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Abstract
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1 Introduction

Consider a multiple input/multiple output (MIMO) linear dynamical system having a
state-space realization (which will be presumed minimal) given by

ẋ(t) = Ax(t) + B u(t)
y(t) = Cx(t) + D u(t)

(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are constant matrices.
x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are, respectively, the state, the input, and the
output of the system. The transfer function of this system is G(s) = C(sI−A)−1B+D.
Following common usage, the underlying system will also be denoted by G. The
circumstances of interest for us presume very large state-space dimensions relative to
the input/output dimensions, n� m, p. This leads to fundamental difficulties for any
task that involves optimization or control of this system. This in turn motivates model
reduction: finding a reduced order model (ROM),

ẋr(t) = Arxr(t) + Bru(t),
yr(t) = Crxr(t) + Dr u(t)

(2)

with an associated transfer function Gr(s) = Cr(sI − Ar)
−1Br + Dr where Ar ∈

Rnr×nr , Br ∈ Rnr×m, Cr ∈ Rp×nr , and Dr ∈ Rp×m. The goal is to produce a greatly
reduced state-space dimension, nr � n, yet still assure that yr(t) ≈ y(t) over a large
class of inputs u(t). This is accomplished by requiring Gr(s) to approximate G(s)
very well, in an appropriate sense, which we interpret as making Gr(s)−G(s) small
with respect to an appropriate system norm.

For example, one may consider approximations that attempt to minimize the H2-
error:

‖G−Gr‖H2

def
=

(
1

2π

∫ +∞

−∞
‖G(ıω)−Gr(ıω)‖2F dω

)1/2

, (3)

where ‖M‖2F =
∑
i,j |mij |2 denotes the Frobenius norm of the matrix M. Notice that

in order to ensure that this error measure is even finite, it is necessary that Dr = D.
“Typical” inputs, u(t), often will have their power concentrated in known frequency

ranges, and so, some frequency ranges will naturally be more important than others
with regard to ROM fidelity. This leads in a natural way to consideration of weighted
system errors designed in such a way so as to enhance accuracy in certain frequency
ranges while permitting larger errors at other frequencies.

Consider then, a weighted system error

‖Gr −G‖H2(W )

def
= ‖ (Gr(s)−G(s)) W(s)‖H2 (4)

where W(s) is a given input weighting (“shaping filter”). One may specify an output
weighting as well, however in the interest of clarity and brevity, we do not do this here.
For a given system G ∈ H2 the goal will be to construct a reduced system Gr ∈ H2

solving the weighted-H2 approximation problem:

Gr = argmin
ord(G̃) ≤ nr

‖G− G̃‖H2(W ) (5)
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Choosing W(s) to be a transfer function associated with a band-pass filter penal-
izes approximation errors at frequencies within the passband and while discounting
approximation error at frequencies outside the passband.

Another choice of shaping filter arises from controller reduction: Consider a linear
dynamical system, P (the plant), with order nP together with an associated stabiliz-
ing controller, G, having order n, that is connected to P in a feedback loop. Many
control design methodologies, such as LQG and H∞ methods, lead ultimately to con-
trollers whose order is generically as high as the order of the plant, n ≈ nP , see
[26, 30] and references therein. Thus, high-order plants will generally lead to high-
order controllers. However, high-order controllers are usually undesirable in real-time
applications because this typically translates into unduly complex and costly hardware
implementation that may suffer degraded performance both in terms of speed and ac-
curacy. Thus, one may prefer to replace G with a reduced order controller, Gr, having
order nr � n.

It is often not enough to simply require Gr to be a good approximation to G. In
order to accurately recover closed-loop performance, plant dynamics need to be taken
into account during the reduction process. This may be achieved through frequency
weighting: Given a stabilizing controller G, if a reduced model, Gr, has the same
number of unstable poles as G and∥∥[G−Gr] · P[I + PG]−1

∥∥
H∞ < 1,

then, if Gr is used to replace G, Gr will also be a stabilizing controller [1, 30]. Seeking
Gr to minimize the weighted-H2 error measure (4) is an effective proxy, using W(s) =
P(s)[I + P(s)G(s)]−1. This approach has been considered in [26, 1, 20, 10, 7, 28, 15,
27, 25] and references therein, leading then to variants of frequency-weighted balanced
truncation. Related methods in [13] and [24] are tailored instead towards minimizing
a similarly weighted H2 error, as we do here.

2 Optimal approximations in a weighted-H2 norm.

H∞ will denote here the set of m×mw matrix-valued functions, W(s), having entries,
wij(s), that are analytic for s in the open right half plane and uniformly bounded
along the imaginary axis, which supω∈R |wij(ıω)| is finite for all i, j. A norm may
be defined on H∞ as ‖W‖H∞ = supω∈R ‖W(ıω)‖2, where ‖M‖2 here represents the
induced matrix 2-norm. We assume throughout this work that weighting functions are
drawn from H∞.

For any such weight W ∈ H∞, denote by H2(W ) the set of p ×m matrix-valued
functions, G(s), that have components analytic for s in the open right half plane, and
such that for each fixed Re(s) = x > 0, G(x+ ıy) is square integrable with respect to
W as a function of y ∈ (−∞,∞) in the sense that

sup
x>0

∫ ∞
−∞
‖G(x+ ıy)W(x+ ıy)‖2F dy <∞.
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If G, H ∈ H2(W ) are transfer functions representing real dynamical systems then an
inner product may be defined as

〈G, H〉H2(W )
=

1

2π

∫ ∞

−∞
tr
(
G(ıω)W(ıω)W(ıω)TH(ıω)T

)
dω

=
1

2π

∫ ∞

−∞
tr
(
G(−ıω)W(−ıω)W(ıω)TH(ıω)T

)
dω.

The associated norm on H2(W ) is

‖G‖H2(W ) =
(
〈G, G〉H2(W )

)1/2
.

H2 will denote precisely the set H2(W ) but using the particular choice W(s) = I
(and with m = mw). Note that H2 ⊂ H2(W ) and for G, H ∈ H2,∣∣∣〈G, H〉H2(W )

∣∣∣ ≤ ‖W‖2H∞ ‖G‖H2 ‖H‖H2 . (6)

In all that follows, we suppose the weight W ∈ H∞ is a rational function with
simple poles at {γ1, . . . , γnw

} and that it has alternative representations given by

W(s) = Cw (sI−Aw)
−1

Bw + Dw (7)

and W(s) =

nw∑
k=1

ek fTk
s− γk

+ Dw. (8)

with Aw ∈ Rnw×nw , Bw ∈ Rnw×mw , Cw ∈ Rm×nw , and Dw ∈ Rm×mw . Echoing the
setting of [13], our analysis does not require m = mw, though it may be a natural
choice. The (matrix-valued) residue of a meromorphic matrix-valued function, M(s),
at a point ζ ∈ C will be denoted as res[M(s), ζ], so for example, with W as in (8),
res[W, γk] = ek fTk .

Notice that the transfer function, G, associated with the system (1) will be inH2(W )
if and only if A is stable and DDw = 0. For G ∈ H2(W ), define

F[G](s) =G(s)W(s)W(−s)T +

nw∑
k=1

G(−γk)W(−γk)
fke

T
k

s+ γk
(9)

Lemma 1 For F as defined in (9)

a. F is a bounded linear transformation from H2(W ) to H2.

b. For any G, H ∈ H2, 〈G, H〉H2(W )
= 〈F[G], H〉H2

. Hence, F is a positive-
definite, selfadjoint linear operator on H2.

The proof of this lemma and subsequent arguments employ an elementary result that
we list here. It is an immediate corollary to [3, Lemma 1]:
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Proposition 2 Let G1 ∈ H2 and G2(s) = cbT

s−µ ∈ H2. Then,

〈G1,G2〉H2 = cTG1(−µ)b and ‖G2‖H2
=
‖c‖‖b‖√
2|Reγk|

.

Proof of Lemma 1: Clearly, F[G] is linear in G. Let G ∈ H2(W ). G(s)W(s)W(−s)T
has simple poles in the right half plane at −γ1,−γ2, . . . ,−γnw

, and

res[G(s)W(s)W(−s)T ,−γk] = lim
s→−γk

(s+ γk)G(s)W(s)W(−s)T

= G(−γk)W(−γk) lim
s→−γk

(s+ γk)W(−s)T

= −G(−γk)W(−γk) lim
s→γk

(s− γk)W(s)T

= −G(−γk)W(−γk) · res[W(s)T , γk]

= −G(−γk)W(−γk) fk eTk .

Thus F[G](s) is analytic in the right-half plane. To show that F[G] ∈ H2, observe first
that G ·W ∈ H2 so that for each k = 1, . . . , nw :

‖G(−γk)W(−γk)‖2 = max
u,v

u∗ [G(−γk)W(−γk)] v

‖u‖2 ‖v‖2

= max
u,v

1

‖u‖2 ‖v‖2

〈
G(s)W(s),

vu∗

s− γk

〉
H2

≤ ‖GW‖H2
·max

u,v

∥∥∥ vu∗

s−γk

∥∥∥
H2

‖u‖ ‖v‖ =
‖G‖H2(W )√

2 |Re γk|
,

where the final equality follows from Proposition 2. This amounts to the observation
that point evaluation in the right half-plane is a continuous map from H2(W ) to Cm×p.
We now calculate

‖F[G]‖H2
≤ ‖W‖H∞ ‖G(s)W(s)‖H2

+

nw∑
k=1

‖G(−γk)W(−γk)
fke

T
k

s+ γk
‖H2

≤
(
‖W‖H∞ +

nw∑
k=1

‖fk‖ ‖ek‖
2 |Re γk|

)
‖G‖H2(W );

F is a bounded linear transformation from H2(W ) to H2.
For assertion 1b, suppose first that H has simple poles {µ1, . . . , µ`}. Note that since

F[G](−s) is analytic in the left half plane, F[G](−s)H(s)T will have poles in the left
halfplane exactly at {µ1, . . . , µ`}.

For any R > 0, define a semicircular contour in the left halfplane:

CR = {z |z = ıω with ω ∈ [−R,R]} ∪
{
z

∣∣∣∣z = Reıθ with θ ∈ [
π

2
,

3π

2
]

}
.
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ForR large enough, the region bounded by CR contains {µ1, . . . , µ`}. Using the Residue
Theorem and linearity of the trace, we find

〈F[G], H〉H2
=

1

2π

∫ +∞

−∞
tr
(
F[G](−ıω) H(ıω)T

)
dω

= lim
R→∞

1

2πı

∫

CR
tr
(
F[G](−s) H(s)T

)
dω

=
∑̀

k=1

tr
(
res[F[G](−s)H(s)T , µk]

)

=
∑̀

k=1

tr
(
F[G](−µk)res[H, µk]T

)

=
∑̀

k=1

tr
(
G(−µk)W(−µk)W(µk)T res[H, µk]T

)

+
∑̀

k=1

nw∑

i=1

tr

(
G(−γi)W(−γi) fie

T
i

−µk + γi
res[H, µk]T

)

=
∑̀

k=1

tr
(
G(−µk)W(−µk)W(µk)T res[H, µk]T

)

+

nw∑

i=1

tr

(
G(−γi)W(−γi)fieTi

∑̀

k=1

res[H, µk]T

γi − µk

)

Since H has simple poles and is in H2,
∑`
k=1

res[H,µk]
T

s−µk
= H(s)T . Note that

{µ1, . . . , µ`} ∪ {γ1, . . . , γnw
} is precisely the set of poles in the left half plane for the

meromorphic function G(−s)W(−s)W(s)TH(s)T .
So, we continue:

〈F[G], H〉H2

=
∑̀

k=1

tr
(
G(−µk)W(−µk)W(µk)T res[H, µk]T

)

+

nw∑

i=1

tr
(
G(−γi)W(−γi)res[W, γi]

TH(γi)
T
)

= lim
R→∞

1

2πı

∫

CR
tr
(
G(−s)W(−s)W(s)TH(s)T

)
ds

=
1

2π

∫ +∞

−∞
tr
(
G(−ıω) W(−ıω)W(ıω)TH(ıω)T

)
dω

= 〈G, H〉H2(W )

This remains true independent of whether H has simple poles or not: Take a sequence,
Hk, converging to H in H2 with each Hk having simple poles. Then, appeal to the
continuity of the expressions 〈G, Hk〉H2(W )

= 〈F[G], Hk〉H2
with respect to the H2

norm.
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F is positive-definite and selfadjoint on H2 because, for G, H ∈ H2,

〈F[G], H〉H2
= 〈G, H〉H2(W )

= 〈H, G〉H2(W )
= 〈F[H], G〉H2

= 〈G, F[H]〉H2

and 〈F[G], G〉H2
= 〈G, G〉H2(W )

> 0 if G 6= 0. �

Given state-space realizations for W ∈ H∞ and G ∈ H2(W ), one may obtain an
explicit state-space realization for F[G](s).

Lemma 3 Suppose W ∈ H∞ has simple poles at {γ1, . . . , γp} and G ∈ H2(W ).
Suppose further that W(s) has a realization as given in (7) and G(s) = C(sI −
A)−1B + D from (1).

Then F[G](s) as defined in (9) has a realization given by

F[G](s) = CF(sI−AF)−1
BF (10)

=
[
C DCw

]
︸ ︷︷ ︸

CF

(
sI−

[
A BCw

0 Aw

]

︸ ︷︷ ︸
AF

)−1 [
ZCT

w + BDwDT
w

PwCT
w + BwDT

w

]

︸ ︷︷ ︸
BF

,

where Pw and Z solve, respectively,

AwPw + PwAT
w + BwBT

w = 0 and (11)

AZ + ZAT
w + B(CwPw + DwBT

w) = 0. (12)

Proof We evaluate (10) in two parts. Note first that since G ∈ H2(W ), DDw = 0.
We may directly compute a realization of G(s) ·W(s):

[
C DCw

] [sI−A −BCw

0 sI−Aw

]−1 [
BDw

Bw

]

=
[
C DCw

] [(sI−A)−1BW(s)
(sI−Aw)−1Bw

]
= G(s)W(s). (13)

Aw has distinct eigenvalues by hypothesis; assume that its eigenvalue decomposition
is given as Aw = UΓU−1. Postmultiply (11) with U−T :

AwP̃w + P̃wΓ + BwF̃ = 0,

where PwU−T = P̃w = [p̃1, p̃2, . . . , p̃nw ] and BT
wU−T = F̃ =

[
f̃1, f̃2, . . . , f̃nw

]
.

In particular, for each column of P̃w, we have p̃k = (−γkI − Aw)−1Bw f̃k. Defining
Ẽ = CwU = [ẽ1, ẽ2, . . . , ẽnw ], we have

PwCT
w = PwU−TUTCT

w = P̃wẼT =

nw∑
k=1

(−γkI−Aw)−1Bw f̃kẽ
T
k .

We follow the same development for (12); postmultiplication with U−T yields

AZ̃ + Z̃Γ + B(CwP̃w + DwF̃) = 0,
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where Z̃ = Z U−T = [z̃1, z̃2, . . . , z̃nw
]. Note that

Cwp̃k + Dw f̃k = W(−γk)f̃k

so that z̃k = (−γkI−A)−1BW(−γk)f̃k, and drawing all together, we obtain

ZCT
w = ZU−TUTCT

w = Z̃ẼT =

nw∑
k=1

(−γkI−A)−1BW(−γk)f̃kẽ
T
k .

With these expressions, the remaining contribution to (10) becomes

[
C DCw

] [sI−A −BCw

0 sI−Aw

]−1 [
ZCT

w

PwCT
w

]

= C(sI−A)−1ZCT
w + G(s)Cw(sI−Aw)−1PwCT

w

=

nw∑

k=1

C(sI−A)−1(−γkI−A)−1BW(−γk)f̃kẽ
T
k

+

nw∑

k=1

G(s)Cw(sI−Aw)−1(−γkI−Aw)−1Bw f̃kẽ
T
k

The following easily verified resolvent identity allows further simplification:

(sI−A)−1 (−γkI−A)−1 =
1

s+ γk
(−γkI−A)−1 − 1

s+ γk
(sI−A)−1 . (14)

Which then yields,

. . . =

nw∑

k=1

1

s+ γk
(G(−γk)−G(s)) W(−γk)f̃kẽ

T
k

+

nw∑

k=1

1

s+ γk
G(s) (W(−γk)−W(s)) f̃kẽ

T
k

=

nw∑

k=1

G(−γk)W(−γk)
f̃kẽ

T
k

s+ γk
−G(s)W(s)

nw∑

k=1

f̃kẽ
T
k

s+ γk

Postmultiplying (13) with DT
w and combining with this last expression gives

[
C DCw

] [sI−A −BCw

0 sI−Aw

]−1 [
ZCT

w + BDwDT
w

PwCT
w + BwDT

w

]

= G(s)W(s)

(
nw∑

k=1

f̃kẽ
T
k

−s− γk
+ DT

w

)
+

nw∑

k=1

G(−γk)W(−γk)
f̃kẽ

T
k

s+ γk

= F[G](s). �
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Lemma 4 Suppose M1 and M2 are stable matrices. The unique solution, X, to the
Sylvester equation

M1X + XM2 + N = 0,

is given by

X =
1

2π

∫ +∞

−∞
(−ıωI−M1)−1N(ıωI−M2)−1 dω

Lemma 5 For F as defined in (9) and any G, H ∈ H2(W ),

a. 〈F[G], DH〉H2
= 1

2 〈G, DH〉H2(W )

b. 〈F[G], H〉H2
= 〈G, H〉H2(W )

− 1
2 〈G, DH〉H2(W )

.

Proof We may decompose H as H(s) = H0(s) + DH with H0 ∈ H2. Since G, H ∈
H2(W ), DH · Dw = 0 and D · Dw = 0. Using the realization of GW in (13), we
calculate

〈G, DH〉H2(W )
= 〈GW, DHW〉H2

=
1

2π

∫ +∞

−∞
tr
(
G(−ıω)W(−ıω) W(ıω)TDT

H

)
dω

= tr
([

C DCw

]
XCT

wDT
H

)
where

X =
1

2π

∫ +∞

−∞
(−ıωI−AF)−1

[
BDw

Bw

]
BT
w(ıωI−AT

w)−1 dω

From Lemma 4, this X is the unique solution to the Sylvester equation

AFX + X AT
w +

[
BDwBT

w

BwBT
w

]
= 0.

Recalling (11) and (12), X evidently may be expressed as X =

[
Z
Pw

]
. Thus, 〈G, DH〉H2(W )

=

tr
(
CZCT

wDT
H + DCwPwCT

wDT
H

)
.

Conversely, we may use (10), take account that DT
wDT

H = 0, and calculate:

〈F[G], DH〉H2
=

1

2π

∫ +∞

−∞
tr
(
CF(−ıωI−AF)

−1BFD
T
H

)
dω

= tr

(
CF

(
1

2π

∫ +∞

−∞
(−ıωI−AF)

−1 dω

)[
ZCTw
PwCTw

]
DT
H

)
,

where the integral limit is to be interpreted as a principal value. Because the matrix
AF is stable, the integral reduces to πI, so we have:

〈F[G], DH〉H2
=

1

2
tr
(
CZCT

wDT
H + DCwPwCT

wDT
H

)
=

1

2
〈G, DH〉H2(W )

Part (b) is shown similarly. We omit the details. �
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2.1 Interpolatory weighted-H2 optimality conditions

The feasible set for (5) consists of all stable transfer functions in H2(W ) having order nr
or less. This is a nonconvex set, hence as a practical matter, finding a global minimizer
is extremely difficult and so, instead, one typically seeks efficient local minimizers.
Methods proposed in [13] and [24] may be used to find local minimizers to (5). However,
these methods require solving a sequence of large-scale Lyapunov or Riccati equations
and so, rapidly become computationally intractable as system order, n, and shaping
filter order, nw, increase.

We approach (5) instead within an interpolatory framework similar to that developed
in [2]. Computational complexity for interpolatory methods grows more slowly with
increasing n and nw, hence much larger problems are feasible. In contrast to the (SISO)
results of [2], we are able to treat general MIMO settings (including feedthrough terms).
Furthermore, the heuristic algorithm derived in [2] is improved upon here with an
iterative correction process that produces near-optimal reduced models (approaching
true optimality as reduction order nr grows).

We first derive interpolatory conditions that necessarily hold for a reduced system,
Gr, assuming it solves (5).

Theorem 6 Suppose that Gr ∈ H2(W ) is a solution to (5). Suppose further that Gr

has only simple poles, {λ1, . . . , λnr} and is represented as:

Gr(s) = Cr (sI−Ar)
−1 Br + Dr =

nr∑

k=1

ck bTk
s− λk

+ Dr (15)

where Ar ∈ Rnr×nr and Br ∈ Rnr×m, and Cr ∈ Rp×nr . Then Gr must satisfy for
each k = 1, . . . , nr,

F[G](−λk)bk = F[Gr](−λk)bk (16a)

cTk F[G](−λk) = cTk F[Gr](−λk), and (16b)

cTk F
′[G](−λk)bk = cTk F

′[Gr](−λk)bk. (16c)

where F is defined in (9) and F ′[ · ](s) = d
dsF[ · ](s).

(Theorem 7 will provide one additional condition.)

Proof Pick an arbitrary vector g ∈ Cp with ‖g‖ = 1 and an index k with 1 ≤ k ≤ nr.
Suppose that 〈

G−Gr,
gbTk
s− λk

〉
H2(W )

= α0 6= 0.

Define θ0 = arg(α0) and for arbitrary ε > 0, define a perturbation to Gr as

G̃(ε)
r (s) =

ck + ε e−ıθ0g
s− λk

bTk +
∑
i 6=k

cib
T
i

s− λi
.

9



Then, using (6) and Proposition 2, we obtain

‖Gr − G̃(ε)
r ‖H2(W ) =

∥∥∥∥
−ε e−ıθ0
s− λk

gbTk

∥∥∥∥
H2(W )

≤ ‖W‖H∞
‖bk‖ε√
2|Re(λk)|

.

Thus, ‖Gr(s)− G̃
(ε)
r (s)‖H2(W ) = O(ε) as ε→ 0. Since Gr solves (5),

‖G−Gr‖2H2(W ) ≤ ‖G− G̃(ε)
r ‖2H2(W ) ≤ ‖(G−Gr) + (Gr − G̃(ε)

r )‖2H2(W )

≤ ‖G−Gr‖2H2(W ) + 2Re
〈
G−Gr, Gr − G̃(ε)

r

〉
H2(W )

+ ‖Gr − G̃(ε)
r ‖2H2(W ).

Thus,

0 ≤ 2 Re
〈
G−Gr, Gr − G̃(ε)

r

〉
H2(W )

+ ‖Gr − G̃(ε)
r ‖2H2(W ).

This implies that 0 ≤ −ε|α0|+O(ε2), which then leads to a contradiction; it must be
that α0 = 0. But then

0 =

〈
G−Gr,

gbTk
s− λk

〉

H2(W )

=

〈
F[G−Gr],

gbTk
s− λk

〉

H2

= gT (F[G−Gr](−λk)) bk,

using Proposition 2) and since g was chosen arbitrarily, we must have

0 = F[G−Gr](−λk)bk = F[G](−λk)bk − F[Gr](−λk)bk

which confirms (16a). (16b) is shown similarly, replacing
gbT

k

s−λk
in the argument above

with ckg
T

s−λk
for arbitrary g ∈ Cm.

To show (16c), suppose that
〈
G−Gr,

ckb
T
k

(s−λk)2

〉
H2(W )

= α1 6= 0. and define θ1 =

arg(α1). For ε > 0 sufficiently small, define

G̃(ε)
r (s) =

ckb
T
k

s− (λk + ε e−ıθ1)
+
∑
i6=k

cib
T
i

s− λ̂i

As ε→ 0, we have

‖Gr − G̃(ε)
r ‖H2(W ) =

∥∥∥∥
−ε e−ıϑ1ckb

T
k

(s− λk)(s− (λk + ε e−ıθ1))

∥∥∥∥
H2(W )

= O(ε)

Following a similar argument as before, we find that 0 ≤ −ε|α1| + O(ε2) as ε → 0,
which leads to a contradiction, forcing α1 = 0. This, in turn, implies

0 =

〈
G−Gr,

ckb
T
k

(s− λk)2

〉

H2(W )

=

〈
F[G−Gr],

ckb
T
k

(s− λk)2

〉

H2

=
d

ds
cTk (F[G−Gr](s)) bk

∣∣∣
s=−λk

,

which gives (16c). �
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We have one additional necessary condition for optimality that arises from the pres-
ence of the weighting filter. For G, Gr ∈ H2(W ), let F(t) and Fr(t) denote the
impulse response functions associated respectively with F[G](s) and F[Gr](s). That
is, F[G] = L{F} and F[Gr] = L{Fr}, where L{·} is the Laplace transform.

Theorem 7 Assume the hypotheses and notation of Theorem 6. Then for all n ∈
Ker(DT

w),
F(0)n = Fr(0)n. (16d)

Proof Pick m ∈ Rp and n ∈ Ker(DT
w), arbitrarily. From (8), m nT W(s) =

nw∑
k=1

(nTek)
m fTk
s− γk

is evidently an H2 function. Hence, m nT ∈ H2(W ). Suppose that〈
G−Gr, m nT

〉
H2(W )

= α0 6= 0.

Define θ0 = arg(α0) and for arbitrary ε > 0, define a perturbation to Gr as

G̃(ε)
r (s) = ε e−ıθ0 m nT + Gr(s)

Arguments identical to those in the proof of Theorem 6 lead to

0 ≤ −2 Re
〈
G−Gr, εm nT

〉
H2(W )

+ ‖εm nT ‖2H2(W ),

implying that 0 ≤ −ε|α0| + O(ε2), and leading to a contradiction as before; as a
consequence, α0 = 0. But then

0 =
〈
G−Gr, m nT

〉
H2(W )

=
〈
F[G−Gr], m nT

〉
H2

= mT

[∫ +∞

−∞
F[G−Gr](ıω) dω

]
n.

Since m was chosen arbitrarily, we must have

0 =

[∫ +∞

−∞
F[G−Gr](ıω) dω

]
n = [F(0)− Fr(0)] n.

which confirms (16d). �

3 The Halevi optimality conditions

Following [13, Appendix A], the first-order necessary conditions for a locally optimal
reduced model Gr can be stated in terms of solutions to linear matrix equations.
Consider the set of matrix equations defined by G,Gr ∈ H2(W ) and W ∈ H∞ as
follows:

AFX + XAT
r + BFBT

r = 0, (17a)

ArPr + PrA
T
r + Br

[
0 Cw

]
X +

(
XT

[
0

CT
w

]
+ BrDwDT

w

)
BT
r = 0, (17b)

11



AT
r Qr + QrAr + CT

r Cr = 0, (17c)

A
T
F Y + YAr =

[
CT

((D−Dr)Cw)T

]
Cr −

[
0

CT
w

]
BT
r Qr. (17d)

If Gr is locally H2(W )-optimal, then:

YTX + QrPr = 0, (18a)

CFX−CrPr −Dr

[
0 Cw

]
X = 0, (18b)

YT
BF + Qr

(
BrDwDT

w + XT

[
0

CT
w

])
= 0, (18c)

CrX
T

[
0

CT
w

]
N−CZCT

wN = (D−Dr)CwPwCT
wN, (18d)

where N = [n1, . . . ,n`] is a basis for Ker(DT
w).

Notice that for W(s) = I, conditions (18a)-(18c) coincide with the Wilson optimality
conditions from [29], while the final condition (18d) is satisfied vacuously since in this
case, Ker(DT

w) = {0}.

3.1 Equivalence of the optimality conditions

The close connection between Sylvester equations and tangential interpolation in the
unweighted case has been established in [8]. The model reduction bases that enforce
tangential interpolation can be obtained as solutions to special Sylvester equations.
Moreover, in [11], the necessary H2 optimality conditions in the form of Sylvester
equations from [29] have been shown to be equivalent to the interpolatory ones from
[16, 11]. For the weighted case, there are two frameworks as well: the interpolatory
conditions (16a)-(16d) we developed here and the linear matrix equations based con-
ditions (18a)-(18d) of Halevi [13]. Since these are only necessary conditions, their
equivalence is not obvious. Next, we formally establish this equivalency.

Theorem 8 Let G,Gr ∈ H2(W ) and W ∈ H∞. Assume that Gr has simple poles at
{λ1, . . . , λnr

}. Then optimality conditions (16a)-(16d) and (18a)-(18d) are equivalent.

Proof Assume Gr satisfies (18a)-(18d) and that Ar = RΛR−1 is an eigenvalue de-
composition of Ar. Multiplying (17a) with R−T from right gives

AFX̃ + X̃Λ + BFB̃ = 0,

where X̃ = XR−T and B̃ = BT
r R−T . This implies

X̃ sk = X̃k = (−λkI−AF)−1
BFbk, (19)

where sk is the kth unit vector. Similarly, multiplying (17b) from right with R−T

yields

ArP̃ + P̃Λ+Br

[
0 Cw

]
X̃ = −

(
XT

[
0

CT
w

]
+ BrDwDT

w

)
B̃,

12



where P̃ = PrR
−T . Since for X =

[
X1

X2

]
we can conclude that X2 = ZTr , where Zr

satisfies
ArZr + ZrA

T
w + Br(CwPw + DwBT

w) = 0. (20)

It also follows

P̃ sk = P̃k = (−λkI−Ar)
−1(ZrC

T
w + BrDwDT

w)bk

+ (−λkI−Ar)
−1BrCw(−λkI−Aw)−1(PwCT

w + BwDT
w)bk. (21)

Right multiplication of (18b) with R−T , gives

CFX̃−CrP̃−Dr

[
0 Cw

]
X̃ = 0.

Hence, due to Lemma 3, each column is equivalent to (16a). Now postmultiply (17c)
with R to obtain

AT
r Q̃ + Q̃Λ + CT

r C̃ = 0,

where Q̃ = QrR and C̃ = CrR. Hence, it follows

Q̃ skQ̃k = (−λkI−AT
r )−1CT

r ck. (22)

Also, postmultiplication of (17d) with R leads to

A
T
F Ỹ + ỸΛ =

[
CT

((D−Dr)Cw)T

]
C̃−

[
0

CT
w

]
BT
r Q̃

where Ỹ = YR. In particular, we get

Ỹ sk =Ỹk = (−λkI−AF)−T
([

0
CT
w

]
BT
r (−λkI−AT

r )−1CT
r + DT

r − C
T
F

)
ck. (23)

We further have ỸTBF + Q̃
(
BrDwDT

w + ZrC
T
w

)
= 0 due to (18c). Together with

(22) and (23), for each row it thus holds

0 = −cTk CF(−λkI−AF)−1BF

+ cTk (Cr(−λkI−Ar)
−1Br + Dr)Cw(−λkI−Aw)−1(BwDT

w + PwCT
w)

+ cTkCr(−λkI−Ar)
−1 (BrDwDT

w + ZrC
T
w

)
.

Again, using Lemma 3, this leads to (16b). Finally, pre- and postmultiplication of
(18a) with RT and R−T yields

ỸT X̃ + Q̃P̃ = 0. (24)

Using (19) - (23) for the diagonal of (24), we find

0 = −cTk CF(−λkI−AF)−2BFbk

+ cTk (Cr(−λkI−Ar)
−1Br + Dr)Cw(−λkI−Aw)−2(BwDT

w + PwCT
w)bk

+ cTkCr(−λkI−Ar)
−2 (ZrCT

w + BrDwDT
w

)
+ cTkCr(−λkI−Ar)

−2BrCw(−λkI−Aw)−1(BwDT
w + PwCT

w)bk.
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Then, due to Lemma 3, this implies (16c). Finally, due to (18d) we note that[
Cr DrCw

] [ZrC
T
w

PwCT
w

]
N =

[
C DCw

] [ ZCT
w

PwCT
w

]
N.

From [11],
∫∞
−∞(iωI−M)−1 dω = πI, for any stable matrix M, and we conclude that

1

π

∫ ∞

−∞

[
Cr DrCw

] [iωI−Ar −BrCw

0 iωI−Aw

]−1 [
ZrC

T
w

PwCT
w

]
N dω

=
1

π

∫ ∞

−∞

[
C DCw

] [iωI−A −BCw

0 iωI−Aw

]−1 [
ZCT

w

PwCT
w

]
N dω

Hence, for all n ∈ Ker(DT
w),[∫ ∞

−∞
F[Gr](iω) dω

]
n =

[∫ ∞
−∞

F[G](iω) dω

]
n,

which is equivalent to (16d). Reversing the arguments and using (14) for the offdiag-
onal entries of (18a) shows that (16a)-(16d) also imply (18a)-(18d). �

4 Frequency-weighted rational interpolation

We henceforth assume that the feedthrough term of the original system, G, is zero:
D = 0. This is without loss of generality since the general case may be recovered by
subtracting the original D from the reduced system feedthrough term: Dr ← Dr−D.
From the previous discussion, we have seen that frequency-weighted H2 optimal ap-
proximants are mapped to Hermite interpolants via the mapping F introduced in
(9). This presents the practical problem of how to construct reduced order sys-
tems, Gr, such that F[Gr](s) interpolates F[G](s) at selected points in C, say at
{σ1, σ2, . . . , σnr

}, in selected tangent directions {b1, . . . ,bnr
} and {c1, . . . , cnr

}. Us-
ing the realization developed in Lemma 3 and standard interpolation results, we con-
struct reduction subspaces that force interpolation:

Ran

[
V(a)

V(b)

]
= span
i=1,...,nr

{
(σiI−AF)−1BFbi

}
. (25)

and

Ran

[
W(a)

W(b)

]
= span
i=1,...,nr

{
(σiI−AT

F )−1CTFci

}
. (26)

Define Vr, Wr ∈ Cn×nr so that WT
r Vr = I and

Ran(Vr) ⊃ Ran
{
V(a)

}
, Ran(Wr) ⊃ Ran

{
W(a)

}
. (27)

The reduced feedthrough term is computed from (18d):

Dr = C (Z−VrZr) CT
wN(NTCwPwCT

wN)−1NT , (28)

where N is a basis for Ker(DT
w).
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Theorem 9 Let Ar = WT
r AVr, Br = WT

r B, C = CrVr, with Vr and Wr con-
structed as in (25), (26), and (27). Suppose Dr is determined by (28). Then pick any
interpolation point σ ∈ {σ1, σ2, . . . , σnr

}, with associated tangent directions: b and
c. Provided σ 6∈ {Λ(A),Λ(Ar)}, we have

F[G](σ)b− F[Gr](σ)b = H1(σ) (Z−VrZr) CT
wb−C (Z−VrZr) H2(σ)b

cTF[G](σ)− cTF[Gr](σ) = cTH1(σ) (Z−VrZr) CT
w − cTC (Z−VrZr) H2(σ),

cTF′[G](σ)b− cTF′[Gr](σ)b = cTH′1(σ) (Z−VrZr) CT
wb− cTC (Z−VrZr) H′2(σ)b,

and F(0)n = Fr(0)n,
where F(t) and Fr(t) are the impulse responses of F[G] and F[Gr], respectively,

n ∈ Ker(DT
w) is arbitrary, and

H1(s) = Cr(sI−Ar)
−1WT

r

H2(s) = CT
wN(NTCwPwCT

wN)−1NTCw(sI−Aw)−1(PwCT
w + BwDT

w)

Proof We follow a pattern of proof given in [3]. Define V =

[
Vr 0
0 I

]
, W =

[
Wr 0
0 I

]
,

and AFr =

[
Ar BrCw

0 Aw

]
. Further define two (skew) projectors via

Pr(s) = V(sI−AFr)
−1WT (sI−AF)

Qr(s) = (sI−AF)Pr(s)(sI−AF)−1 = (sI−AF)V(sI−AFr)
−1WT .

For all s in a neighborhood of σ, we have V = Ran(Pr(s)) = Ker(I − Pr(s)) and
W⊥ = Ker(Qr(s)) = Ran(I−Qr(s)). Now observe that

F[Gr](s) =
[
Cr 0

] [sI−Ar −BrCw

0 sI−Aw

]−1 [
WT

r ZCT
w + BrDwDT

w

PwCT
w + BwDT

w

]

−
[
Cr 0

] [sI−Ar −BrCw

0 sI−Aw

]−1 [
(WT

r Z− Zr)C
T
w

0

]

+ DrCw(sI−Aw)−1(PwCT
w + BwDT

w).

Hence, we can write

F[G](s)− F[Gr](s) = H1(s) (Z−VrZr) CT
w −C (Z−VrZr) H2(s)

+ CF(sI−AF)−1(I−Qr(s))(sI−AF)(I− Pr(s))(sI−AF)−1BF

(30)
Evaluating this expression at s = σ and postmultiplying by b yields the first assertion;
premultiplying by cT yields the second. We find that

((σ + ε)I−AF)−1 = (σI−AF)−1 − ε(σI−AF)−2 +O(ε2).

Evaluating (30) at s = σ+ε, premultiplying by cT , and postmultiplying by b together
with ε → 0 yields the third statement. The last statement results from the proof
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of Theorem 8 and the fact that N is a basis of Ker(DT
w). Note also that we have

DrDw = 0. �

Conditions for exact interpolation are now evident:

Corollary 10 Let Gr denote the reduced order model of Theorem 9. If Gr is sta-
ble and Ran(Z) ⊂ Ran(Vr) then F[Gr] is an exact bitangential Hermite interpolant
to F[G] at each interpolation point, {σ1, σ2, . . . , σnr} in corresponding tangent direc-
tions, {b1, . . . ,bnr} and {c1, . . . , cnr}.

Proof Note first that under the hypotheses, VrW
T
r Z = Z, Now, premultiply (12) by

WT
r and subtract (20) to obtain

ArW
T
r (Z−VrZr) + WT

r (Z−VrZr) AT
w = 0.

Since Ar and Aw are both stable,

WT
r (Z−VrZr) = WT

r Z− Zr = 0

and so, Z = VrZr.

The deviation from exact interpolation is quantified in Theorem 9 and depends on
the deviation of VrZr from Z. For shaping filters of modest order with nw � n, exact
interpolation can be induced since one may include Ran(Z) in the projection space,
Ran(Vr).

More generally, VrZr may be viewed as a Petrov-Galerkin approximation to the
solution Z of the Sylvester equation (12) in the following sense: Zr that solves (20) is
a solution to the problem of finding Z ∈ Rnr×nw such that with respect to the usual
(Euclidean) inner product in Rn,

Ran
(
A (VrZ) + (VrZ) AT

w + B(CwPw + DwBT
w)
)
⊥ Ran (Wr) .

Since m,mw � n, the singular values of the original solution, Z, to (12) will typically
decay rapidly [9, 18, 22, 23]; there will be good low rank approximations to Z and
among them will be approximations of the form VrZ. Overall, this leads to the expec-
tation that as nr increases, VrZr ≈ Z. If furthermore, the interpolation points that
determine a reduced model coincide with the reflected poles of the model, then Theo-
rem 9 asserts that the optimality conditions (16a)-(16d) will very nearly be satisfied;
the reduced model draws closer to H2(W )-optimality as nr increases.

The practical difficulty in constructing such near optimal reduced models is that one
doesn’t know a priori how to choose interpolation data determining a reduced model
so as to coincide with the reflected poles of the model. The parallel circumstance for
(unweighted) optimal H2 model reduction has been largely resolved with an iterative
correction process [11]; we propose an analogous approach here: -.6cm
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Algorithm nowi:
Nearly Optimal Weighted Interpolation

Input: Interpolation points: {σ1, . . . , σnr
};

Tangent directions: B̃ = [b1, . . . ,bnr ] and C̃ = [c1, . . . , cnr ] .
Output: Ar, Br, Cr, Dr

1: while relative change in {σi} > tol do
2: Compute Vr and Wr from (25), (26), and (27).

3: Update ROM: Ar = WT
r AVr,Br = WT

r B, Cr = CVr, and Dr as in (28).
4: σi = −λi (Λ) ,Ar = RΛR−1, B̃ = BT

r R−T , and C̃ = CrR.

5: end while

Computational complexity: Many issues enter in determining the computational re-
sources necessary to produce an effective reduced order model. Estimates of computa-
tional complexity serve as a useful proxy for this expense, which may be then further
refined according to problem-specific structure and implementation. Notice first that
our nowi Algorithm is an iterative process, requiring in each cycle the construction
of left- and right- reduction subspaces. This requires first the solution of two linear
matrix equations, (11) and (12) of orders nw×nw and n×nw, respectively. If nw � n,
this may be done directly with cost dominated by nw linear solves of dimension n. For
larger nw, the numerical rank of Pw and Z is often relatively small allowing for very
accurate approximations by low rank methods such as [17, 12, 19, 5, 14, 21]. Bases for
the left- and right- reduction subspaces then may be computed exploiting the block
triangular structure of the F-realization; this leads to 2nr linear solves of dimension n
and nr linear solves of dimension nw. Sparsity in A and Aw may be exploited with
either direct or iterative linear solvers. Multiple right-hand sides and small changes
among shifts offer further opportunities for efficiency from subspace and preconditioner
recycling.

When compared to standard approaches for frequency-weighted balanced truncation
(fwbt), we find that as long as the number of iterations of nowi remains modest
(which appears typical), the overhead associated with solving two large Lyapunov
equations of dimension n, which is necessary for fwbt, has been eliminated. This
creates a particularly dramatic advantage for nowi in the case of a shaping filter
where nw � n. The computational advantages of nowi are also significant when
compared to Halevi’s approach to weighted-H2 model reduction [13], which requires
solving large-scale Riccati and Lyapunov equations of order (n + nw) × (n + nw) at
every step of the iteration.

5 Numerical examples

We study the performance of our nowi Algorithm for three different examples resulting
from controller reduction. We compare the proposed method with frequency weighted
balanced truncation (fwbt) of [7], and also with wirka of [2] for the SISO example.
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Having in mind the optimality conditions (16), we now
propose Algorithm 1 which iteratively corrects the pro-
jection subspaces until an approximate interpolation ac-
cording to Theorem 9 is achieved for the reflected re-
duced system poles.

Algorithm 1 W-IRKA 2.0 (tbd)

Input: Interpolation points {σ1, . . . ,σnr
}; tangential

directions B̃ = [b1, . . . ,bnr
] and C̃ = [c1, . . . , cnr

] .
Output: Ar, Br, Cr, Dr

1: while relative change in {σi} > tol do
2: Set Vr and Wr as in (26) and (27).
3: Ar = WT

r AVr,Br = WT
r B,Cr = CVr,Dr as in (28).

4: σi = −λi (Λ) ,Ar = RΛR−1, B̃ = BT
r R−T , C̃ = CrR.

5: end while

Computational costs: An important issue for the ef-
ficiency of the proposed iterative approach is the compu-
tational expense needed for computing a ROM. Accord-
ing to Algorithm 1, for the construction of the interpola-
tion subspaces we have to compute the solutions of the
two linear matrix equations (12) and (13). The iteration
itself then requires 2nr linear solves of dimension n+nw.
Note that we can exploit the block triangular structure
such that we only need 2nr linear solves of dimension n
and nr linear solves of dimension nw. Further, note that
the low numerical rank of the solutions Pw and Z allows
for very accurate approximations by suitable low rank
techniques such as the cyclic Smith method or rational
Krylov subspace method. When compared to a standard
implementation of frequency-weighted balanced trunca-
tion, we thus find that as long as the number of iterations
of Algorithm 1 is small, we roughly save the costs for
solving two large Lyapunov equations of dimension n.
Especially in the case of a shaping filter where nw � n,
this improves the applicability of the new method.

Residue correction: Following the discussion in [4]
for the unweighted case, one can exploit the fact that the
objective function J := �G − Gr�2H2(W ) is quadratic

in the residue directions bi and ci. Hence, for fixed re-
duced system poles, minimization of J w.r.t. these pa-
rameters is significantly easier than minimization of J
w.r.t. the poles for fixed residues. Proceeding this way,
we can adapt the idea from [4] and introduce a residue
correction step after each iteration. For this, we can com-
pute the gradient∇{b,c}J , a vector of length nr(m+p),
partitioned into nr vectors of length m + p as

�
∇{b,c}J

�
�

=


2
�
cT
� F[Gr](−λ�) − cT

� F[G](−λ�)
�T

2 (F[Gr](−λ�)b� − F[G](−λ�)b�)
T




T

for � = 1, . . . , nr. Since Algorithm 1 does not produce
exact minimizers, one might consider a trust region op-
timization for which similar expressions for the gradient
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Fig. 1. LA university hospital, n = 48, nw = 96.

and Hessian were presented in [5]. Due to space limita-
tion, we omit a more detailed discussion at this point.

5 Numerical examples

We study the performance of Algorithm 1 for three dif-
ferent examples resulting from controller reduction. We
compare the proposed method with frequency weighted
balanced truncation (FWBT) of [6], and also with with
WIRKA of [2] for a SISO example.

Los Angeles university hospital: The model has
been discussed in [2]. The plant is a linearized model
for the Los Angeles University Hospital with dimension
n = 48. The weighting W (s) is given as the closed-looped
system of dimension nw = 96 resulting from an LQG-
based controller of the same order as the original system.
Following the discussion in [2], for W-IRKA we choose
ν = 2, such that the ROM interpolates the original sys-
tem at the two most dominant reflected system poles of
the weight W (s). We initialized both W-IRKA and Algo-
rithm 1 using the most dominant poles for interpolation,
see [2]. In Figure 1, we show, respectively, the H2(W )-
error and the H∞(W )-error for reduced system dimen-
sions varying from nr = 2, . . . , 30. For the H2(W )-case,
Algorithm 1 always outperforms FWBT and W-IRKA
except for nr = 18. We obtain similar results for the
H∞(W )-error, though for increasing nr, FWBT yields
the best approximation quality. Since Algorithm 1 only
provides an approximate interpolatory ROM, we cannot
satisfy the H2(W )-optimality conditions exactly. In Fig-
ure 2 we show the relative error of (16) at convergence
of Algorithm 1. The relative residual of the optimality
conditions decreases for increasing reduced system or-
der. This confirms Remark 4 and suggests that with in-

10

Figure 1: LA university hospital, n = 48, nw = 96.

Los Angeles University Hospital: The plant is a linearized model for the Los Angeles
University Hospital with order n = 48. An LQG-based controller of the same order as
the original system is to be reduced, leading to a weighting W (s) of order nw = 96,
see [2]. For a given nr, we use the mirror images of the ν = 2 most dominant poles
of W (s) and the mirror images nr − ν most dominant poles of G(s) as the initial
interpolation points for wirka, as suggested in [2]. We use the same initialization
for the nowi Algorithm. Figure 1 shows the relative H2(W )- and H∞(W )-errors
obtained from nowi, fwbt, and wirka for reduced system orders nr = 2, . . . , 30.
For the H2(W )-case, nowi outperforms fwbt and wirka for all nr values except for
nr = 18, for which wirka is slightly better. The superiority of nowi is especially
evident for smaller nr values. We find similar results for the H∞(W )-error as well;
fwbt yields the smallestH∞(W )-errors for larger nr, as expected. The fact that nowi
displays better H∞(W ) performance than fwbt even for a subset of reduction orders
suggests the effectiveness of the approach. nowi produces reduced models that satisfy
the H2(W )-optimality interpolation conditions (16) only approximately (see Theorem
9). Figure 2 shows how the relative interpolation error (deviation from (16)) in final
reduced models produced by nowi evolves with increasing nr. As the figure shows,
the relative error in the optimality conditions decreases as nr increases. This confirms
the expectations described in the discussion following Corollary 10. Figure 3 shows
how the relative interpolation error in the the optimality conditions (16) evolve (for
fixed reduction order, nr) step to step in the nowi Algorithm. Results for two cases
are displayed: nr = 16 and nr = 30. In both cases, we observe that nowi rapidly
reduces interpolation error during the iteration. For example, for nr = 16, relative
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Figure 2: LA university hospital, n = 48, nw = 96.

interpolation errors are in the order of 1 initially; however as the algorithm progresses,
relative errors decline to levels of 10−3, leading to near-optimal interpolation.

CD player: The plant is a model for a CD player and belongs to the slicot bench-
mark collection. We consider the original MIMO version with n = 120 and m = p = 2.
As in the previous example, we design an LQG-based controller having the same order
as the plant, leading to a weight W(s) with nw = 240. Since wirka has been proposed
only for SISO systems and a MIMO extension is not immediate, we show comparisons
only between fwbt and nowi, using a random initialization. Figure 4 again compares
the quality of reduction in terms of theH2(W )-error andH∞(W )-error. Both methods
perform equally well with slight advantages for nowi in the case of the H2(W )-error
and for fwbt in the case of the H∞-error. Similar to the previous example, Figure
5 shows how the relative error in the optimal interpolation conditions (16) vary as nr
varies. Once again, the relative residual of the optimality conditions decreases as nr
increases, yielding near-optimal interpolation.

ISS: The final example is the component 1r of the International Space Station from
the slicot benchmark collection. The plant is a MIMO system with n = 270, and
m = p = 3. The controller to be reduced is an LQG-based controller as before. We
compare nowi and fwbt for nr = 2, 4, . . . , 40. For nr ≤ 30, we use logarithmically
spaced interpolation points for initializing nowi. For larger values of nr, we aggregate
the optimal points from smaller reduced models. The relative H2(W ) errors are shown
in Figure 6. The full model is hard to reduce with slowly decaying Hankel singular
values. This is apparent from Figure 6 where fwbt hardly reduces the error for smaller
nr values. The proposed method clearly outperforms fwbt for every reduction order.
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Figure 3: LA university hospital, n = 48, nw = 96.

6 Conclusions

We have extended an interpolatory framework for weighted-H2 model reduction to
include MIMO dynamical systems with feed-forward terms. The main tool was a
new representation of the weighted-H2 inner product in MIMO settings (using F[·])
which led to associated first-order necessary conditions for an optimal weighted-H2

reduced-order model. These conditions were found to be equivalent with necessary
conditions established earlier by Halevi. An examination of realizations for systems
defined by F[·] then led to an algorithm that remains tractable for large state-space
dimension. There are a variety of refinements of the ideas presented here that can
exploit the flexibility afforded by the interpolatory model reduction framework. One
direction that has been fruitful in the unweighted case is trust-region based descent
approaches, as described in [4] and extended to frequency-weighted settings in [6]. We
have presented here several numerical examples that illustrate the effectiveness of our
basic approach and its competitiveness with weighted balanced truncation.
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