(31)

with I being the identity matrix. With the approximation of L̂si in (31) we
solve the problem if Lsi becomes the pure Neumann-Laplace operator, where
the shift ετ is an heuristic choice. For both time discretizations we obtain
very fast convergence rates, see Section 8.

8. Numerical results

In this section we show results for the Cahn-Hilliard problem. The pre-
conditioners we presented can be embedded into various Krylov subspace
solvers. For the non-symmetric matrix (30) we propose the use of a non-
symmetric short-term recurrence method, namely BiCG [21], but note that
also other solvers such as QMR [22], BiCGSTAB [46] or GMRES [43] can
be used with this preconditioner. For the numerical results presented in
this section we choose the BiCG tolerance to be 10−7 for the preconditioned
residual in all examples. For the multilevel approximations we choose Trili-
nos AMG approximations [29]. For one application of the preconditioner we
take in general 10 steps of a Chebyshev smoother and two V-cycles. The
discretization is performed with deal.II [1], which allows the use of the Trili-
nos library. All numerical experiments listed here are generated with finite
elements on rectangles. For the semi-smooth Newton method we use the
stopping criterion in [31], given by

‖Fc(u
(k)
h , w

(k)
h )‖2 ≤ ǫrel‖Fc(u

(0)
h , w

(0)
h )‖2 + ǫabs, k = 1, . . . , kmax,

where we set kmax = 100, ǫrel = 10−12 and ǫabs = 10−6 in all examples. For
the handling of the parameter c we follow [31] and solve (24)–(25) for the
sequence c1 = 10−1 ≥ c2 = 10−2 ≥ . . . ≥ cmax, where we initialize the Newton
methods by the approximate solutions of the previous ones respectively. After
a few time steps (typically 1 time step), we fix c = cmax. This is because the
initial solutions at the beginning might not be a good starting point for the
semi-smooth Newton methods.
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8.1. Mesh adaptation
To generate the adaptive meshes we use a mesh adaptation strategy sim-

ilar to Blank et al. [5]. Experiments show that it is essential to ensure that
at least eight vertices lie on the interfaces to avoid mesh effects, see also
[10]. We hence refine the interface to a level where eight vertices are within
the interface and coarse in areas where the concentration u is constant. For
given parameters ε and γ this results in an upper bound hmin ≤ ε

√
γ π

9
, where

hmin is the refinement level on the interface. Since we want to avoid meshes
which are too coarse, we additionally define hmax := 10 ·hmin. Afterwards the
mesh adaptation is done using the following strategy: An element R ∈ Rh is
marked for refinement if it satisfies hR > hmin and if it, or one of its neigh-
boring elements, satisfies |u(x)| < 1 for some x. Here x can be a node or
the middle point of a cell. An element R ∈ Rh is marked for coarsening,
if it satisfies hR < hmax and |u(x)| ≥ 1 for all x. Thereby, we refine in an
area, which contains the interface and coarsen within the pure phases. Since
we also include the neighboring cells for the refinement process, we do not
coarsen too close to the interface. Note that it is also possible to incorporate
other refinement strategies such as [31].

8.2. Comparison of implicit and semi-implicit time discretization
As in [13], we consider Ω = B1(0) ⊂ R2 and two circles around 0 with

radii r1 = 0.3 and r2 = 0.15 as initial values.

(a) t = 10−5 (b) t = 10−3 (c) t = 1.85 · 10−3

Figure 6: Implicit (above) and semi-implicit (below) Cahn-Hilliard evolution
for the circle computation.
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The time evolution of the exact solution to the Mullins-Sekerka model results
in a shrinking of both radii until the smaller one vanishes at time tc =
1.85 · 10−3. We want to compare the evolution of the initial data for the
implicit and semi-implicit Cahn-Hilliard model with respect to the step size
parameter τ . For ε = 0.025 and τ = 10−5, where τ < 4γε3 holds true,
we see in Figure 6, that in the semi-implicit simulation the smaller circle
vanishes later in time than in the more precise implicit case. Now we explore
the evolution of the semi-implicit system for larger τ , as this case has no
theoretical time-step restriction. We choose ε = 0.02 and vary τ . In Figure
7, we consider the solutions at time t = 3 · 10−3, where for the exact solution
the smaller circle has already vanished.

(a) τ = 5 · 10−4 (b) τ = 1 · 10−4 (c) τ = 3 · 10−5

Figure 7: Semi-implicit Cahn-Hilliard evolution for variable τ .

In Figure 7(a) and 7(b) we have τ > 4γε3. We can see that the approxima-
tion is crude for larger time steps and very small time steps are necessary
to capture the evolution of the sharp interface model. This example veri-
fies our preference for the implicit time discretization despite the time-step
restriction.

8.3. One-dimensional example

As in [31], we test the validity and performance of the Moreau-Yosida
semi-smooth Newton solver. From the initial data

u(0)(x) =

{
cos

(
x− 1

2

ε

)
− 1, if

∣∣x− 1
2

∣∣ ≤ 1
2
πε

−1, otherwise

we want to recover the exact stationary one-dimensional solution

uex(x) =

{
1
π

[
1 + cos

(
x− 1

2

ε

)]
− 1, if

∣∣x− 1
2

∣∣ ≤ πε

−1, otherwise,
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see [2, 8]. We choose Ω = (0, 1), ε = 0.1 as well as τ = 0.001 and vary
cmax and h for uniform meshes. For the handling of the parameter c, we use
the c-sequence (described in the beginning of this section) for the first three
time steps. Then, we fix c = cmax. The simulations are stopped as soon as
‖uc,h(t)− uc,h(t− τ)‖2 ≤ 10−7.

max SSN\BiCG
h cmax ‖ucmax,h − uex,h‖2 iterations CPU time (s)

1

26
10−3 2.46337 · 10−2 2\14 0.34
10−6 3.05118 · 10−3 2\14 0.41
10−9 3.06076 · 10−3 2\14 0.50

1

27
10−3 3.58987 · 10−2 3\15 0.61
10−6 9.32589 · 10−4 3\16 0.87
10−9 9.31919 · 10−4 3\16 1.00

1

28
10−3 5.04977 · 10−2 3\15 1.17
10−6 6.92492 · 10−4 3\16 1.80
10−9 6.71485 · 10−4 3\17 2.12

1

29
10−3 7.10723 · 10−2 3\15 2.17
10−6 2.63167 · 10−4 3\16 3.55
10−9 1.99167 · 10−4 3\17 4.07

Table 1: l2-error of the computed solutions as well as maximal number of
SSN and BiCG iterations for different mesh sizes and penalty parameters.

In Table 1, we show the maximal number of SSN and BiCG iterations, the
error between the exact and the computed solution, and the total time for
the computation. We can see the (almost) mesh-independent convergence
behaviour for BiCG as well as for the SSN method. The number of SSN
and BiCG iterations does not exceed 3 and 17, respectively, regardless of the
mesh size or the chosen penalty parameter.

8.4. Spinodal decomposition in 2D

The next example starts with random data in two space dimensions where
we set the initial value u(0)(x) randomly between −0.3 and 0.5, i.e. no pure
phases are present at time t = 0. The domain is set to be Ω = (−1, 1)2.
Figure 8 shows the initial configuration and the result of the Cahn-Hilliard
evolution after 5, 50, and 500 time steps. For this computation we use an
adaptively refined and coarsened mesh with the minimal size of an element
hmin =

ε
√
γπ

9
and the maximal size hmax = 10 · hmin as well as h0 = 2

64
, ε =

0.02, τ = 10−5 and c = cmax = 10−7.
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(a) t = 0 (b) t = 5τ (c) t = 50τ (d) t = 500τ

Figure 8: Computation with random initial data.

time step dimension SSN BiCG per SSN

0 4225 1 24
1 16641 1 28
2 66049 1 27
3 263169 7 22
4 263125 7 58
5 262702 7 66
6 260663 7 53
7 254934 7 40
8 246062 7 33
9 238645 7 31
10 233610 6 30
11 230127 7 28
12 226956 6 30
13 224212 6 27
14 221693 6 27
15 219844 6 27
16 217745 5 26
17 215950 6 25
18 214211 6 26
19 212293 5 26

Table 2: Number of SSN and BiCG iterations for the spinodal decomposition
with adaptive mesh.
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Table 2 shows the average number of BiCG iterations per Newton iteration
for the first 20 time steps. We also use uniform mesh sizes and compare
the average number of BiCG iterations per Newton iteration as well as the
number of Newton iterations per time step, see Figure 9. In the Figure
the number of unknowns is listed. It can be seen that at the beginning of
the computation when no pure phases are present the preconditioning and
Newton method work very well. Then we observe a very benign growth.
However the number of iterations stay low with at most 40 iterations for a
mesh with roughly one million unknowns.

(a) BiCG (b) Newton

Figure 9: Results for 100 time steps of a random initial data with different
uniform mesh sizes.

8.5. Two-dimensional square

In the next example we set Ω = (−1
2
, 1
2
) and compute the evolution of

the unit square shown in Figure 10, see also [4]. For this computation we

choose an adaptive mesh with hmin =
ε
√
γπ

9
, hmax = 10 · hmin, h0 =

1
27

as well
as ε = 1

12π
, τ = 10−5 and cmax = 10−7 with c = cmax fix for t > 0.
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(a) t = 0τ (b) t = 20τ (c) t = 80τ (d) t = 280τ

Figure 10: Evolution of a square to a circle.

First we compute the solution for a sequence of uniform meshes with
h = 1

2l128
for l = 0, 1, 2 and ε = 1

12π
, τ = 10−5, T = 2 · 10−4 as well as

cmax = 10−7 with c = cmax fix for t > 0. In Figure 11, we show the average
number of BiCG iterations per Newton step as well as the number of SSN
iterations per time step, which stay (almost) constant for one mesh size.
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Figure 11: Square computation: 20 time steps for different uniform mesh
sizes.

We also investigate the convergence of BiCG and SSN on adaptive meshes
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with h0 =
1
27
, hmin = 1

2l128
and hmax =

1
2l
for l = 0, 1, 2. Figure 12 shows again

that the number of SSN iterations and average number of BiCG iterations
remain (almost) constant for different mesh sizes.
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Figure 12: Square computation: 20 time steps for adaptive meshes.

8.6. Three-dimensional dumbbell

In the last computation we consider the three dimensional domain Ω =
(−1, 1)3 and choose a dumbbell as initial state.

(a) t = 0τ (b) t = 4τ (c) t = 7τ (d) t = 8τ

Figure 13: Evolution of a dumbbell.

26



Figure 13 shows the evolution for this example. For this computation we use
an adaptive mesh with h0 = 2

26
, hmin =

ε
√
γπ

9
, hmax = 10 · hmin as well as

ε = 0.03, τ = 5 · 10−5 and cmax = 10−5 with c = cmax fix for t > 0. Table 2
shows the average number of BiCG iterations per Newton iteration for the
first 15 time steps.

time step dimension SSN BiCG per SSN

0 274625 5 24
1 108797 4 42
2 485773 6 45
3 2929083 10 52
4 2642293 10 50
5 2681443 10 50
6 2526021 9 48
7 2512839 4 52
8 2368893 4 47
9 2421035 3 49
10 2354253 3 47
11 2417651 3 48
12 2358727 3 45
13 2415291 3 46
14 2360207 3 46

Table 3: Number of SSN and BiCG iterations for the dumbbell with adaptive
mesh.

9. Other available solvers

In this section, we compare our solution technique to existing solution
methods. Traditionally iterative solvers such as (nonlinear) Gauss-Seidel
have been used for the smooth and non-smooth case, but these suffer from
deteriorating convergence rates for increasing refinement [18, 3, 37].

In [25] Gräser and Kornhuber proposed a preconditioned Uzawa iteration
method for the saddle point formulation of the discrete (semi-implicit in time)
Cahn-Hilliard system with an obstacle potential [26]. The method proceeds
as follows. Consider the k-th Uzawa iteration which consists of two sub-steps:
At first, an elliptic obstacle problem with box constraints needs to be solved
to obtain u(k) and the appropriate coincidence set

N ∗
h (u

(k)) = {p ∈ Jh : |u(k)(p)| = 1}.
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With the help of this set, the second sub-step reduces to a linear saddle point
problem, which has to be solved for getting w(k+1). Once the exact coinci-
dence set N ∗

h (u) is detected, the Uzawa iteration provides the exact solution
(for the considered time step). Gräser and Kornhuber apply a monotone
multigrid method [36] to the first subproblem and a multigrid method with
a block Gauss-Seidel smoother to the second one. Although their algorithm
exhibits superior convergence properties to traditional stationary iterative
solvers, they cannot guarantee mesh-independence. Particularly, first nu-
merical evidence suggests an increase in the number of iterations for refined
meshes, see e.g. [26], which is not the case for our method.

Baňas and Nürnberg propose a full nonlinear multigrid method for the
discrete Cahn-Hilliard problem. For a sequence of triangulations Tk, the
algorithm consists of alternating pre-smoothing steps for the approximate
solution by projected Gauss-Seidel iterations [3] and restrictions to the next
coarser grid. On the coarsest triangulation the appropriate system is solved
exactly. By prolongation to the next finer grid, the solution is updated to-
gether with post-smoothing steps by projected Gauss-Seidel iterations. This
method exhibits mesh-independent convergence properties in practice for ar-
bitrary time steps in 2D and 3D and also for a small interfacial parameter
ε. However, Baňas and Nürnberg are unable to prove convergence of the
multigrid solver (except for the case, when the discrete Cahn-Hilliard system
reduces to a linear problem, which occurs when |u(n)| < 1). The same holds
for methods including a smooth potential, see [34, 35]. In contrast, we are
able to prove convergence.

A block preconditioning strategy is proposed by Neytcheva et al. [12].
They consider the Cahn-Hilliard equation with a smooth potential coupled
with the Navier-Stokes equation and apply two fully implicit schemes of
the θ-method (backward Euler and Crank-Nicolson) for the discretization in
time. This leads to solving nonlinear systems at each time step for which
they apply Newton’s method. Each Newton step involves a solution of a
non-symmetric linear system with the Jacobian matrix. By simplifying the
system matrix they get a preconditioner, which is proven to yield optimal re-
sults. Neytcheva et al. show that their preconditioning technique is superior
over a fast sparse direct solver and also shows robust convergence behaviour.
Contrary to us, they do not consider non-smooth potentials.
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10. Conclusions

In this paper we have analysed the linear systems arising from the semi-
smooth Newton method for the Moreau-Yosida regularized Cahn-Hilliard
equation. Additionally, we have shown superlinear convergence of the SSN
method in function space for the implicit time discretized problem. In order
to make the SSN method more efficient we have used a Krylov subspace
solver. We have introduced and studied block-triangular preconditioners
using an efficient and cheap Schur complement approximation. This ap-
proximation can be done using multilevel techniques, algebraic multigrid in
our case, and the numerical results justify this choice. Note that the same
preconditioning techniques can be applied to the semi-implicit discretized
Cahn-Hilliard problem.
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