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1 Introduction

The original motivation for this work arouse from parametric model order reduction
(MOR). We are interested in creating good reduced order models with respect to the
Ho norm. It is known that for nonparametric systems [5], the optimal reduced system
of order r is created by Hermite interpolation at the mirror images of the reduced
poles. We do give the necessary background to this in Section 2. More details can
be found in [4, 2, 8]. Given a parametric or uncertain system we are interested in
creating a good reduced order model for each parameter in a given parameter domain.
Assuming we know the Hy optimal reduced order model together with the optimal
interpolation points at a specific parameter we would like to use this information to
create a good reduced order model at nearby parameters. We are looking at model
order reduction (MOR) from the point of view of rational interpolation and use the
barycentric form for that. The reduced order model in state space formulation is such
that the transfer function interpolates given points o1, ..., 0, as well as approximates
at certain other points £1,...,&y. This idea arose from the quite often encountered
situation that we have approximate optimal interpolation points (o1,...,0,) together
with actual frequency response data of the system (&1, . ..,&y). We will briefly introduce
Ho optimal MOR in the simplest linear case and describe how to create the rational
approximant and the corresponding state space system in Section 3. We will then
describe how this leads to a method (Section 4) and show some first rather academic
examples in Section 5.

2 Background

Given a large scale stable single input single output dynamical system

T = Ax U
:{E +B 1)

y=Cx+D

where E;A € R™*" B € R*, C € RY" D € R such that the pencil (E,A) has
only finite eigenvalues in the left half plane, MOR, attempts to find a reduced stable
dynamical system:

$ Ei:flm—&—éu
. g)zé’x—l—f)

where £, A € R™*", Be R", C € C*", D € R and the pencil (E, A) has eigenvalues
only in the left half plane. Here r < n and the map from the input v € Lo(RT) to the
output y of the original system can be well approximated by the map from input to
output ¢ of the reduced system. In the frequency domain the input-output behavior is
characterized by the transfer function. The transfer function H of the original function
and the transfer function H are given by

H(s)=C(sE—A)'B+D, H(s)=C(sE—A)™'B+D



respectively. These functions are complex-valued proper rational functions defined on
the complex plane. Looking at the maximal error of the difference between the true
output and the reduced output we get [4]:

sup ly() =90 < [|1H — Hl[3, |[ull 2,

where the Ho-norm is defined as

|H - H|3, = % /Oo |H (1w) — H(w)[?dw. (2)

— 00

The reduced order model we want to find minimizes the Hs-error for a given r. Since
H(w) — H(w) = D —D

as w — oo we will take D = D in our reduced order modeling. Therefore we can set
w.l.o.g. assume D = 0 and concentrate on strictly proper rational functions.

‘H, optimal model order reduction

Given a state space system (1) it is known that the Hs-optimal reduced order system
of order r satisfies

H(oy) :Aﬁ(o—i), fori=1,...,r (3)
H'(o;) = H'(0;), fori=1,...,r, (4)

where oy, are the mirror images of the poles of the reduced order system. Since these
are not known a priori we need to compute them by an algorithm. The one we will use
is called IRKA [4]. Many extensions and improvements of the basic algorithm exist
[3, 2, 1]. We will however use only the basic form.

Given the interpolation points, the reduced order model is typically created by
creating projection matrices V' and W such that the reduced order system is given by

E=WTEV, A=WTAV, B=W"B, C =CV.

The projection matrices need to be picked such that (¢ — A)~'B € Ran(V) and
(61 — AT)=1CT € Ran(W) [3], where Ran denotes the range of a matrix. However
given oy, H(oj), H'(01) we can also write down a state space system more directly.
This is related to the Loewner framework of reduced order modeling and explained in
the following.

Loewner framework

Given frequencies together with the value of the transfer function at those frequencies
a data driven approach to MOR is to create a state space system which interpolates



there. [7, 6]. Given interpolation points (&1, ...,&, 01,...,0,), and its transfer function
values:

W:[H(Ul)v"'vH(JT)]v VT:[H(fl)vaH(gr)L

we can define the Loewner matrices

L= A=W
‘o )
&Vi —o; W
O']LZ'j = —_—
& — o

and the order r reduced state space system that interpolates is then given by
E=-L A=-0L,B=V,C =W,

Furthermore if we want to Hermite interpolate o; we can create the symmetric
Loewner matrices and can create a state space system that Hermite interpolates at
01y...,0p

E=-LA=—-L,B=WT,C=W,

where
J if ¢ 7§ 7 M if ¢ 7§ j
Lij = 0; — 0j O']Lij = 0; — 0j . (6)

3 Rational Interpolation

In the following we will develop a reduced order state space system of dimension r whose
transfer function is strictly proper and interpolates a given transfer function at points
01,...,0.. Furthermore the reduced order transfer function is a good approximation
on N other points &;,...,&y € C. If N = r the Loewner matrix approach discussed
in the previous section tells us how to create a state space system which interpolates
01y...0r,&1,...,&-. In the notation above the reduced order transfer function of that
system can be written as

H =W (oL — sL)~'V. (7)

We will now look at this problem as a rational interpolation problem from the setup
of barycentric interpolation. Here we know that the function

T ap Wy
Gy — i S
2k=t1 5oy 1

is a strictly proper rational function that interpolates H at oy for all aq,...,ak. The
function value of the transfer function at oy is denoted by Wy, just as in the definition
of the reduced order system via the Loewner matrix approach. We are interested in
the choice of « such that G and H are identical.

(®)



Lemma 1. The two transfer functions H and G as in (7) and (8) are identical ezactly

when
La+V =0

Proof. We show that the condition is sufficient. For that we can write both transfer
function as sums:

T Xk
— -1 s—o
=> Wi ((oL—sL)™'V),, Zwkz o —
k=1 k=1 s—oy, ak
They are then identical if
[¢5]
1 §—01
(L—sL)y ' 'WVW=e—a——1 : |,
Zk:l ﬁ +1 Q.
which means the following must hold:
[¢5]
1 8§—01
V= —(J]L —sL) :
Zk 1 s—og + 1 a'r
The ith component of the right hand side is given by
= Vi—0x Wi —sVitsW
ol — s sf.m B Zk— &Vi ok&ia: +sWi Sa:;k
D ket 41 o, D k=1 e+l
¢ Vi Vi W
- e ‘)
Zk—l 5— a'k k=1 § — 0 g’i — Ok
. Yo Vi (La)i vy LtV
Zk:l s—cf;C +1 Zk:l sfz’;k +1

which showsNthatNﬁ =GifLa+V = 0. Necessity of the condition follows from the
fact that if G = H then we have that G(&;) = V;. This leads to

D A

=1 & — o

for all 4 which then leads to La +V = 0 Therefore the two rational functions are
identical if and only if Laa + V = 0. O

We are now interested in the case where N > r and we want to create a state
space system of order r. The strictly proper rational function in barycentric form that



interpolates all oy, is given by equation (8). We want to pick « such that G(&;) ~ H(&;).
Equality is not possible in general as N > r. Looking at the difference we get that

T W T Wi —V;
k=1 Vo — k=1 g5 Vi
~r o 1 Vi= 7 ,
2 k=1 fi(i,;k +1 2 k=1 Ei(ikcfk +1
Optimizing this is difficult and we therefore are only interested in trying to make

the numerator as small as possible. Collecting all numerators in a vector leads to the
following vector,

G(&) - H(&) =

(—]LO[ - V),

where L € RV*" is the Loewner matrix (5), being a rectangular matrix. We will now
consider minimizing the 2-norm of this vector.

Lemma 2. The solution to
min f(a) = [La + V3

s given by the solution to

L*'La+L*V =0. (9)
Proof. The function to optimize is a quadratic function given by

fla) =a"L*'La+ V*'La+ o*LV + V*V

Setting its derivative equal to 0 results in

2L La 4+ 2L*V =0

O

This means we are interested in a reduced order state space system of dimension r
whose transfer function is given by (8), where « solves a linear least squares problem.
We will use the Loewner matrix concept but we need to truncate the Loewner matrix.
This is done by using the singular value decomposition.

Lemma 3. A state space system that has the transfer function G as in (8) with
L*La + L*V =0 s given by:
E=-ZL,A=—-Z"¢L,C =W,B=2*V

where Z =Y (:,1 : 1) denotes the first r singular vectors of L and L = YOX™* is its
singular value decomposition.

Proof. We have

H(s) =W(Z%oL—sZ*L)"' 2V =Y W, (Z*0L - sZ*L)"'Z*V),
k=1



o

and G(s) = S5, Wkﬁ Therefore we need to show

=15-0p

g

1 §—01
Z¥oL —sZ*'L) 12 = ——— |
S ) > k=1 s‘%’;k +1 o

We multiply with the inverse matrix and consider the right hand side:

(&3}

Z*oL —sZ*L |* 7 Z* -
# = —ar Z %y _La (10)
Zk:l s—oy +1 o Zk:l s—0op +1 k=1 §— 0Ok
Z*L Vv
- gy ZlaxZv a
Z S—O0k +

Left to show that Z*La + Z*V = 0. This follows from the fact that L = YOX* =
ZO"X* where ©" is the top r block of the matrix ©. This equality holds since the
rest of the © matrix is 0 by definition of the singular value decomposition. From the
definition of a we get

0=L"La+L*V =XO0"Z'La+ XO"Z*V
= Z'La+ 2"V =0

O

This gives us a recipe on how to create a state space system that satisfies interpolation
at o1,...,0, and approximation at &1,...,&N.

4 Model Order Reduction Method

The results of the previous section, mainly Lemma 3, lets us construct reduced order
models. In general the problem setup where this could be useful is when we have several
systems which are related and must be reduced. We assume that we know the -
optimal interpolation points of one of the systems. The idea is to create reduced order
models as above, where the o1, ..., o, are those known optimal interpolation points and
the &; some other chosen values. Then Algorithm 1, which is based on Lemma 3, creates
one reduced order system. It needs V; = H(§;) — D and Wy, = H(oy) — D the value of
the strictly proper part of the true transfer function at the approximation/interpolation
points.

We compare the reduced order model created by this Algorithm with the system
that Hermite interpolates at o1, ...,0,. This is done as described in Section 2. Since
we are interested in creating systems whose Hs error is small the D-term of the original
system and reduced system must be the same. Therefore it is enough to just consider
the strictly proper part.



Algorithm 1 Calculate 121, B, C’, E via best rational approximation

Require: T, §17; . 'Asz O1....,0p
Ensure: A, B,C,D,E
fori=1:N do
Vi=H(&)
for j=1:7rdo
W; = H(o;)
Lij=%—

ULij:

end for
end for
Compute the SVD of L = UXVT
Z=U(1:7)
A=—-7"L
E=—-7Z*L
B=w
=7V

Q

The basic idea behind this Moder Order Reduction method is the observation that
in many parametric problems, the optimal interpolation points for one parameter are
satisfactory interpolation points for another parameter. We therefore realized that in
order to create a reduced order model faster we should use these interpolation points.
In order to make sure that we are however not creating a large error we use another
larger set of points which should be also approximated. We take the ideas from classical
data driven MOR and combine those two ideas.

5 Numerical Results

We have two main applications in mind in which approximate information of the
‘Ho-optimal interpolation points are given or could be computed. One is a large scale
parametric system for which we want to compute reduced order systems at several
parameter values, and the other are systems in which one or more of the matrices are
uncertain. In the following we show academic examples that illustrate how to use this
MOR technique as well as its benefits and problems.

Example 1: parametric system

The parametric model used in the following is a test problem from the benchmark
collection http://www.modelreduction.org, where it is called 'Synthetic parametric
model’. Tt is a system that depends on one parameter and the matrices are created by
the MATLAB® function given below for a parameter p.

1 function [A,B,C,D,E]=Para_-Model(p)
2


http://www.modelreduction.org
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Figure 1: frequency response
3 n = 100;
4 a = —px*xlinspace(lel,le3,n/2)."; b = pxlinspace(lel,le3 ,n/2).";
5 ¢ = ones(n/2,1); d = zeros(n/2,1);
6 aa(l:2:n-1,1) = a; aa(2:2:n,1) = a;
7 bb(l:2:n—-1,1) = b; bb(2:2:n—2,1) = 0;
8 Ae = spdiags(aa,0,n,n);
9 A0 = spdiags ([0;bb],1,n,n) + spdiags(—bb,—1,n,n);
10 B = 2xsparse(mod([1l:n],2)).";
11 C(1l:2:n—-1) = c.’; C(2:2:n) =d. C = sparse (C);
12
13 A=A0+pxAe;
14 D=0;

15 E=eye(n);

The D-term is 0, and as discussed before, and so is D. The behavior of this model can
be seen in Figure 1 which plots the Bode plot of the transfer function for several values
of the parameter between 0.3 and 1. This will also be the parameter range of interest
in our numerical tests. We consider the system created with parameter value p =1
as the reference system. For that system we compute the Hs optimal interpolation
points o1, ...,0, with IRKA [4]. We furthermore choose 100 points &1, ... €100, where
logqo & = —1+ 4i/100. For a given parameter we create now a reduced order system
via Algorithm 1. We also create a state space system that Hermite interpolates at
01,-..,0. This means at p = 1 this system is the Hs-optimal one. However the further
away from p = 1 we are, the more likely the approximation will not be accurate. In
Figure 2(left) we see the Bode plots of the two different approximations for different
values of the parameter together with the true transfer function values. Figure 2(right)
shows the Hsy-error of the two algorithms as well as the Hy error for each parameter
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Figure 2: frequency response and error plot



if we compute the Ho-optimal reduced order system via IRKA for each individual
parameter. As expected, the Hermite interpolation is only acceptable close to p = 1.
The reduced order model created by Algorithm 1 follows a similar behavior as the
optimal one, but we lose a few orders of magnitude. The time needed to create the
reduced order models is especially great for large systems dominated by the number of
system solves. In order to create one reduced order model with Algorithm 1, we need
to solve 7 + N = 120 large systems. In order to create the optimal reduced order model
we need 2r times the number of IRKA steps many system solves. In this example, the
average amount of steps needed was around 20 with a few outliers. This results in the
total number of 2 x r x 20 = 800, which is about seven times as many.

Example 2: Uncertainty Quantification

As these numerical experiments attempt to show the features of the algorithm more
than real application, we created a demonstration for uncertainty quantification

1 function [A,B,C,D,E]=UQ_example(Q)
2

3 n=100;

4 A=Qxdiag(—10*rand(n,1))*xQ’;

5 B=ones(n,1);

6 C=ones(l,n);

7 D=0;

8 E=eye(n);

We picked @ to be a random orthonormal matrix, however once for the entire test
series. A, however, is an uncertain matrix that has many realizations. We compute
the o1,...,0,, the Hs-optimal interpolation points of one realization for different r
and choose 1, ...,&N such that log;y & = —2 + 10i/N. Given this setup we create
for 5 different realizations generated at random a reduced order model via TRKA
directly, via Algorithm 1, via Hermite interpolation at the o;, via the Loewner matrix
approach using also Algorithm 1 with o; =¢&; and &§; =&,44,9=1,... L —r. In Table
1 we compare the Hy error between the true and the reduced model as well as the
number of large system solves used to create the reduced order model. The Loewner
approach in the last column does not always result in a stable reduced order model.
The number in brackets shows how often it results in a stable solution out of 5 runs. To
get an acceptable approximation we can create a reduced order system 10 times faster
than via direct usage of IRKA. The approach is typically better than just a Hermite
interpolation of the given o) and also the pure interpolation of the &; by a Loewner
matrix approach, which also often results in unstable systems. Stability can not be
guaranteed in our approach either but often results in stable systems, and in this test
example always.

6 Discussion and Conclusions
We have shown an easy and fairly cheap way to create a dimension r state space system

that interpolates at r given points and best approximates at N others, where N > r.
The interpolation points are typically some approximated optimal Hs-interpolation

10



r N IRKA Algo 1 Hermite Loewner
err # | err # | err # | err #

4 8 10.01 142 | 0.02 12 10.02 8 | 10 (5) 8
4 16 | 0.01 142 | 0.01 201 0.02 8 |02 (5) 16
6 12 | 2E-5 134 | 5E-5 18 | 2E-4 12| 15 (4) 12
6 12| 2E-5 134 | 3E-5 30 |2E4 12| 4E-3 (5) 24
10 20 | 2E-11 151 | 2E-10 30 | 2E-5 20 | — (0) 20
10 40 | 2E-11 151 | 1E-10 50 | 2E-5 20 | 2E-6 (1) 40

Table 1: Error comparison: The optimal Hs error is compared (for 5 trials or the
number in brackets if not all solutions resulted in stable models) to the Ha
error of our method, a hermite interpolation at the approximate system or a
Loewner approach of the N given points. Furthermore the number of large
system solved required to create the reduced order model is compared.

points. This as shown in the numerical examples gives a technique for parametric model
order reduction that performs well in the Ho norm. We furthermore show how to use
the method on state space system with uncertainty. Even though we do lose accuracy
compared to the best reduced order model, we believe that this method has potential.
It is faster than other methods, and it can be used even if the state space cannot be
created easily, whereas measurements are available. And it would then outperform
a system created from measurements alone every time. Plus we are more likely to
create a stable system. More work is needed to investigate conditions for stability of
the reduced system, though. The development of a MIMO version is possible, but
technically more involved and not possible in this brief note. This will be reported in
the future elsewhere.
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