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Abstract

Skew-Hamiltonian/Hamiltonian matrix pencils λS −H appear in many applica-
tions, including linear quadratic optimal control problems, H∞-optimization, cer-
tain multi-body systems and many other areas in applied mathematics, physics,
and chemistry. In these applications it is necessary to compute certain eigenvalues
and/or corresponding deflating subspaces of these matrix pencils. Recently devel-
oped methods exploit and preserve the skew-Hamiltonian/Hamiltonian structure
and hence increase reliability, accuracy and performance of the computations.
In this paper we describe the corresponding algorithms which have been imple-
mented in the style of subroutines of the Subroutine Library in Control Theory
(SLICOT). Furthermore we address some of their applications. We describe
variants for real and complex problems with versions for factored and unfactored
matrices S.
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1 Introduction

In this paper we discuss algorithms for the solution of generalized eigenvalue problems
with skew-Hamiltonian/Hamiltonian structure. We are interested in the computation
of certain eigenvalues and corresponding deflating subspaces. We have to deal with
the following algebraic structures [4].

Definition 1.1. Let J :=

[

0 In
−In 0

]

, where In is the n × n identity matrix. For

brevity of notation, we do not indicate the dimension with the matrix J and use it for
all possible values of n.

(i) A matrix H ∈ C
2n×2n is Hamiltonian if (HJ )

H
= HJ . The Lie algebra of

Hamiltonian matrices in C
2n×2n is denoted by H2n.

(ii) A matrix S ∈ C
2n×2n is skew-Hamiltonian if (SJ )

H
= −SJ . The Jordan

algebra of skew-Hamiltonian matrices in C
2n×2n is denoted by SH2n.

(iii) A matrix pencil λS−H ∈ C
2n×2n is skew-Hamiltonian/Hamiltonian if S ∈ SH2n

and H ∈ H2n.

(iv) A matrix S ∈ C
2n×2n is symplectic if SJSH = J . The Lie group of symplectic

matrices in C
2n×2n is denoted by S2n.

(v) A matrix U ∈ C
2n×2n is unitary symplectic if UJUH = J and UUH = I2n. The

compact Lie group of unitary symplectic matrices in C
2n×2n is denoted by US2n.

Note that a similar definition can be given for real matrices. As a convention,
all following considerations also hold for real skew-Hamiltonian/Hamiltonian matrix
pencils. Then, all matrices ·H must be replaced by ·T , all (skew-)Hermitian matrices
become (skew-)symmetric, and unitary matrices become orthogonal. More significant
differences to the complex case are explicitly mentioned.
Skew-Hamiltonian/Hamiltonian matrix pencils satisfy certain properties which we

will briefly state. Every skew-Hamiltonian/Hamiltonian matrix pencil can be written

as λS −H = λ

[

A D

E AH

]

−
[

B F

G −BH

]

with skew-Hermitian matrices D, E and Her-

mitian matrices F, G. If λ is a (generalized) eigenvalue of λS − H, so is also −λ̄. In
other words, eigenvalues which are not purely imaginary, occur in pairs. For real skew-
Hamiltonian/Hamiltonian matrix pencils we also have a pairing of complex conjugate
eigenvalues, i.e., if λ is an eigenvalue of λS − H, so are also λ̄, −λ,−λ̄. This leads to
eigenvalue pairs (λ,−λ) if λ is purely real or purely imaginary, or otherwise to eigen-
value quadruples

(

λ, λ̄,−λ,−λ̄
)

. The structure of skew-Hamiltonian/Hamiltonian ma-

trix pencils is preserved under J -congruence transformations, that is, λS̃ − H̃ :=
JPHJ T (λS − H)P with nonsingular P is again skew-Hamiltonian/Hamiltonian. If
we choose P unitary, we additionally preserve the condition of the problem. In this way
there is hope that we can choose a unitary J -congruence transformation to transform
λS − H into a condensed form which reveals its eigenvalues and deflating subspaces.
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A suitable candidate for this condensed form is the structured Schur form, i.e., we
compute a unitary matrix Q such that

JQHJ T (λS −H)Q = λ

[

S11 S12

0 SH
11

]

−
[

H11 H12

0 −HH
11

]

with the subpencil λS11 − H11 in generalized Schur form, where S11 is upper trian-
gular, H11 is upper triangular (upper quasi-triangular in the real case), S12 is skew-
Hermitian, and H12 is Hermitian. However, a structured Schur form does not nec-
essarily exist. Conditions for the existence are proven in [17, 18] for the complex
case or in [26] for the real case. This problem can be circumvented by embedding
λS − H into a skew-Hamiltonian/Hamiltonian matrix pencil of double dimension in
an appropriate way, as explained in Section 3. Throughout this paper we denote by
Λ−(S,H), Λ0(S,H), Λ+(S,H) the set of finite eigenvalues of λS − H with negative,
zero, and positive real parts, respectively. The set of infinite eigenvalues is denoted by
Λ∞(S,H). Multiple eigenvalues are repeated in Λ−(S,H), Λ0(S,H), Λ+(S,H), and
Λ∞(S,H) according to their algebraic multiplicity. The set of all eigenvalues counted
according to multiplicity is Λ(S,H). Similarly, we denote by Def−(S,H), Def0(S,H),
Def+(S,H), and Def∞(S,H) the right deflating subspaces corresponding to Λ−(S,H),
Λ0(S,H), Λ+(S,H), and Λ∞(S,H), respectively.

2 Applications

2.1 Linear-Quadratic Optimal Control

First we consider the continuous-time, infinite horizon, linear-quadratic optimal control
problem:
choose a control function u(t) to minimize the cost functional

Sc :=

∫ ∞

t0

[

x(t)
u(t)

]H [

Q S

SH R

] [

x(t)
u(t)

]

dt (1)

subject to the linear time-invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t), x(t0) = x0. (2)

Here, u(t) ∈ C
m is control input vector, x(t) ∈ C

n is the descriptor vector, and
E, A ∈ C

n×n, B ∈ C
n×m, Q = QH ∈ C

n×n, R = RH ∈ C
m×m, S ∈ C

n×m. For
well-posedness, the (m+ n)× (m+ n) weighting matrix

R =

[

Q S

SH R

]

must be Hermitian and positive semidefinite. Typically, in addition to minimizing (1),
the control u(t) must make x(t) asymptotically stable. under some conditions, the
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application of the maximum principle [19, 22] yields as a necessary condition that the
control u satisfies the two-point boundary value problem of Euler-Lagrange equations

Ec





ẋ(t)
µ̇(t)
u̇(t)



 = Ac





x(t)
µ(t)
u(t)



 , x(t0) = x0, lim
t→∞

EHµ(t) = 0, (3)

with the matrix pencil

λEc −Ac = λ





E 0 0
0 −EH 0
0 0 0



−





A 0 B

Q AH S

SH BH R



 .

Assuming that the matrix R is nonsingular, we can substitute u(t) = −R−1
(

SHx(t)

+BHµ(t)
)

and system (3) simplifies to

S
[

ẋ(t)
µ̇(t)

]

= H
[

x(t)
µ(t)

]

, x(t0) = x0, lim
t→∞

EHµ(t) = 0,

with the skew-Hamiltonian/Hamiltonian matrix pencil

λS −H = λ

[

E 0
0 EH

]

−
[

A−BR−1SH −BR−1BH

SR−1SH −Q −
(

A−BR−1SH
)H

]

. (4)

The generalized algebraic Riccati equation associated to the skew-Hamiltonian/Ha-
miltonian matrix pencil is given by [14]

0 = Q− SR−1SH +XH
(

A−BR−1SH
)

+
(

A−BR−1SH
)H

X

−XH
(

BR−1BH
)

X,

EHX = XHE.

(5)

Under certain conditions the optimal control u∗(t) that stabilizes the descriptor sys-
tem (2) can be constructed by using a stabilizing solution X∗ of (5). The matrix X∗

can be obtained by computing the deflating subspace of (4) associated to the finite
eigenvalues with negative real parts and to some purely imaginary and infinite eigen-
values. Note, that when the matrix R is singular, the problem becomes much more
involved. Then, one has to consider so-called (generalized) Lur’e equations instead of
Riccati equations. However, there is also a connection between Lur’e equations and
skew-Hamiltonian/Hamiltonian and related even matrix pencils [24, 25].

2.2 H∞-Optimization

Similar structures as in Subsection 2.1 occur in H∞-optimization [16]. Consider a
descriptor system of the form

P :











Eẋ(t) = Ax(t) +B1w(t) +B2u(t),

z(t) = C1x(t) +D11w(t) +D12u(t),

y(t) = C2x(t) +D21w(t) +D22u(t),

x(t0) = x0, (6)
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where E, A ∈ R
n×n, Bi ∈ R

n×mi , Ci ∈ R
pi×n, and Dij ∈ R

pi×mj for i, j = 1, 2. In
this system, x(t) ∈ R

n is the (generalized) state vector, u(t) ∈ R
m2 is the control input

vector, and w(t) ∈ R
m1 is an exogenous input that may include noise, linearization

errors, and unmodeled dynamics. The vector y(t) ∈ R
p2 contains measured outputs,

while z(t) ∈ R
p1 is a regulated output or an estimation error.

The H∞ control problem is usually formulated in the frequency domain. For this
we need the space Hp×m

∞ which consists of all Cp×m-valued functions that are analytic
and bounded in the open right half-plane C+. For F ∈ Hp×m

∞ , the H∞-norm is defined
by

‖F‖H∞

:= sup
s∈C+

σmax (F (s)) ,

where σmax (F (s)) denotes the maximal singular value of the matrix F (s). In robust
control, ‖F‖H∞

is used as a measure of the worst-case influence of the disturbances
w on the output z, where in this case F is the transfer function mapping noise or
disturbance inputs to error signals [27]. Solving the optimal H∞ control problem is
the task of designing a dynamic controller

K :

{

Ê ˙̂x(t) = Âx̂(t) + B̂y(t),

u(t) = Ĉx̂(t) + D̂y(t),
(7)

with Ê, Â ∈ R
N×N , B̂ ∈ R

N×p2 , Ĉ ∈ R
m2×N , D̂ ∈ R

m2×p2 such that the closed-loop
system resulting from inserting (7) into (6), that is,

Eẋ(t) =
(

A+B2D̂Z1C2

)

x(t) +B2Z2Ĉx̂(t) +
(

B1 +B2D̂Z1D21

)

w(t),

Ê ˙̂x(t) = B̂Z1C2x(t) +
(

Â+ B̂Z1D22Ĉ
)

x̂(t) + B̂Z1D21w(t),

z(t) =
(

C1 +D12Z2D̂C2

)

x(t) +D12Z2Ĉx̂(t) +
(

D11 +D12D̂Z1D21

)

w(t),

(8)

with Z1 =
(

Ip2
−D22D̂

)−1

, and Z2 =
(

Im2
− D̂D22

)−1

has the following properties:

(i) System (8) is internally stable, that is, the solution

[

x(t)
x̂(t)

]

of the system with

w ≡ 0 is asymptotically stable, i.e., lim
t→∞

[

x(t)
x̂(t)

]

= 0.

(ii) The closed-loop transfer function Tzw from w to z satisfies Tzw ∈ Hp1×m1
∞ and is

minimized in the H∞-norm.

Closely related to the optimal H∞ control problem is the modified optimal H∞ control
problem. For a given descriptor system of the form (6) we search the infimum value γ

for which there exists an internally stabilizing dynamic controller of the form (7) such
that the corresponding closed-loop system (8) satisfies Tzw ∈ Hp1×m1

∞ with ‖Tzw‖H∞

<

γ. For the construction of optimal controllers, one can make use of the following even
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matrix pencils (see [23] for a definition and related software)

λNH −MH(γ) =













0 −λET −AT 0 0 −CT
1

λE −A 0 −B1 −B2 0
0 −BT

1 −γ2Im1
0 −DT

11

0 −BT
2 0 0 −DT

12

−C1 0 −D11 −D12 −Ip1













, (9)

and

λNJ −MJ(γ) =













0 −λE −A 0 0 −B1

λET −AT 0 −CT
1 −CT

2 0
0 −C1 −γ2Ip1

0 −D11

0 −C2 0 0 −D12

−BT
1 0 −DT

11 −DT
12 −Im1













, (10)

which can be transformed to skew-Hamiltonian/Hamiltonian structure by using the
method used in [3, 26]. Using appropriate deflating subspaces of the matrix pencils
(9) and (10) it is possible to state conditions for the existence of an optimal H∞ con-
troller. Then we can check if these conditions are fulfilled for a given value of γ. Using
a bisection scheme we can iteratively refine γ until a wanted accuracy is achieved (see
[16, 5] for details). Note that the transformation to skew-Hamiltonian/Hamiltonian
structure is done in order to compute the deflating subspaces in a structure-preserving
manner which is still an open problem for even matrix pencils. Finally, when a subop-
timal value γ has been found, one can compute the actual controller. The controller
formulas are rather cumbersome and are therefore omitted. For details, see [15].

2.3 L∞-Norm Computation

Finally, we briefly describe a method to compute the L∞-norm of an LTI system using
skew-Hamiltonian/Hamiltonian matrix pencils [26, 6, 7]. This norm plays an important
role in robust control or model order reduction (see [1, 20, 27] and references therein).
Consider a descriptor system

Eẋ(t) = Ax(t) +Bu(t), (11)

y(t) = Cx(t) +Du(t), (12)

with E, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and descriptor vector x(t) ∈
R

n, control vector u(t) ∈ R
m, and output vector y(t) ∈ R

p. For such a system its
transfer function is given by

G(s) := C (sE −A)
−1

B +D,

which directly maps inputs to outputs in the frequency domain [10]. We define the
space RLp×m

∞ of all proper rational p×m-matrix-valued transfer functions which are
bounded on the imaginary axis. The natural norm of this space is the L∞-norm,
defined by

‖G‖L∞

:= sup
ω∈R

σmax (G(iω)) .
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Consider the skew-Hamiltonian/Hamiltonian matrix pencils

λN −M(γ) = λ

[

E 0
0 ET

]

−
[

A−BR−1DTC −γBR−1BT

γCTS−1C −AT + CTDR−1BT

]

(13)

with the matrices R = DTD − γ2Im, and S = DDT − γ2Ip. It can be shown that
if λE − A has no purely imaginary eigenvalue and γ > min

ω∈R

σmax (G(iω)) is not a

singular value of D, then ‖G‖L∞

≥ γ if and only if λN −M(γ) has purely imaginary
eigenvalues. In this way we can again use an iterative scheme to improve the value of
γ until a wanted accuracy for the L∞-norm is achieved.

3 Theory and Algorithm Description

In this section we briefly describe the theory behind the algorithms that we will use. We
refer to [4, 2] for a very detailed analysis of the algorithms. We consider complex and
real problems separately since there are significant differences in the theory. We also
distinguish the cases of unfactored and factored skew-Hamiltonian matrices S. Note
that the skew-Hamiltonian matrices in (4), (13) and the skew-Hamiltonian matrices
resulting from appropriate transformations of the skew-symmetric matrices in (9), (10)
are block-diagonal and hence admit a factorization

S = JZHJ TZ. (14)

For example, if S =

[

E 0
0 EH

]

, then Z =

[

I 0
0 EH

]

. The factorization (14) can

be understood as a Cholesky-like decomposition of S with respect to the indefinite
inner product 〈x, y〉 := xHJ y, since JZHJ T is the adjoint of Z with respect to
〈·, ·〉. We also say that a skew-Hamiltonian matrix S is J -semidefinite, if it admits a
factorization of the form (14). Hence, in our implementation we distinguish the cases
that the full matrix S or just its ”Cholesky factor” Z is given. In all cases we apply an
embedding strategy to the matrix pencil λS−H to avoid the problem of non-existence
of a structured Schur form.

3.1 The Complex Case

Let λS −H be a given complex skew-Hamiltonian/Hamiltonian matrix pencil with J -
semidefinite skew-Hamiltonian part S = JZHJ TZ. We split the skew-Hamiltonian
matrix iH =: N = N1 + iN2, where N1 is real skew-Hamiltonian and N2 is real
Hamiltonian, i.e.,

N1 =

[

F1 G1

H1 FT
1

]

, G1 = −GT
1 , H1 = −HT

1 ,

N2 =

[

F2 G2

H2 −FT
2

]

, G2 = GT
2 , H2 = HT

2 ,
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and Fj , Gj , Hj ∈ R
n×n for j = 1, 2. We define the matrices

Yc =

√
2

2

[

I2n iI2n
I2n −iI2n

]

, P =









In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In









, Xc = YcP. (15)

By using the embedding BN := diag
(

N , N̄
)

we obtain that

Bc
N := XH

c BNXc =









F1 −F2 G1 −G2

F2 F1 G2 G1

H1 −H2 FT
1 FT

2

H2 H1 −FT
2 FT

1









(16)

is a real 4n× 4n skew-Hamiltonian matrix. Similarly, we define

BZ :=

[

Z 0
0 Z̄

]

, BT :=

[JZHJ T 0

0 JZHJ T

]

, BS :=

[

S 0
0 S̄

]

= BT BZ .

It can be shown that

Bc
Z := XH

c BZXc, Bc
T := XH

c BT Xc, Bc
S := XH

c BSXc (17)

are all real. Hence,

λBc
S − Bc

N = XH
c (λBS − BN )Xc = XH

c

([

λS −N 0
0 λS̄ − N̄

])

Xc

is a real 4n× 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. To compute the
eigenvalues of this matrix pencil we can compute the structured decomposition of the
following theorem [4].

Theorem 3.1. Let λS − N be a real, regular skew-Hamiltonian/skew-Hamiltonian
matrix pencil with S = JZTJ TZ. Then there exist a real orthogonal matrix Q ∈
R

2n×2n and a real orthogonal symplectic matrix U ∈ R
2n×2n such that

UTZQ =

[

Z11 Z12

0 Z22

]

,

JQTJ TNQ =

[

N11 N12

0 NT
11

]

,

(18)

where Z11 and ZT
22 are upper triangular, N11 is upper quasi triangular and N12 is

skew-symmetric. Moreover,

JQTJ T (λS −N )Q = λ

[

ZT
22Z11 ZT

22Z12 − ZT
12Z22

0 ZT
11Z22

]

−
[

N11 N12

0 NT
11

]

=: λ

[

S11 S12

0 ST
11

]

−
[

N11 N12

0 NT
11

]

(19)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil.
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Proof. See [4].

By defining

BH =

[

H 0
0 −H̄

]

, Bc
H = XH

c BHXc,

and using Theorem 3.1 we can compute factorizations

B̃c
Z : = UTBc

ZQ =

[

Z11 Z12

0 Z22

]

,

B̃c
H : = JQTJ TBc

HQ = JQTJ T (−iBc
N )Q = −iB̃c

N =

[−iN11 −iN12

0 − (−iN11)
H

]

,

where λB̃c
S − B̃c

H = JQTJ T (λBc
S − Bc

H)Q are J -congruent complex skew-Hamilto-
nian/Hamiltonian matrix pencils and λB̃c

S − B̃c
H is in a structured quasi-triangular

form. Then, the structured Schur form can be obtained by further triangularizing
the diagonal 2× 2 blocks of λB̃c

S − B̃c
H via a J -congruence transformation. From the

symmetry of the eigenvalues if follows that Λ (S,H) = Λ
(

ZH
22Z11,−iN11

)

. Now we

can reorder the eigenvalues of λB̃c
S − B̃c

H to the top in order to compute the desired
deflating subspaces (corresponding to the eigenvalues with negative real parts). The
following theorem makes statements about the deflating subspaces [4].

Theorem 3.2. Let λS − H ∈ C
2n×2n be a skew-Hamiltonian/Hamiltonian matrix

pencil with J -semidefinite skew-Hamiltonian matrix S = JZHJ TZ. Consider the ex-

tended matrices BZ = diag
(

Z, Z̄
)

, BT = diag
(

JZHJ T ,JZHJ T

)

, BS = BT BZ =

diag
(

S, S̄
)

, BH = diag
(

H,−H̄
)

. Let U , V, W be unitary matrices such that

UHBZV =

[

Z11 Z12

0 Z22

]

=: RZ ,

WHBT U =

[

T11 T12
0 T22

]

=: RT ,

WHBHV =

[

H11 H12

0 H22

]

=: RH,

where Λ− (BS ,BH) ⊂ Λ (T11Z11,H11) and Λ (T11Z11,H11) ∩ Λ+ (BS ,BH) = ∅. Here,

Z11, T11, H11 ∈ C
m×m. Suppose Λ−(S,H) contains p eigenvalues. If

[

V1

V2

]

∈ C
4n×m

are the first m columns of V, 2p ≤ m ≤ 2n − 2p, then there are subspaces L1 and L2

such that

rangeV1 = Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),

rangeV2 = Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).
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If Λ (T11Z11,H11) = Λ− (BS ,BH), and

[

U1

U2

]

,

[

W1

W2

]

are the first m columns of U , W,

respectively, then there exist unitary matrices QU , QV , QW such that

U1 =
[

P−
U 0

]

QU , U2 =
[

0 P+

U

]

QU ,

V1 =
[

P−
V 0

]

QV , V2 =
[

0 P+

V

]

QV ,

W1 =
[

P−
W 0

]

QW , W2 =
[

0 P+

W

]

QW ,

and the columns of P−
V and P+

V form orthogonal bases of Def−(S,H) and Def+(S,H),
respectively. Moreover, the matrices P−

U , P+

U , P−
W , and P+

W have orthonormal columns
and the following relations are satisfied

ZP−
V = P−

U Z̃11, JZHJ TP−
U = P−

W T̃11, HP−
V = P−

W H̃11,

ZP+

V = P+

U Z̃22, JZHJ TP+

U = P+

W T̃22, HP+

V = −P+

W H̃22.

Here, Z̃kk, T̃kk, and H̃kk, k = 1, 2, satisfy Λ
(

T̃11Z̃11, H̃11

)

= Λ
(

T̃22Z̃22, H̃2

)

=

Λ−(S,H).

Proof. See [4].

So, the algorithm for computing the stable deflating subspaces of a complex skew-
Hamiltonian/Hamiltonian matrix pencil λS −H with S = JZHJ TZ is as follows [4].

ALGORITHM 1. Computation of stable deflating subspaces of complex skew-Hamiltoni-
an/Hamiltonian matrix pencils in factored form

Input: Hamiltonian matrix H and the factor Z of S ∈ SHn.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil

λBc
S − Bc

H, eigenvalues of λS − H, orthonormal bases P−

V , P−

U of the deflating subspace
Def− (S,H) and the companion subspace, respectively, as in Theorem 3.2.

1: Set N = iH and determine the matrices Bc
Z ,B

c
N as in (17) and (16), respectively. Perform

Algorithm 2 to compute the factorization

B̂
c
Z = U

T
B

c
ZQ =

[

Z11 Z12

0 Z22

]

,

B̂
c
N = JQ

T
J

T
B

c
NQ =

[

N11 N12

0 N T
11

]

,

where Q is real orthogonal, U is real orthogonal symplectic, Z11, Z
T
22 are upper triangular

and N11 is upper quasi triangular.
2: Apply the periodic QZ algorithm [9, 13] to the 2× 2 diagonal blocks of the matrix pencil

λZH
22Z11 −N11 to determine unitary matrices Q1, Q2, U such that UHZ11Q1, Q

H
2 ZH

22U ,
QH

2 N11Q1 are all upper triangular. Define Û := diag (U,U), Q̂ := diag (Q1, Q2) and set

B̃
c
Z = Û

H
B̂

c
ZQ̂, B̃

c
N = J Q̂

H
J

T
B̂

c
N Q̂.
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3: Use Algorithm 3 to determine a unitary matrix Q̃ and a unitary symplectic matrix Ũ such
that

Ũ
H
B̃

c
ZQ̃ =

[

Z̃11 Z̃12

0 Z̃22

]

,

J Q̃
H
J

T
(

−iB̃c
N

)

Q̃ =

[

H11 H12

0 −HH
11

]

,

where Z̃11, Z̃
H
22, H11 are upper triangular such that Λ−

(

J (B̃c
Z)

HJ T B̃c
Z ,−iB̃c

N

)

is con-

tained in the spectrum of the 2p× 2p leading principal subpencil of λZ̃H
22Z̃11 −H11.

4: Set V =
[

I2n 0
]

XcQQ̂Q̃

[

I2p
0

]

, U =
[

I2n 0
]

XcUÛŨ

[

I2p
0

]

and compute P−

V , P+

U , or-

thogonal bases of rangeV and rangeU , respectively, using any numerically stable orthog-
onalization scheme.

Next we briefly discuss the algorithms which are used in Algorithm 1.

ALGORITHM 2. Computation of a structured matrix factorization for real skew-Hamilto-
nian/skew-Hamiltonian matrix pencils in factored form

Input: A real skew-Hamiltonian matrix N ∈ R
2n×2n and the factor Z ∈ R

2n×2n of S.
Output: A real orthogonal matrix Q, a real orthogonal symplectic matrix U and the structured

factorization (18).
1: Set Q = U = I2n. By changing the elimination order in the classical RQ decomposition,

determine an orthogonal matrix Q1 such that

Z := ZQ1 =:

[

Z11 Z12

0 Z22

]

,

where Z11, Z
T
22 are upper triangular. Update N = JQT

1 J
TNQ1, Q := QQ1.

2: Compute an orthogonal matrix Q1 and an orthogonal symplectic matrix U1 such that

Z : = U
T
1 ZQ1 =:

[

Z11 Z12

0 Z22

]

,

N : = JQ
T
1 J

T
NQ1 =:

[

N11 N12

0 NT
11

]

,

where Z11, Z
T
22 are upper triangular and N11 is upper Hessenberg. Update Q := QQ1

and U := UU1. This step is performed by using a sequence of orthogonal and orthogonal
symplectic matrices to annihilate the elements in N in a specific order without destroying
the structure of Z (see [4] for details).

3: Apply the periodic QZ algorithm [9, 13] to the matrix pencil λZT
22Z11 −N11 to determine

orthogonal matrices Q1, Q2, U such that UTZ11Q1, Q
T
2 Z

T
22U are both upper triangular

and QT
2 N11Q1 is upper quasi triangular. Set U1 := diag (U,U) , Q1 := diag (Q1, Q2).

Update Z := UT
1 ZQ1, N := JQT

1 J
TNQ1, Q := QQ1, U := UU1.

10



After performing Algorithm 2 the eigenvalues of the complex skew-Hamiltonian/Ha-
miltonian matrix pencil λS − H can be determined by the diagonal 1 × 1 and 2 × 2
blocks of the matrices Z11, Z22, and N11.

Next, we describe the eigenvalue reordering technique to reorder the finite, stable
eigenvalues to the top of the matrix pencil, which enables us to compute the corre-
sponding deflating subspaces.

ALGORITHM 3. Eigenvalue reordering for complex skew-Hamiltonian/Hamiltonian ma-
trix pencils in factored form

Input: Regular 2n× 2n complex skew-Hamiltonian/Hamiltonian matrix pencil λS −H with

S = JZHJ TZ, Z =

[

Z W

0 T

]

, H =

[

H D

0 −HH

]

with upper triangular Z, TH and H.

Output: A unitary matrix Q, a unitary symplectic matrix U , and the transformed matrices
UHZQ, JQHJ THQ which have still the same triangular form as Z and H, respectively,
but the eigenvalues in Λ− (S,H) are reordered such that they occur in the leading principal
subpencil of JQHJ T (λS −H)Q.

1: Set Q = U = I2n. Reorder the eigenvalues in the subpencil λTHZ −H.

a) Determine unitary matrices Q1, Q2, Q3 such that TH := QH
3 THQ2, Z := QH

2 ZQ1,

H := QH
3 HQ1 are still upper triangular but the m− eigenvalues with negative real part

are reordered to the top of λTHZ −H. Set Q1 := diag (Q1, Q3) , U1 := diag (Q2, Q2)
and update Q := QQ1, U := UU1.

b) Determine unitary matrices Q1, Q2, Q3 such that TH := QH
3 THQ2, Z := QH

2 ZQ1,

H := QH
3 HQ1 are still upper triangular but the m+ eigenvalues with positive real

part are reordered to the bottom of λTHZ − H. Set Q1 := diag (Q1, Q3) , U1 :=
diag (Q2, Q2) and update Q := QQ1, U := UU1.

2: Reorder the remaining n − m+ + 1 eigenvalues with negative real parts which are now
in the bottom right subpencil of λS − H. Determine a unitary matrix Q1 and a unitary
symplectic matrix U1 such that the eigenvalues of top left subpencil of λS−H with positive
real parts and those of the bottom right subpencil of λS − H with negative real parts are
interchanged. Update Q := QQ1, U := UU1.

If the matrix S is not given in factored form, we can use the following algorithm for
the computation of the deflating subspaces [4].

ALGORITHM 4. Computation of stable deflating subspaces of complex skew-Hamiltoni-
an/Hamiltonian matrix pencils in unfactored form

Input: Complex skew-Hamiltonian/Hamiltonian matrix pencil λS −H.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pen-

cil λBc
S − Bc

H, eigenvalues of λS − H, orthonormal basis P−

V of the deflating subspace
Def− (S,H), as in Theorem 3.2.

1: Set N = iH and determine the matrices Bc
S ,B

c
N as in (17) and (16), respectively. Perform

11



Algorithm 5 to compute the factorization

B̂
c
S = JQ

T
J

T
B

c
SQ =

[

S11 S12

0 ST
11

]

,

B̂
c
N = JQ

T
J

T
B

c
NQ =

[

N11 N12

0 N T
11

]

,

where Q is real orthogonal, S11 is upper triangular and N11 is upper quasi triangular.
2: Apply the QZ algorithm [11] to the 2 × 2 diagonal blocks of the matrix pencil λS11 −

N11 to determine unitary matrices Q1, Q2 such that QH
2 S11Q1, Q

H
2 N11Q1 are both upper

triangular. Define Q̂ := diag (Q1, Q2) and set

B̃
c
S = J Q̂

H
J

T
B̂

c
SQ̂, B̃

c
N = J Q̂

H
J

T
B̂

c
N Q̂.

3: Use Algorithm 6 to determine a unitary matrix Q̃ such that

J Q̃
H
J

T
B̃

c
SQ̃ =

[

S̃11 S̃12

0 S̃H
11

]

,

J Q̃
H
J

T
(

−iB̃c
N

)

Q̃ =

[

H11 H12

0 −HH
11

]

,

where S̃11, H11 are upper triangular such that Λ−

(

B̃c
S ,−iB̃c

N

)

is contained in the spec-

trum of the 2p× 2p leading principal subpencil of λS̃11 −H11.

4: Set V =
[

I2n 0
]

XcQQ̂Q̃

[

I2p
0

]

and compute P−

V , an orthogonal basis of rangeV , using

any numerically stable orthogonalization scheme.

Now we present the algorithm for the computation of the structured matrix factoriza-
tion for complex matrix pencils in unfactored form.

ALGORITHM 5. Computation of a structured matrix factorization for real skew-Hamilto-
nian/skew-Hamiltonian matrix pencils in unfactored form

Input: A real skew-Hamiltonian/skew-Hamiltonian matrix pencil λS −N .
Output: A real orthogonal matrix Q and the structured factorization (19).
1: Set Q = I2n. Reduce S to skew-Hamiltonian triangular form, i.e., determine an orthog-

onal matrix Q1 such that

S := JQ
T
1 J

T
SQ1 =

[

S11 S12

0 ST
11

]

with an upper triangular matrix S11. Update N := JQT
1 J

TNQ1, Q := QQ1. This step
is performed by applying a sequence of Householder reflections and Givens rotations in a
specific order, see [4] for details.
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2: Reduce N to skew-Hamiltonian Hessenberg form. Determine an orthogonal matrix Q1

such that

S : = JQ
T
1 J

T
SQ1 =

[

S11 S12

0 ST
11

]

,

N : = JQ
T
1 J

T
NQ1 =

[

N11 N12

0 NT
11

]

,

where S11 is upper triangular and N11 is upper Hessenberg. Update Q := QQ1. This step
is performed by applying an appropriate sequence of Givens rotations to annihilate the
elements in N in a specific order without destroying the structure of S, for details see [4].

3: Apply the QZ algorithm to the matrix pencil λS11−N11 to determine orthogonal matrices
Q1 and Q2 such that QT

2 S11Q1 is upper triangular and QT
2 N11Q1 is upper quasi triangular.

Set Q1 := diag (Q1, Q2) and update S := JQT
1 J

TSQ1, N := JQT
1 J

TNQ1, Q := QQ1.

Again, similar to the factored case, the eigenvalues are determined by the diagonal 1×1
and 2 × 2 blocks of S11 and N11. Also, the following eigenvalue reordering routine is
similar to the one of the factored case.

ALGORITHM 6. Eigenvalue reordering for complex skew-Hamiltonian/Hamiltonian ma-
trix pencils in unfactored form

Input: Regular 2n×2n complex skew-Hamiltonian/Hamiltonian matrix pencil λS −H of the

form S =

[

S W

0 SH

]

, H =

[

H D

0 −HH

]

, with upper triangular S, H.

Output: A unitary matrix Q and the transformed matrices JQHJ TSQ, JQHJ THQ which
have still the same triangular form as S and H, respectively, but the eigenvalues in
Λ− (S,H) are reordered such that they occur in the leading principal subpencil of
JQHJ T (λS −H)Q.

1: Set Q = I2n. Reorder the eigenvalues in the subpencil λS −H.

a) Determine unitary matrices Q1, Q2 such that S := QH
2 SQ1, H := QH

2 HQ1, are still
upper triangular but the m− eigenvalues with negative real part are reordered to the
top of λS −H. Set Q1 := diag (Q1, Q2) and update Q := QQ1.

b) Determine unitary matrices Q1, Q2 such that S := QH
2 SQ1, H := QH

2 HQ1, are still
upper triangular but the m+ eigenvalues with positive real part are reordered to the
bottom of λS −H. Set Q1 := diag (Q1, Q2) and update Q := QQ1.

2: Reorder the remaining n − m+ + 1 eigenvalues with negative real parts which are now
in the bottom right subpencil of λS − H. Determine a unitary matrix Q1 such that the
eigenvalues of top left subpencil of λS −H with positive real parts and those of the bottom
right subpencil of λS −H with negative real parts are interchanged. Update Q := QQ1.
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3.2 The Real Case

We also briefly recall the theory for the real case which has some significant differences
compared to the complex case. For a very detailed description we refer to [2]. Let
λS − H be a real skew-Hamiltonian/Hamiltonian matrix pencil with J -semidefinite

skew-Hamiltonian part S = JZTJ TZ where Z =

[

Z11 Z12

Z21 Z22

]

, H =

[

F G

H −FT

]

. We

introduce the orthogonal matrices

Yr =

√
2

2

[

I2n I2n
−I2n I2n

]

, Xr = YrP

with P as in (15). Now we define the double-sized matrices

BZ : =

[

Z 0
0 Z

]

,

BT : =

[

JZTJ T 0
0 JZTJ T

]

=

[

J 0
0 J

]

BT
Z

[

J 0
0 J

]T

,

BS : =

[

S 0
0 S

]

= BT BZ ,

BH : =

[

H 0
0 −H

]

.

Furthermore, we define

Br
Z : = X T

r BZXr =









Z11 0 Z12 0
0 Z11 0 Z12

Z21 0 Z22 0
0 Z21 0 Z22









,

Br
T : = X T

r BT Xr = J (Br
Z)

T J T ,

Br
S : = X T

r BSXr = J (Br
Z)

T J TBr
Z ,

Br
H : = X T

r BHXr =









0 F 0 G

F 0 G 0
0 H 0 −FT

H 0 −FT 0









.

It can be easily observed, that the 4n × 4n matrix pencil λBr
S − Br

H is again real
skew-Hamiltonian/Hamiltonian. For the computation of the eigenvalues of λS −H we
apply the following structured matrix factorization which is also often referred to as
generalized symplectic URV decomposition [2].

Theorem 3.3. Let λS − H be a real skew-Hamiltonian/Hamiltonian matrix pencil
with S = JZTJ TZ. Then there exist orthogonal matrices Q1, Q2 and orthogonal
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symplectic matrices U1, U2 such that

QT
1

(

JZTJ T
)

U1 =

[

T11 T12

0 T22

]

,

UT
2 ZQ2 =

[

Z11 Z12

0 Z22

]

,

QT
1 HQ2 =

[

H11 H12

0 H22

]

,

(20)

with the formal matrix product T−1

11 H11Z
−1

11 Z−T
22 HT

22T
−T
22 in real periodic Schur form

[9, 13], where T11, Z11, H11, T
T
22, Z

T
22 are upper triangular and HT

22 is upper quasi
triangular.

Proof. The proof is constructive, see [2].

By using Theorem 3.3 (with the same notation) we get the following factorization
of the embedded matrix pencil λBr

S − Br
H with factored matrix Br

S . We can compute
an orthogonal matrix Q̃1 and an orthogonal symplectic matrix Ũ such that

ŨTBr
ZQ̃ =









TT
22 0 −TT

12 0
0 Z11 0 Z12

0 0 TT
11 0

0 0 0 Z22









=:

[

Z̃11 Z̃12

0 Z̃22

]

,

J Q̃TJ TBr
HQ̃ =









0 H11 0 H12

−HT
22 0 H12 0

0 0 0 H22

0 0 −HT
11 0









=:

[

H̃11 H̃12

0 −H̃T
11

]

,

(21)

where Q̃ = PT

[

JQ1J T 0
0 Q2

]

P, Ũ = PT

[

U1 0
0 U2

]

P. From the condensed form

(21) we can immediately get the eigenvalues of λS −H as

Λ(S,H) = Λ
(

Z̃T
22Z̃11, H̃11

)

= ±i
√

Λ
(

T−1

11 H11Z
−1

11 Z−T
22 HT

22T
−T
22

)

. (22)

Note that all matrices of the product are upper triangular, except HT
22 which is upper

quasi triangular. Hence, the eigenvalue information can be extracted directly from the
diagonal 1×1 or 2×2 blocks of the main diagonals. Note that the finite, simple, purely
imaginary eigenvalues of the initial matrix pencil correspond to the positive eigenvalues
of the generalized matrix product. Hence, these eigenvalues can be computed without
any error in their real parts. This leads to a high robustness in algorithms which
require these eigenvalues, e.g., in the L∞-norm computation [6]. However, if two
purely imaginary eigenvalues are very close they might still be slightly perturbed from
imaginary axis. This essentially depends on the Kronecker structure of a close-by skew-
Hamiltonian/Hamiltonian matrix pencil with double purely imaginary eigenvalues.
This problem is similar to the Hamiltonian matrix case, see [21].
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To compute the deflating subspaces we are interested in, it is necessary to compute
the structured Schur form of the embedded matrix pencils λBr

S − Br
H. This can be

done by computing a finite number of similarity transformations to the subpencil
λZ̃T

22Z̃11 − H̃11 to put H̃11 into upper quasi triangular form. That is, we compute
orthogonal matrices Q3, Q4, U3 such that

H11 = QT
3 H̃11Q4, Z11 = UT

3 Z̃11Q4, Z22 = UT
3 Z̃22Q3,

where Z11, ZT
22 are upper triangular and H11 is upper quasi triangular. By setting

Q = Q̃
[

Q4 0
0 Q3

]

, U = Ũ
[

U3 0
0 U3

]

, Z12 = UT
3 Z̃12Q3, and H12 = QT

3 H̃12Q3 we

obtain the structured Schur form of λBr
S−Br

H as λB̃r
S−B̃r

H with B̃r
S = J

(

B̃r
Z

)T

J T B̃r
Z

and

B̃r
Z : = UTBr

ZQ =

[

Z11 Z12

0 Z22

]

,

B̃r
H : = JQTJ TBr

HQ =

[

H11 H12

0 −HT
11

]

.

Now we can reorder the eigenvalues of λB̃r
S − B̃r

H to the top in order to compute
the desired deflating subspaces which is similar to the complex case. Then, for the
deflating subspaces we find a similar result as Theorem 3.2 which we do not state here
for brevity.

If the matrix S is not given in factored form, we need the following slightly modified
version of Theorem 3.3 from [2].

Theorem 3.4. Let λS − H be a real skew-Hamiltonian/Hamiltonian matrix pencil.
Then there exist orthogonal matrices Q1, Q2 such that

QT
1 SJQ1J T =

[

S11 S12

0 ST
11

]

∈ SH2n,

JQT
2 J TSQ2 =

[

T11 T12

0 TT
11

]

=: T ∈ SH2n,

QT
1 HQ2 =

[

H11 H12

0 H22

]

,

(23)

with the formal matrix product S−1

11 H11T
−1

11 HT
22 in real periodic Schur form, where

S11, T11, H11 are upper triangular and HT
22 is upper quasi triangular.

Proof. The proof is done by construction, see [2].
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Then we can compute an orthogonal matrix Q̃ such that

J Q̃TJ TBr
SQ̃ =









S11 0 S12 0
0 T11 0 T12

0 0 ST
11 0

0 0 0 TT
11









=:

[

S̃11 S̃12

0 S̃T
11

]

,

J Q̃TJ TBr
HQ̃ =









0 H11 0 H12

−HT
22 0 H12 0

0 0 0 H22

0 0 −HT
11 0









=:

[

H̃11 H̃12

0 −H̃T
11

]

,

(24)

with Q̃ = PT

[

JQ1J T 0
0 Q2

]

P. The spectrum of λS −H is given by

Λ(S,H) = ±i
√

Λ
(

S−1

11 H11T
−1

11 HT
22

)

which can be determined by evaluating the entries on the 1 × 1 and 2 × 2 diagonal
blocks of the matrices only. To put the matrix pencil formed of the matrices in (24)
into structured Schur form we have to triangularize λS̃11 − H̃11, i.e., we determine
orthogonal matrices Q3 and Q4 such that

S11 = QT
4 S̃11Q3, H11 = QT

4 H̃11Q3

are upper triangular and upper quasi triangular, respectively. By setting the matrices

Q = Q̃
[

Q3 0
0 Q4

]

, S12 = QT
4 S̃12Q4, and H12 = QT

4 H̃12Q4, we obtain the structured

Schur form as

B̃r
S : = JQTJ TBSQ =

[

S11 S12

0 ST
11

]

,

B̃r
H : = JQTJ TBHQ =

[

H11 H12

0 −HT
11

]

.

By properly reordering the eigenvalues we can compute the desired deflating subspaces
as explained above. As for the complex case we give a brief description of the used
algorithms for the real case from [2].

ALGORITHM 7. Computation of stable deflating subspaces of real skew-Hamiltonian/Ha-
miltonian matrix pencil in factored form

Input: Real Hamiltonian matrix H and the factor Z of S.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil

λBr
S − Br

H, eigenvalues of λS − H, orthonormal bases P−

V , P−

U of the deflating subspace
Def− (S,H) and the companion subspace, respectively, as in Theorem 3.2.
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1: Apply Algorithm 8 to the matrices Z, JZTJ T and H, and determine orthogonal matrices
Q1, Q2 and orthogonal symplectic matrices U1, U2 such that

Q
T
1

(

JZ
T
J

T
)

U1 =

[

T11 T12

0 T22

]

,

U
T
2 ZQ2 =

[

Z11 Z12

0 Z22

]

,

Q
T
1 HQ2 =

[

H11 H12

0 H22

]

,

with the formal matrix product T−1

11 H11Z
−1

11 Z−T
22 HT

22T
−T
22 in real periodic Schur form,

where T11, Z11, H11, T
T
22, Z

T
22 are upper triangular and HT

22 is upper quasi triangular.
2: Apply Algorithm 9 to determine orthogonal matrices Q3, Q4, U3 such that the matrices

Z11 = UT
3

[

TT
22 0
0 Z11

]

Q4 and Z22 = UT
3

[

TT
11 0
0 Z22

]

Q3 are upper triangular and H11 =

QT
3

[

0 H11

−HT
22 0

]

Q4 is upper quasi triangular.

3: Update

Z12 := U
T
3

[

−TT
12 0

0 Z12

]

Q3, H12 := Q
T
3

[

0 H12

HT
12 0

]

Q3,

and set

B̃
r
Z =

[

Z11 Z12

0 Z22

]

, B̃
r
H =

[

H11 H12

0 −HT
11

]

.

Apply the real eigenvalue reordering method in Algorithm 10 to the pair
(

B̃r
Z , B̃

r
H

)

to

determine an orthogonal matrix Q̂ and an orthogonal symplectic matrix Û such that

ÛT B̃r
ZQ̂, J Q̂TJ T B̃r

HQ̂ are in structured triangular form and Λ−

(

J
(

B̃r
Z

)T

J T B̃r
Z , B̃

r
H

)

is contained in the leading 2p× 2p principal subpencil of λZT
22Z11 −H11.

4: Set

V =
[

I2n 0
]

(

Yr

[

JQ1J
T 0

0 Q2

]

P

[

Q3 0
0 Q4

]

Q̂

)[

I2p
0

]

,

U =
[

I2n 0
]

(

Yr

[

U1 0
0 U2

]

P

[

U3 0
0 U3

]

Û

)[

I2p
0

]

and compute P−

V , P−

U , orthogonal bases of rangeV and rangeU , respectively, using any
numerically stable orthogonalization scheme.

The next algorithm describes the computation of the generalized symplectic URV
decomposition which can, e.g., be used to compute the eigenvalues of a real skew-
Hamiltonian/Hamiltonian matrix pencil in factored form.

ALGORITHM 8. Generalized symplectic URV decomposition

Input: A real 2n× 2n matrix pencil λT Z −H.
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Output: Orthogonal matrices Q1, Q2, orthogonal symplectic matrices U1, U2 and the struc-
tured factorization (20).

1: Set Q1 = Q2 = U1 = U2 = I2n. By using different elimination orders in QR and RQ like
decompositions, determine orthogonal matrices Q̃1 and Q̃2 such that

T := Q̃
T
1 T =:

[

T11 T12

0 T22

]

, Z := ZQ̃2 =:

[

Z11 Z12

0 Z22

]

,

where T11, T
T
22, Z11, Z

T
22 are n × n and upper triangular. Update H = Q̃T

1 HQ̃2, Q1 :=
Q1Q̃1, Q2 := Q2Q̃2.

2: Compute orthogonal matrices Q̃1, Q̃2 and orthogonal symplectic matrices Ũ1, Ũ2 such that

T : = Q̃
T
1 T Ũ1 =:

[

T11 T12

0 T22

]

,

Z : = Ũ
T
2 ZQ̃2 =:

[

Z11 Z12

0 Z22

]

,

H : = Q̃
T
1 HQ̃2 =:

[

H11 H12

0 H22

]

,

where T11, T
T
22, Z11, Z

T
22, H11 are upper triangular and HT

22 is upper Hessenberg. Update
Q1 := Q1Q̃1, Q2 := Q2Q̃2, U1 := U1Ũ1, and U2 := U2Ũ2. This step is performed by using
a sequence of orthogonal and orthogonal symplectic matrices to annihilate the elements in
H in a specific order without destroying the structure of T and Z (see [2] for details).

3: Apply the periodic QZ algorithm [9, 13] to the formal matrix product

T
−1

11 H11Z
−1

11 Z
−T
22 H

T
22T

−T
22

to determine orthogonal matrices V1, V2, V3, V4, V5, V6 such that V T
2 T11V1, V T

2 H11V3,

V T
4 Z11V3,

(

V T
4 Z22V5

)T
,
(

V T
6 T22V1

)T
are all upper triangular and

(

V T
6 H22V5

)T
is upper

quasi triangular. Set

Q̃1 := diag (V2, V6) , Q̃2 := diag (V3, V5) , Ũ1 := diag (V1, V1) , Ũ2 := diag (V4, V4) ,

and update T := Q̃T
1 T Ũ1, Z := ŨT

2 ZQ̃2, H := Q̃T
1 HQ̃2, Q1 := Q1Q̃1, Q2 := Q2Q̃2,

U1 := U1Ũ1, U2 := U2Ũ2.

Note that the algorithm above applies to any (unstructured) matrix pencil of the form
λT Z − H, but the application of the eigenvalue formula (22) requires the structural
assumption that the pencil is skew-Hamiltonian/Hamiltonian. Next we present the
triangularization procedure needed for Step 2 of Algorithm 7.

ALGORITHM 9. Triangularization procedure for special matrix pencils in factored form

Input: A real matrix pencil λAB−D = λ

[

A11 0
0 A22

] [

B11 0
0 B22

]

−

[

0 D12

D21 0

]

where the

formal matrix product A−1

11 D12B
−1

22 A−1

22 D21B
−1

11 is in real periodic Schur form with upper
triangular A11, A22, B11, B22, D12 and upper quasi triangular D21.
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Output: Orthogonal matrices Q1, Q2, Q3 such that QT
3 AQ2, Q

T
2 BQ1 are upper triangular

and QT
3 DQ1 is upper quasi triangular.

1: Apply the periodic eigenvalue reordering method introduced in [12] to the formal matrix
product

A
−1

11 D12B
−1

22 A
−1

22 D21B
−1

11

to determine orthogonal matrices V1, V2, V3, V4, V5, V6 such that V T
2 A11V1, V T

2 D12V3,

V T
4 B22V3, V

T
5 A22V4, V

T
5 D21V6, V

T
1 B11V6 keep their upper (quasi) triangular structure but

they can be partitioned into 2× 2 blocks with the last diagonal blocks corresponding to all
nonpositive eigenvalues of the formal product, and the first diagonal blocks corresponding
to the other eigenvalues.

2: Set Q1 := diag(V6, V3), Q2 := diag(V1, V4), Q3 := diag(V2, V5), and update

A : = Q
T
3 AQ2 =:









A11 A12 0 0
0 A22 0 0

0 0 A33 A34

0 0 0 A44









,

B : = Q
T
2 BQ1 =:









B11 B12 0 0
0 B22 0 0

0 0 B33 B34

0 0 0 B44









,

D : = Q
T
3 DQ1 =:









0 0 D13 D14

0 0 0 D24

D31 D32 0 0
0 D42 0 0









,

where A−1

22 D24B
−1

44 A−1

44 D42B
−1

22 has only nonpositive real eigenvalues.
3: Let P be an appropriate permutation matrix such that

A : = P
T
AP =









A11 0 A12 0
0 A33 0 A34

0 0 A22 0
0 0 0 A44









=:

[

Ã ∗

0 Â

]

,

B : = P
T
BP =









B11 0 B12 0
0 B33 0 B34

0 0 B22 0
0 0 0 B44









=:

[

B̃ ∗

0 B̂

]

,

D : = P
T
DP =









0 D13 0 D14

D31 0 D32 0

0 0 0 D24

0 0 D42 0









=:

[

D̃ ∗

0 D̂

]

,

and update Q1 := Q1P, Q2 := Q2P, Q3 := Q3P.
4: Triangularize λÃB̃ − D̃, i.e., compute orthogonal matrices Q̃1, Q̃2, Q̃3 such that A :=

Q̃T
3 AQ̃2 =:

[

Ã ∗

0 Â

]

, B := Q̃T
2 BQ̃1 =:

[

B̃ ∗

0 B̂

]

, D := Q̃T
3 DQ̃1 =:

[

D̃ ∗

0 D̂

]

with up-

per triangular Ã, B̃, upper quasi triangular D̃ and unchanged Â, B̂, D̂. Update Q1 =
Q1Q̃1, Q2 = Q2Q̃2, Q3 = Q3Q̃3.
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5: Triangularize λÂB̂ − D̂ with an appropriate permutation matrix P̂, i.e., A := P̂TAP̂ =:
[

Ã ∗

0 Â

]

, B := P̂TBP̂ =:

[

B̃ ∗

0 B̂

]

, D := P̂TDP̂ =:

[

D̃ ∗

0 D̂

]

with upper triangular Â, B̂,

upper quasi triangular D̂ and unchanged Ã, B̃, D̃. Update Q1 = Q1P̂, Q2 = Q2P̂, Q3 =
Q3P̂.

Note, that the separation of the nonpositive from the other eigenvalues of the formal
matrix product A−1

11 D12B
−1

22 A−1

22 D21B
−1

11 is performed in order to avoid perturbations
of the purely imaginary eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils.
This follows from the connection of the nonpositive eigenvalues of the matrix product
and the matrix pencil λAB−D similar to (22). When the nonpositive eigenvalues are
separated, the triangularization of the corresponding part of λAB − D can be done
by only applying permutation matrices. When the matrix pencil is triangularized we
apply the following eigenvalue reordering algorithm.

ALGORITHM 10. Eigenvalue reordering for real skew-Hamiltonian/Hamiltonian matrix
pencils in factored form

Input: Regular 2n× 2n real skew-Hamiltonian/Hamiltonian matrix pencil λS −H with S =

JZTJ TZ, Z =

[

Z W

0 T

]

, H =

[

H D

0 −HT

]

with upper triangular Z and TT and upper

quasi triangular H.
Output: An orthogonal matrix Q, an orthogonal symplectic matrix U , and the transformed

matrices UTZQ, JQTJ THQ which have still the same triangular form as Z and H,
respectively, but the eigenvalues in Λ− (S,H) are reordered such that they occur in the
leading principal subpencil of JQTJ T (λS −H)Q.

1: Set Q = U = I2n. Reorder the eigenvalues in the subpencil λTTZ −H.

a) Determine orthogonal matrices Q1, Q2, Q3 such that TT := QT
3 T

TQ2, Z := QT
2 ZQ1,

H := QT
3 HQ1 are still upper (quasi) triangular but the m− eigenvalues with negative

real part are reordered to the top of λTTZ − H. Set Q1 := diag (Q1, Q3) , U1 :=
diag (Q2, Q2) and update Q := QQ1, U := UU1.

b) Determine orthogonal matrices Q1, Q2, Q3 such that TT := QT
3 T

TQ2, Z := QT
2 ZQ1,

H := QT
3 HQ1 are still upper (quasi) triangular but the m+ eigenvalues with positive

real part are reordered to the bottom of λTTZ − H. Set Q1 := diag (Q1, Q3) , U1 :=
diag (Q2, Q2) and update Q := QQ1, U := UU1.

2: Reorder the remaining n − m+ + 1 eigenvalues with negative real parts which are now
in the bottom right subpencil of λS − H. Determine an orthogonal matrix Q1 and an
orthogonal symplectic matrix U1 such that the eigenvalues of top left subpencil of λS −H

with positive real parts and those of the bottom right subpencil of λS − H with negative
real parts are interchanged. Update Q := QQ1, U := UU1.

In case that we have to deal with skew-Hamiltonian/Hamiltonian matrix pencils λS−H
with unfactored matrix S we use the following algorithms.
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ALGORITHM 11. Computation of stable deflating subspaces of real skew-Hamiltonian/Ha-
miltonian matrix pencil in unfactored form

Input: Real skew-Hamiltonian/Hamiltonian matrix pencil λS −H.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pen-

cil λBr
S − Br

H, eigenvalues of λS − H, orthonormal basis P−

V of the deflating subspace
Def− (S,H) as in Theorem 3.2.

1: Apply Algorithm 12 to the matrices S and H and determine orthogonal matrices Q1, Q2

such that

Q
T
1 SJQ1J

T =

[

S11 S12

0 ST
11

]

∈ SH2n,

JQ
T
2 J

T
SQ2 =

[

T11 T12

0 TT
11

]

∈ SH2n,

Q
T
1 HQ2 =

[

H11 H12

0 H22

]

,

with the formal matrix product S−1

11 H11T
−1

11 HT
22 in real periodic Schur form, where S11,

T11, H11 are upper triangular and HT
22 is upper quasi triangular.

2: Apply Algorithm 13 to determine orthogonal matrices Q3, Q4 such that the matrix S11 =

QT
4

[

S11 0
0 T11

]

Q3 is upper triangular and H11 = QT
4

[

0 H11

−HT
22 0

]

Q3 is upper quasi

triangular.
3: Update

S12 := Q
T
4

[

S12 0
0 T12

]

Q4, H12 := Q
T
4

[

0 H12

HT
12 0

]

Q4,

and set

B̃
r
S =

[

S11 S12

0 ST
11

]

, B̃
r
H =

[

H11 H12

0 −HT
11

]

.

Apply the real eigenvalue reordering method in Algorithm 14 to the pair
(

B̃r
S , B̃

r
H

)

to

determine an orthogonal matrix Q̂ such that J Q̂TJ T
(

λB̃r
S − B̃r

H

)

Q̂ is in structured

Schur form and Λ−

(

B̃r
S , B̃

r
H

)

is contained in the leading 2p × 2p principal subpencil of

λS11 −H11.
4: Set

V =
[

I2n 0
]

(

Yr

[

JQ1J
T 0

0 Q2

]

P

[

Q3 0
0 Q4

]

Q̂

)[

I2p
0

]

,

and compute P−

V , orthogonal basis of rangeV , using any numerically stable orthogonal-
ization scheme.

The following algorithm is used to compute a structured matrix pencil decomposition
which is similar to the generalized symplectic URV decomposition.

22



ALGORITHM 12. Variant of the generalized symplectic URV decomposition for unfactored
real skew-Hamiltonian/Hamiltonian matrix pencils

Input: A real 2n× 2n skew-Hamiltonian/Hamiltonian matrix pencil λS −H.
Output: Orthogonal matrices Q1, Q2 and the structured factorization (23).
1: Set Q1 = Q2 = I2n. Reduce S to skew-Hamiltonian triangular form, i.e., determine an

orthogonal matrix Q̃1 such that

S := Q̃
T
1 SJ Q̃1J

T =

[

S11 S12

0 ST
11

]

with an upper triangular matrix S11. Update H := Q̃T
1 HJ Q̃1J

T , Q1 := Q1Q̃1. This step
is performed by applying a sequence of Householder reflections and Givens rotations in a
specific order, see [2] for details.

2: Set T := S, Q2 := JQ1J
T . Perform eliminations in H, i.e., compute orthogonal matri-

ces Q̃1, Q̃2 such that

S : = Q̃
T
1 SJ Q̃1J

T =

[

S11 S12

0 ST
11

]

∈ SH2n,

T : = J Q̃
T
2 J

T
T Q̃2 =

[

T11 T12

0 TT
11

]

∈ SH2n,

H : = Q̃
T
1 HQ̃2 =

[

H11 H12

0 H22

]

where S11, T11, H11 are upper triangular and HT
22 is upper Hessenberg. Update Q1 :=

Q1Q̃1, Q2 := Q2Q̃2. This step is performed by applying an appropriate sequence of
Givens rotations to annihilate the elements in H in a specific order without destroying
the structure of S and T , for details see [2].

3: Apply the periodic QZ algorithm [9, 13] to the formal matrix product

S
−1

11 H11T
−1

11 H
T
22

to determine orthogonal matrices V1, V2, V3, V4 such that V T
1 S11V3, V

T
1 H11V4, V

T
2 T11V4,

are all upper triangular and
(

V T
3 H22V2

)T
is upper quasi triangular. Set

Q̃1 := diag (V1, V3) , Q̃2 := diag (V4, V2) ,

and update S := Q̃T
1 SJ Q̃1J

T , T := J Q̃T
2 J

TT Q̃2, H := Q̃T
1 HQ̃2, Q1 := Q1Q̃1, Q2 :=

Q2Q̃2.

Now we present the triangularization algorithm. All remarks which have been made
for the factored case analogously hold for the unfactored case.
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ALGORITHM 13. Triangularization procedure for special matrix pencils in unfactored
form

Input: A real matrix pencil λA−B = λ

[

A11 0
0 A22

]

−

[

0 B12

B21 0

]

where the formal matrix

product A−1

11 B12A
−1

22 B21 is in real periodic Schur form with upper triangular A11, A22, B12

and upper quasi triangular B21.
Output: Orthogonal matrices Q1, Q2 such that QT

2 AQ1 is upper triangular and QT
2 BQ1 is

upper quasi triangular.
1: Apply the periodic eigenvalue reordering method introduced in [12] to the formal matrix

product
A

−1

11 B12A
−1

22 B21

to determine orthogonal matrices V1, V2, V3, V4 such that V T
2 A11V1, V

T
2 B12V3, V

T
4 A22V3,

V T
4 B21V1, keep their upper (quasi) triangular structure but they can be partitioned into

2× 2 blocks with the last diagonal blocks corresponding to all nonpositive real eigenvalues
of the formal product, and the first diagonal blocks corresponding to the other eigenvalues.

2: Set Q1 := diag(V1, V3), Q2 := diag(V2, V4), and update

A : = Q
T
2 AQ1 =:









A11 A12 0 0
0 A22 0 0

0 0 A33 A34

0 0 0 A44









,

B : = Q
T
2 BQ1 =:









0 0 B13 B14

0 0 0 B24

B31 B32 0 0
0 B42 0 0









,

where A−1

22 B24A
−1

44 B42 has only nonpositive real eigenvalues.
3: Let P be an appropriate permutation matrix such that

A : = P
T
AP =









A11 0 A12 0
0 A33 0 A34

0 0 A22 0
0 0 0 A44









=:

[

Ã ∗

0 Â

]

,

B : = P
T
BP =









0 B13 0 B14

B31 0 B32 0

0 0 0 B24

0 0 B42 0









=:

[

B̃ ∗

0 B̂

]

,

and update Q1 := Q1P, Q2 := Q2P.
4: Triangularize λÃ−B̃, i.e., compute orthogonal matrices Q̃1, Q̃2 such that A := Q̃T

2 AQ̃1 =:
[

Ã ∗

0 Â

]

, B := Q̃T
2 BQ̃1 =:

[

B̃ ∗

0 B̂

]

with upper triangular Ã, upper quasi triangular B̃,

and unchanged Â, B̂. Update Q1 = Q1Q̃1, Q2 = Q2Q̃2.
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5: Triangularize λÂ − B̂ with an appropriate permutation matrix P̂, i.e., A := P̂TAP̂ =:
[

Ã ∗

0 Â

]

, B := P̂TBP̂ =:

[

B̃ ∗

0 B̂

]

with upper triangular Â, upper quasi triangular B̂ and

unchanged Ã, B̃. Update Q1 = Q1P̂, Q2 = Q2P̂.

Finally, we describe the reordering of the eigenvalues.

ALGORITHM 14. Eigenvalue reordering for real skew-Hamiltonian/Hamiltonian matrix
pencils in unfactored form

Input: Regular 2n×2n real skew-Hamiltonian/Hamiltonian matrix pencil λS−H of the form

S =

[

S W

0 ST

]

, H =

[

H D

0 −HT

]

, with upper triangular S an upper quasi triangular H.

Output: An orthogonal matrix Q and the transformed matrices JQTJ TSQ, JQTJ THQ

which have still the same (quasi) triangular form as S and H, respectively, but the eigen-
values in Λ− (S,H) are reordered such that they occur in the leading principal subpencil
of JQTJ T (λS −H)Q.

1: Set Q = I2n. Reorder the eigenvalues in the subpencil λS −H.

a) Determine orthogonal matrices Q1, Q2 such that S := QT
2 SQ1, H := QT

2 HQ1, are still
upper (quasi) triangular but the m− eigenvalues with negative real part are reordered
to the top of λS −H. Set Q1 := diag (Q1, Q2) and update Q := QQ1.

b) Determine orthogonal matrices Q1, Q2 such that S := QT
2 SQ1, H := QT

2 HQ1, are still
upper (quasi) triangular but the m+ eigenvalues with positive real part are reordered
to the bottom of λS −H. Set Q1 := diag (Q1, Q2) and update Q := QQ1.

2: Reorder the remaining n−m+ + 1 eigenvalues with negative real parts which are now in
the bottom right subpencil of λS −H. Determine an orthogonal matrix Q1 such that the
eigenvalues of top left subpencil of λS −H with positive real parts and those of the bottom
right subpencil of λS −H with negative real parts are interchanged. Update Q := QQ1.

4 Conclusion

We have presented algorithms which can be used to compute the eigenvalues and
deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils in a structure-
preserving way which may lead to higher accuracy, reliability and computational per-
formance. Applications which are based on matrix pencils of this structure have been
introduced to show the importance of our considerations. In Part II of this paper
[8] we describe details of the implementation in the style of SLICOT subroutines.
We furthermore present results of some numerical experiments in order to show the
superiority of our method compared to standard approaches.
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