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1 Introduction

The Cahn–Hilliard equation is a partial differential equation of fourth order which
is used in materials science [47, 30], image processing [19] or chemistry [59]. It was
originally introduced to model phase separation in binary alloys [39, 16] that occurs
when the temperature of a homogeneous mixture is rapidly quenched below a critical
temperature. In practice, often more than two phases occur, see e.g. [45, 25, 22, 21, 6,
42, 32], and the phase field model has been extended to deal with multi-component
systems. A vector-valued order parameter u = (u1, . . . , uN)T : Ω × (0,T) → R

N is
introduced, where Ω ⊂ Rd (d = 1, 2, 3) is a bounded domain, T > 0 is an arbitrary but
fixed time andN is the number of phases. Each ui describes the fraction of one phase,
i.e. if ui = 0 then phase i is absent in that region and if ui = 1 only phase i is present in
that region. Hence

N
∑

i=1

ui = 1 (1)

and ui ≥ 0 is required, so that admissible states belong to the Gibbs simplex

GN
≔















v ∈ RN

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

vi = 1, vi ≥ 0 for i = 1, . . . ,N















. (2)

We study a diffuse phase transition, i.e. the region between the phases has a certain
width b, the so-called interface (phase field model). There is also the limit case b ↓ 0
which gives the sharp interface model [31, 30, 49]. The motion of the interfaces
separating N bulk regions can be modeled with the Ginzburg–Landau energy

E(u) =
∫

Ω

ε2

2

N
∑

i=1

|∇ui|2 + ψ(u) dx,

where ε > 0 is the gradient energy coefficient. The potential function ψ : RN →
R
+

0 ∪ {∞} gives rise to phase separation. It can be modeled by a smooth free energy,
e.g. using multi-well potentials [20] such as

ψ(u) ≔
1

4

N
∑

i=1

u2i (1 − ui)
2, (3)

or by a nonsmooth multi obstacle potential [4]

ψ(u) ≔

{

ψ0(u) = − 1
2u · Au u ∈ GN,

∞ otherwise,
(4)

where the symmetric matrix A ∈ RN×N contains constant interaction parameters Ai j.
From physical considerations, Amust have at least one positive eigenvalue. A typical
choice isA = I−11T with 1 = (1, . . . , 1)T and the identitymatrix I ∈ RN×N, whichmeans
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that the interaction between all different components is equal and no self-interaction
occurs. Other possible potentials are logarithmic ones, see e.g. [3]. This work deals
with the two types of potential (3) and (4). The smooth potential (3) is used for shallow
temperature quenches. It has the disadvantage that physically non-admissible values
ui < 0 or ui > 1 can be attained during the evolution, see section 8.1. The consideration
of the deep quench limit, i.e. a very rapid cooling of the mixture, leads to the multi ob-
stacle potential (4). It omits the disadvantage of (3) but leads to a system of variational
inequalities. Motivated by the work of Hintermüller et al. [40] as well as our previous
studies [10, 9], all of them considering scalar, nonsmooth Cahn–Hilliard systems, we
incorporate the bound constraints via the Moreau–Yosida regularization technique
and solve the resulting subproblems by a semismooth Newton (SSN) method.
As we show in the course of this paper the solution of a linear systemKx = bwith a

real nonsymmetric matrixK is at the heart of this method. The sparse linear systems
are usually of very large dimension and in combination with three-dimensional ex-
periments the application of direct solvers such asUMFPACK [18] becomes infeasible.
As a result iterative methods have to be employed (see e.g. [36, 52] for introductions
to this field). We propose the use of a Krylov subspace solver. The convergence
behavior of the iterative scheme typically depends on the conditioning of the prob-
lem and the clustering of the eigenvalues. These properties can be enhanced using
preconditioning techniques P−1Kx = P−1b, where P is an invertible matrix that is
easy to invert and resemblesK . In this paper, we provide efficient preconditioners P
for the solution of Cahn–Hilliard variational (in-)equalities using an effective Schur
complement approximation and (algebraic) multigrid developed for elliptic systems
[27, 52, 51].
The paper is organized as follows. In section 2, we derive the vector-valued Cahn–

Hilliard systems for the use of the smooth potential (3). Section 3 presents the systems
with the nonsmooth potential (4) and their handling with the Moreau–Yosida reg-
ularization technique. The problems are discretized in time in section 4. Section 5
shortly introduces the SSN method to solve the regularized subproblems. The linear
systems arising from the discretization using finite elements are derived in section 6.
In section 7, we analyze the linear systems and propose preconditioning strategies
for the saddle point problems. Section 8 illustrates the efficiency of our approach. In
section 9, we discuss alternative approaches and finally, section 10 summarizes our
findings.

2 Derivation

The evolution of u is governed by the H−1-gradient of the Ginzburg–Landau energy
under the constraint (1), which has to hold everywhere at any time. Using the smooth
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potential (3), the vector-valued Cahn–Hilliard equations read

∂tui = (L∆w)i, (5)

wi = f (ui) + β(u) − ε2∆ui, (6)

∇ui · n = (L∇w)i · n = 0 on ∂Ω, (7)

for i = 1, . . . ,N. The matrix L = (Li j)i, j=1,...,N ∈ RN×N is the mobility matrix and

f(u) = ( f (u1), . . . , f (uN))
T
≔

(

∂ψ

∂u1
, . . . ,

∂ψ

∂uN

)T

=
∂ψ

∂u
,

in which f (ui) = u3
i
− 3

2u
2
i
+

1
2ui, and β(u) ≔ − 1

N

∑N
i=1 f (ui). In the process, the chemical

potentials w = (w1, . . . ,wN)T result from the variational derivative of the energy E.
In doing so, admissible variations d = (d1, . . . , dN)T of u have to fulfill

∑N
i=1 di = 0 in

order to ensure (1). This explains the presence of the term β(u), see also [44] for a
more detailed calculation. Equation (7) contains the natural zeroNeumann boundary
condition ∇ui · n = 0 on ∂Ω as well as the mass conserving boundary condition
(L∇w)i = 0 on ∂Ω, i = 1, . . . ,N. Since using the latter in (5) yields together with

Gauss’s theorem d
dt

∫

Ω
ui dx = 0, i.e. the total mass of each phase is conserved. We

refer to [22] for a detailed development of the vector-valuedCahn–Hilliard equations.
The coefficients Li j may depend on u (see e.g. [21]) but this work dealswith constant

Li j. In order to ensure the constraint (1), a common way in the literature is to assume
that L is symmetric and L1 = 0, since summing (5) over i = 1, . . . ,N leads then to

∂

∂t

N
∑

i=1

ui =

N
∑

i=1

∂ui
∂t
=

N
∑

i=1

∇ · (L∇w)i = ∇ ·
N

∑

i, j=1

Li j∇w j = ∇ ·
N

∑

j=1

∇w j

N
∑

i=1

Li j = 0.

Therefore, (1) is fulfilled during the evolution if
∑N

i=1 ui = 1 at time 0. It is further
assumed that L is positive semidefinite as differentiating the energy E gives

d

dt
E(u) = −

∫

Ω

N
∑

i=1

∇wi · (L∇w)i dx ≤ 0,

wherewehaveusedGreen’s first identity. Therefore, the total energy is non-increasing
in time.

Remark 1. Although it is explained that L should fulfill L1 = 0 (see also e.g. [22, 8]), Lee et
al. [43] work with L = I for convenience and obtain at least visually correct results. Therefore,
we also allow this case in our work and our numerical solver simplifies.

This work studies the two cases L = I (used e.g. in [43]) and L = I − 1
N11

T (used e.g.
in [21, 35]).
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3 Moreau–Yosida regularization

If we now use the nonsmooth multi obstacle potential (4) the gradient of E employs
subdifferentials, which results in the following vector-valued Cahn–Hilliard varia-
tional inequalities

〈∂tui, v〉 + ((L∇w)i,∇v) = 0 ∀v ∈ H1(Ω), (8)

ε2(∇ui,∇(vi − ui)) −
















wi + (Au)i −
1

N

N
∑

j=1

(Au) j, vi − ui

















≥ 0 ∀v ∈ GN ∩H1(Ω)N, (9)

u ∈ GN ∩H1(Ω)N a.e. in Ω,
(10)

for i = 1, . . . ,N. Here (·, ·) and 〈·, ·〉 stand for the L2(Ω)-inner product and the duality
pairing of H1(Ω) and H1(Ω)∗, respectively. As motivated in [40, 10, 9], we handle
the pointwise constraints in (10) with the Moreau–Yosida regularization technique.
Instead of the energy functional E we consider

Eν(uν) =
∫

Ω

ε2

2

N
∑

i=1

|∇uν,i|2 + ψ0(uν) +
1

2ν

N
∑

i=1

|min(0, uν,i)|2 dx.

where 0 < ν≪ 1 denotes the penalty parameter. As in the case of the smooth potential
in the section before, we can now derive the nonsmooth vector-valued Cahn–Hilliard
systems

∂tuν,i = (L∆wν)i, (11)

wν,i =
1

ν
min(0, uν,i) − (Auν)i −

1

N

N
∑

j=1

[

1

ν
min(0, uν, j) − (Auν) j

]

− ε2∆uν,i, (12)

∇uν,i · n = (L∇wν)i · n = 0 on ∂Ω, (13)

for i = 1, . . . ,N. We nowwant to discretize the problems (5)–(7) and (11)–(13) (in weak
formulation) in time and space. This is demonstrated in the following only with the
latter nonsmooth system, the smooth system can be handled analogously.

4 Discretization in time

Concerning the time, fully implicit discretizations are the most accurate, see e.g.
[7, 15, 10]. Let τ > 0 denote the time step size and n ∈ N the time step. We use the
backward Euler discretization for the time derivative ∂tuν,i, i = 1, . . . ,N, and treat all
the other terms implicitly. Then, for every time stepwe have to solve the time-discrete
systems

(

uν,i − u
(n−1)
ν,i

, v
)

+ τ ((L∇wν)i,∇v) = 0 ∀v ∈ H1(Ω), (14)
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(wν,i, v) − ε2(∇uν,i,∇v) + ((Auν)i, v) −
1

ν
(min(0, uν,i), v)

+
1

N

N
∑

j=1

[

1

ν
(min(0, uν, j), v) − ((Auν) j, v)

]

= 0 ∀v ∈ H1(Ω), (15)

i = 1, . . . ,N, for a sequence ν → 0, where we write u
(n)
ν = uν and w

(n)
ν = wν. Now,

in order to get the linear systems of equation, we solve (14)–(15) by an SSN method
which is motivated in [40, 10, 9] and shortly summarized in the following section.
The smooth nonlinear time-discrete Cahn–Hilliard equations for (5)–(7) are solved by
the standard Newton method.

5 Semismooth Newton method

For a specified sequence ν → 0, we solve the system (14)–(15), which can be com-
pactly written as Fν(uν,wν) = 0, for every ν by an SSN algorithm, see also [41]. Due to
the presence of the minimum operator, Fν is not Fréchet-differentiable. However, the
minimum operator satisfies theweaker notion of Newton differentiability, see [41, 40].

Definition 1 (Definition 5.1 in [40]). Let X and Z be Banach spaces, D ⊂ X an open subset.
A mapping F : D ⊂ X → Z is called Newton-differentiable in U ⊂ D if there exists a family
of mappings G : U→ Z such that

lim
d→0

‖F(x + d) − F(x) − G(x + d)d‖Z
‖d‖X

= 0 ∀x ∈ U.

The operator G is called a Newton derivative of F on U.

In general, for a Newton-differentiable mapping Fwith a Newton derivative G, the
SSN iteration is given as

x(k+1) = x(k) − G
(

x(k)
)−1

F(x(k)), k = 0, 1, . . . (16)

Given a sufficiently close initial guess x(0), [41, Theorem 1.1 ] shows superlinear con-
vergence of the sequence {x(k)}k∈N, generated by (16), to the solution of F(x) = 0.
Regarding the scalar two-phase Cahn–Hilliard equation, the Newton differentia-

bility of the arising mapping Fν as well as the superlinear convergence of the corre-
sponding SSN iteration are proven in [40] for the semi-implicit time-discrete system
and extended to the implicit time-discrete system in [10]. Both works are based on
the Newton derivative of the minimum mapping min(0, ·) : H1(Ω) → H1(Ω)∗, which
is given as

Gmin(y)(x) =

{

1 if y(x) ≤ 0,
0 if y(x) > 0,
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see [41, Proposition 4.1] and [40, Lemma 5.3]. Weuse this result for theNewton deriva-
tive of every minimum operator in our mapping Fν given in (14)–(15). Regarding the
i-th component, this leads us to the Newton derivative

〈

G
(i)
ν (u,w)(δu, δw), (φ,ψ)

〉

=

(

τ((L∇δw)i,∇φ) + (δui, φ)

(δwi, ψ) − ε2(∇δui,∇ψ) + ((Aδu)i, ψ) − 1
ν (χA(ui)δui, ψ) +

1
N

∑N
j=1

[

1
ν (χA(u j)δu j, ψ) − ((Aδu) j, ψ)

]

)

,

where χA(ui) is the characteristic function of the set

A(ui) ≔ {x ∈ Ω : ui(x) < 0}.

We now want to discretize the time-discrete problem (14)–(15) in space and then
discuss its efficient solution.

6 Finite element approximation

For the discretization in spacewe use finite elements [55]. In the following we assume
for simplicity that Ω is a polyhedral domain. Generalizations to curved domains
are possible using boundary finite elements with curved faces. Let {Rh}h>0 be a
triangulation ofΩ into disjoint open rectangular elements with maximal element size
h, Jh be the set of nodes of Rh and p j ∈ Jh be the coordinates of these nodes. The
use of rectangles is motivated by performing the implementation with deal.II [2]. We
approximate the infinite-dimensional space H1(Ω) by the finite-dimensional space

Sh ≔
{

φ ∈ C0(Ω) : φ|R ∈ Q1(R) ∀R ∈ Rh

}

⊂ H1(Ω)

of continuous, piecewise multilinear functions. We denote the standard nodal basis
functions of Sh by ϕ j for all j ∈ Jh. The discretized version of the penalized problem
(14)–(15) consists in finding (uν,h,wν,h) ∈ SNh × SN

h
such that

〈

Fν,h(uν,h,wν,h), vh
〉

= 0 ∀vh ∈ SNh , (17)

where the components are

〈

F
(1,i)
ν,h

(uν,h,wν,h), vh
〉

=

(

uν,h,i − u
(n−1)
h,i

, vh
)

h
+ τ ((L∇wν,h)i,∇vh),

〈

F
(2,i)
ν,h

(uν,h,wν,h), vh
〉

= (wν,h,i, vh)h−ε2(∇uν,h,i,∇vh)+((Auν,h)i, vh)h−
1

ν
(min(0, uν,h,i), vh)h

+
1

N

N
∑

j=1

[

1

ν
(min(0, uν,h, j), vh)h − ((Auν,h) j, vh)h

]

,
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for i = 1, . . . ,N. The semi-inner product (·, ·)h on C0(Ω) is defined by

( f , g)h ≔

∫

Ω

πh( f (x)g(x)) dx =

m
∑

i=1

(1, ϕi) f (pi)g(pi) ∀ f , g ∈ C0(Ω),

where πh : C0(Ω) → Sh is the Lagrange interpolation operator. Within our finite
element framework, for a given (uh,wh) ∈ SNh × SN

h
, every step of the SSN method for

solving (17) requires to compute (δuh, δwh) ∈ SNh × SN
h
satisfying

(

δuh,i, vh
)

h + τ ((L∇δwh)i,∇vh) = −F(1,i)ν,h
(uh,wh),

(δwh,i, vh)h − ε2(∇δuh,i,∇vh) + ((Aδuh)i, vh)h −
1

ν
(χh
A(uh,i)

δuh,i, vh)h

+
1

N

N
∑

j=1

[

1

ν
(χh
A(uh, j)

δuh, j, vh)h − ((Aδu)h, j, vh)h

]

= −F(2,i)
ν,h

(uh,wh),

for all vh ∈ Sh and i = 1, . . . ,N, where χh
A(uh,i)

≔

∑m
j=1 χ

h
A(uh,i)

(p j)ϕ j with χh
A(uh,i)

(p j) = 0

if uh,i(p j) ≥ 0 and χh
A(uh,i)

(p j) = 1 otherwise. If we now write a function vh ∈ Sh by

vh =
∑

j∈Jh vh, jϕ j and denote the vector of coefficients by v, the fully discrete linear
systems (smooth and nonsmooth) read in matrix form as

[

I ⊗M −B
τL ⊗ K I ⊗M

] [

w
(k+1)

u(k+1)

]

=

[

b

(I ⊗M)u(n−1)

]

, (18)

where k denotes the Newton step. The first right hand side is

b = (I ⊗M)
(

−2
(

u
(k)

)3
+

3

2

(

u
(k)

)2
)

+
1

N
(I ⊗M)

















N
∑

j=1

2
(

u
(k)
j

)3
− 3

2

(

u
(k)
j

)2

















for the use of the smooth potential and

b = 0

for the use of the nonsmooth potential. Further, K ≔ ((∇χi,∇χ j))i, j=1,...,m ∈ Rm×m is the
stiffness matrix,M ≔ ((χi, χ j))i, j=1,...,m ∈ Rm×m is the lumpedmass matrix and I ∈ RN×N

is the identity matrix. M is a symmetric positive definite diagonal matrix and K is
symmetric and positive semidefinite. For N = 3, the block B is given as

B =

















B11 B2 B3

B1 B22 B3

B1 B2 B33

















,
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where for i = 1, . . . ,N

Bii = ε
2K +

(

1 − 1

N

)

FiMFi,

Bi = −
1

N
FiMFi (19)

Fi = diag
(

3(u(k)
i
(p j))

2 − 3u(k)
i
(p j) +

1

2

)

,

in the smooth system and

Bii = ε
2K +

(

1 − 1

N

) (

1

ν
GiMGi −M

)

,

Bi = −
1

N

(

1

ν
GiMGi −M

)

, (20)

Gi = diag

(

1 u(k)
i
(p j) < 0,

0 otherwise,

)

,

in the nonsmooth system. Again, this work uses A = I − 11
T as well as L = I and

L = I − 1
N11

T. The system matrix in (18) is denoted by K for the remainder of the
paper.

7 Preconditioning

In both cases, smooth and nonsmooth, a linear nonsymmetric system in saddle point
form is at the heart of the computation. We propose the block-triangular precondi-
tioner

P =
[

I ⊗M 0

τL ⊗ K −Ŝ

]

, (21)

motivated by [23, 46], where Ŝ is an approximation of the Schur complement S =
I ⊗M + τ(L ⊗ K)(I ⊗M)−1B. The preconditioned matrix becomes

P−1K =
[

I −(I ⊗M)−1B
0 −Ŝ−1S

]

.

It hasNm eigenvalues at 1 and the remaining ones are characterizedas the eigenvalues

of the matrix Ŝ−1S, which has for Ŝ being a good approximation only a small number
of different eigenvalue clusters. This in turn is known to result in only a few iterations
of suitable Krylov subspace solvers until convergence [23, 46]. Therefore, the theoret-

ical ideal choice is Ŝ = S, since the generalized eigenvalue problem Kx = λPx has
in this case only two distinct eigenvalues λ1 = 1 and λ2 = −1. But the application of

the preconditioner P requires the action of the inverses of I ⊗M and of Ŝ. From this
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point of view, the ideal choice Ŝ = S is not practical since this is a full matrix. Invert-
ing the block I ⊗M is cheap as M is a nonsingular diagonal matrix1. The remaining

task is now to create a Schur complement approximation Ŝ that is easy to invert and
resembles S. The two difficult points thereby are the nondiagonal block matrices B
and L ⊗ K (with the nondiagonal matrix L) which couple N equations, respectively.
Concerning the latter, note that L = I− 1

N11
T is a circulant matrix and can therefore be

diagonalized using the Fourier matrix, see [17]. Wewill see in the next section howwe
can take advantage of this property for the construction of preconditioners. Besides
the gradient energy parts (that only arise in the diagonal blocks) the block matrix B
contains the interacting terms coming from the potential. This includes in the case
of the nonsmooth potential the coupling of all penalization terms. In fact, the latter
poses the most challenging part, see section 7.2 for details. Regarding the use of the
smooth potential, we present in the following an efficient way how to simplify B to a
matrix of block-diagonal structure and how to create an efficient Schur complement
approximation based on this simplification.

7.1 Schur complement preconditioner in the smooth case

The first step for the construction of a practical Schur complement preconditioner
consists of the approximation of the nondiagonal block matrix B. An ideal case
would be a nonsingular block-diagonal approximation in which every diagonal block
is equal, i.e. a block matrix of the form I ⊗ B as we have it in the (1,1)-block of the
systemmatrix in (18). We already now that such types of matrices are easier to handle
and cheap to invert. The specification of B given in (19) shows that the matrices Fi,
i = 1, . . . ,N, only depend on the known solution u(k) from the previous Newton step.
From the constraints of the Gibbs simplex (2) we know 0 . u(k)

. 1. Therefore, every
diagonal entry of Fi, i = 1, . . . ,N, approximately ranges from −2.5 up to 3.5. Together
with the estimated order of entries O(M) = h2 for the mass matrix we propose the
following approximation of Bii and Bi:

B̂ii = ε
2K +

(

1 − 1

N

)

M, (22)

B̂i = 0, (23)

for i = 1, . . . ,N. In other words, we set all nondiagonal blocks Bi, i = 1, . . . ,N, to zero

matrices, as their estimated order of entries ranges from − 3.5h2

N up to 2.5 h2

N , i.e. a small
interval around zero. Remember, the first requirement of an ideal approximation
mentioned in the beginning of this section is fulfilled now. The second requirement
was the nonsingularity and equality of the diagonal blocks. If we would approximate
the diagonal blocksBii, i = 1, . . . ,N, with the same strategy as done for the nondiagonal
blocks, we would end with the singular matrix ε2K on the diagonals. But remember,
every diagonal entry of Fi, i = 1, . . . ,N, approximately ranges from −2.5 up to 3.5,

1For consistent mass matrices the Chebyshev semi-iteration [34] provides a powerful preconditioner
[57, 50].
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so we can also do the simplification Fi ≈ I for i = 1, . . . ,N. Substituting this into the
definition of Bii in (19) gives us exactly our approximation B̂ii in (22). And we see,
these approximated diagonal blocks are all equal and nonsingular. All in all, our
approximation of B can be written as

B̂ = I ⊗
(

ε2K +
(

1 − 1

N

)

M
)

.

After we have found an ideal approximation B̂, we can go over to the construction

of the preconditioner Ŝ for the Schur complement S = I ⊗M + τ(L ⊗ K)(I ⊗M)−1B.
Simply replacing B by B̂ is still not practical since it remains a full matrix. However,
what we can efficiently invert is a matrix product of the form AB, with e.g. A and B
symmetric positive definite. This forms exactly the main idea for the derivation of

an efficient approximation Ŝ (see also [48]): Construct a preconditioner of the form

Ŝ = ABC, with A, B and C symmetric positive definite, such that the exact Schur
complement is captured as close as possible. Therefore, we propose the following
Schur complement preconditioner

Ŝ = Ŝ1(I ⊗M)−1Ŝ2 =

(

N

N − 1
(I ⊗M) + τ(L ⊗ K)

)

(I ⊗M)−1B̂

= I ⊗M + τ(L ⊗ K)(I ⊗M)−1B̂ + ε2N

N − 1
(I ⊗ K). (24)

The first two terms in (24) match the exact Schur complement very close and the
remainder is kept relative small due to the small interfacial parameter ε. Let us discuss

now the action of the inverse of Ŝ which consists of the action of the inverses of the
block matrix Ŝ1 and of the diagonal block matrix Ŝ2 as well as cheap multiplications

with themassmatrixM. The efficiency of Ŝ2 = B̂ is alreadydiscussed at the beginning
of this section. It is of block-diagonal form and contains the same elliptic operator on
each diagonal block. Therefore, we approximate the inverse of each diagonal block

with one and the same algebraic multigrid (AMG) preconditioner2. Regarding Ŝ1, it

has the same ideal properties as Ŝ2 if the mobility matrix L = I is used. Therefore, we
take a second AMG preconditioner that approximates the inverse of each diagonal

block of Ŝ1. In total, for preconditioning the system matrix K , which is of size 2Nm,
we need to apply only two AMG preconditioners of size m each plus multiplications
with the diagonalmassmatrix. As long as themesh does not changewe do not have to
recompute them. In this sense, the application of the preconditionerP is independent
of the number of phases.

Now, let us study the case if L = I − 1
N11

T and therefore Ŝ1 is not of block-diagonal

2Algebraic multigrid methods typically exhibit geometric-like properties for positive definite elliptic type
operators, but use only algebraic information. This has the advantage that AMG can work well even
for complicated geometries and meshes. We refer to [51, 27] for more information on AMG. We also
want to emphasize that geometric multigrid (GMG see e.g. [58, 37]) approximations are also well suited

to approximate Ŝ1 and Ŝ2 provided they can be readily applied.
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form anymore. As already observed, L is a circulant matrix and can therefore be
diagonalized using the Fourier matrix F, i.e.

L = Fdiag(λ1, . . . , λN) F
H,

see [17]. This property forms the basis of an efficient Fast Fourier Transform (FFT)
based preconditioner which is used e.g. by Stoll [54] and briefly reviewed in the

following. The idea is to diagonalize not only L but also the whole block matrix Ŝ1

(which contains L) since the latter is the matrix whose inverse we have to apply. More

precisely, if we apply the FFT to the system Ŝ1y = gwe get an equivalent system with
the block-diagonal system matrix

(FH ⊗ I)Ŝ1(F ⊗ I) =
N

N − 1
(I ⊗M) + τdiag(λ1, . . . , λN) ⊗ K. (25)

Inserting the eigenvalues of L, which are λ1 = 0 and λ2 = . . . = λN = 1, we see that
the resulting approximation in (25) (almost) fulfills the two requirements of an ideal
approximation: It is of block-diagonal form and almost all diagonal blocks are equal.
In fact, only two different diagonal blocks occur, N

N−1M for λ1 = 0 and N
N−1M + τK

for all remaining eigenvalues λ j = 1. Typically, the extra effort is neglectable. As the
application of the Fourier transform will in general result in complex valued systems,
we formulate the blocks in (25) to 2 × 2 real valued block systems. In detail, we have
to solve two types of systems

[

N
N−1M 0
0 N

N−1M

] [

ỹr
ỹc

]

=

[

g̃r
g̃c

]

and

[

N
N−1M + τK 0

0 N
N−1M + τK

] [

ỹr
ỹc

]

=

[

g̃r
g̃c

]

.

Again, the first of the above systems arises for the diagonal block with λ1 = 0 and the
second one for all the remaining eigenvalues λ j. As in [54], we solve these real valued
systems with a fixed number of steps of an inexact Uzawa-type method

ỹ(l+1) = ỹ(l) + ωP−11 r̃(l),

where r(l) denotes the residual andω is the relaxationparameter. P1 is a block-diagonal
preconditioner whose inverse is applied by inverting the diagonal, nonsingular block
N

N−1M or byusing anAMGapproximation of the block N
N−1M+τK. Again, independent

of the number of phases, this is the one and the same AMG preconditioner every
time and in this sense, the circulant approach also leads to a phase-independent
preconditioner P. Section 8.2 shows the efficiency of the proposed preconditioning
strategy for both cases of L. In particular, we numerically illustrate the independence
of P with respect to the parameters h and N.
Let us turn now to the more challenging case with a nonsmooth potential.
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7.2 Schur complement preconditioner in the nonsmooth case

As alreadymentioned in section 7, the nondiagonal block Bwithin the Schur comple-
mentS = I⊗M+τ(L⊗K)(I⊗M)−1B complicates the construction of a Schur complement
approximationwhose inverse can be applied in an efficient and easyway. Taking only
the smooth potential into consideration, we have seen thatwe can approximateBwith
a block-diagonal matrix by using only the bound constraints from the Gibbs simplex
(2). However, the inclusion of nonsmoothness involves additional severe penaliza-
tions into the system matrix. As can be seen from (20), penalized entries are scattered
throughout the diagonals of every block ofB. The intensity of the penalization can be
controlled by the penalty parameter ν. The smaller ν the stronger the penalization and
the more accurate the numerical approximation of the nonsmoothness. In particular,
regarding the nondiagonal blocks of B, the estimated order of those penalized entries

is − h2

N

(

1
ν − 1

)

, whereas it is h2

N for nonpenalized entries. The estimated difference of

both types of entries is then of order h2

Nν , which indicates a severe dependency between
h, N and ν. This implies e.g. that this difference decreases with decreasing mesh size.
However, we have in mind that we want to go over to adaptive mesh strategies in
the future. Therefore, the estimated order of penalized entries is usually of large size
and highly differs to the order of the remaining nonpenalized entries. So they should
not be neglected. That is why an approximation of the matrix B in block-diagonal
form (as it was done in the smooth case) seems not to be of good quality and our
experiences also confirm this observation.
On the other hand, the position of penalized entries is changing with everyNewton

step. In detail, the places with the penalty parameter in the blocks Bi or Bii depend
on the phase ui. Since all phases are separated in the domain (at least after a few
time steps), one cannot expect the penalty parameter to act in the same regions for
all phases. Therefore, a common distribution of penalized entries to all phases is not
satisfying. That is why an approximation of the matrix B in form of equal blocks for
all phases (as it was also done in the smooth case) seems not to be of good quality
and our experiences also confirm this observation. All in all, we end up with keep-
ing the whole block B within the Schur complement preconditioner. Regarding its
construction, we proceed as in the previous section, i.e. we construct a preconditioner
in matrix product form such that the exact Schur complement is captured as close as
possible. The proposed Schur complement preconditioner is then

Ŝ = Ŝ1(I ⊗M)−1Ŝ2

=

(

N

N − 1
(I ⊗M) +

√
τ(L ⊗ K)

)

(I ⊗M)−1
(

N − 1

N
(I ⊗M) +

√
τB

)

= I ⊗M + τ(L ⊗ K)(I ⊗M)−1B +
√
τN

N − 1
B +

√
τ
N − 1

N
(L ⊗ K), (26)

which is similar to the corresponding approximation in the smooth case. The first two
terms in (26) match the exact Schur complement. Due to the balanced distribution of τ

in formof
√
τ in both factors, Ŝ1 and Ŝ2, the influence of both remainder terms in (26) is

reduced. Let us discuss the action of the inverses of Ŝ1 and Ŝ2. The formerwas already
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studied in the previous section. Therefore, let us concentrate on the latter now. The

factor Ŝ2 still contains the complicated, nondiagonal block B but its diagonal blocks
are now shifted by mass matrices. These shifts were not just products of randomness.

Without them, the diagonal blocks of Ŝ2 would be indefinite. However, we want

to apply the action of the inverse of the diagonal blocks of Ŝ2 (see below). Solving
indefinite systems typically causes problems, see e.g. [24] that describes the difficulty
of solvingHelmholtz problemswith classical iterativemethods. However, shifting the

diagonal blocks as proposed in Ŝ2 makes thempositive definitewhenever τ < 1which
is the case for our time discretization scheme. The proposed strategy concerning the

solution of the system Ŝ2y = g is the use of a block Jacobimethodwith a fixed number
of steps:

y(l+1) = y(l) + ωP−12 r(l).

P2 is a block-diagonal preconditionerwhose inverse is applied by usingAMGapprox-

imations of the positive definite diagonal blocks of Ŝ2. Unfortunately, this implies
the need of N different AMG preconditioners, which have to be recomputed in every
Newton step.
All in all, due to the structure of B, preconditioning the nonsmooth system is more

complicated than for the smooth one. But on the other hand, the results obtained
with the nonsmooth system are much more accurate than the results obtained with
the smooth system, see section 8.1. Additionally, section 8.3 presents the performance
of the presented preconditioner and shows promising results.

8 Numerical Results

In this section, we show results for the vector-valued Cahn–Hilliard problems. Con-
cerning the regularized subproblems in the case of the nonsmoothpotential, we choose
the sequence ν1 = 10−1 ≥ ν2 = 10−2 ≥ . . . ≥ νmax = 10−7 of penalty parameters and

solve each corresponding subproblem Fνi (u
(k)

h
,w(k)

h
) by the SSN method. In doing so,

each Newton method is initialized by the approximate solution of the previous one.
After the first time step we fix ν = νmax, i.e. from then on it suffices to solve only one
SSNmethod per time step. This is because the initial solution at the beginning might
not be a good starting point for the SSN methods. For the (smooth and nonsmooth)
Newton method we use the stopping criterion in [40], given by

‖Fν(u(k)

h
,w(k)

h
)‖2 ≤ ǫrel ‖Fν(u(0)

h
,w(0)

h
)‖2 + ǫabs, k = 1, . . . , kmax,

where we set kmax = 20, ǫrel = 10−12 and ǫabs = 10−6 in all examples. In each Newton
step, we solve the linear system (18) by a Krylov subspace solver. The left precondi-
tioners we have presented can be embedded into various of such iterative solvers. For
our nonsymmetric systemmatrixK we propose the use of a nonsymmetric short-term
recurrence method, namely BiCG [28], but note that also other solvers such as QMR
[29], BiCGSTAB [56] or GMRES [53] can be used with this preconditioner. We set the
BiCG tolerance to be 10−7 for the preconditioned relative residual in all examples. The
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FFT based preconditioner uses three steps of the inexact Uzawamethod and the block
Jacobi preconditioner uses five steps. For the multilevel approximations we choose
Trilinos AMG approximations [38]. For one application of the preconditioner we take
in general 10 steps of a Chebyshev smoother and two V-cycles. The discretization is
performed with deal.II [2], which allows the use of the Trilinos library. All numerical
experiments listed here are generatedwith finite elements on rectangles. Experiments
show that it is essential to ensure that at least eight vertices lie on the interfaces to
avoid mesh effects. Therefore, in all examples we set ε ≈ 9h

π . Concerning the time
step, existence and uniqueness of corresponding discrete solutions of the nonsmooth

system has been shown in [8, Theorem 2.4] under the condition τ < 4ε2

λ2
A
‖L‖ , where λA is

the largest positive eigenvalue of A and ‖L‖ denotes the spectral norm of L. For our
choice of matrices A and L this leads to the bound τ < 4ε2. For the smooth system,
we use the same time step sizes. If not mentioned otherwise, the domain is set to be
[0, 1]2 and for the initial condition, 100 circles with radius 0.0457–0.0525 are randomly
distributed overΩ and randomly assigned to the different components.

8.1 Comparison of the smooth and nonsmooth model

In Figure 1, we compare the performance of the smooth and nonsmooth model. It
shows the evolution of five phases over 100 time steps for a mesh with size h = 2−8.
Table 1 illustrates the minimum and maximum value of the order parameter u1.

n = 0 n = 20 n = 100

Figure 1: Smooth (above) and nonsmooth (below) computation for five phases.

14



time step
20 40 60 80 100

min smooth −0.02771 −0.02151 −0.02439 −0.02143 −0.02627
nonsmooth −1.186 · 10−7 −1.174 · 10−7 −1.172 · 10−7 −1.204 · 10−7 −1.178 · 10−7

max smooth 0.9764 0.9803 1.001 0.9845 0.9972
nonsmooth 1 1 1 1 1

Table 1: Minimum andmaximum values of the order parameter u1 in the smooth and
nonsmooth model.

We see that the concentrations are closer to 0 and 1 in the nonsmoothmodel. Moreover,
the sharper interface is givenby thismodel. Comparingboth results, themore accurate
ones are obtained with the nonsmooth model. This verifies our preference for using
a nonsmooth potential.

8.2 Iteration numbers with the smooth model

Next, we consider various uniform mesh sizes and compare the average number of
BiCG iterations needed per Newton step over 50 time steps. Moreover, we test the
robustness with respect to the number of phases. Figure 2 and 3 show the results for
the smooth model. In the legend of Figure 2 the number of degrees of freedom m is
listed. The computations are done for N = 7 phases. The legend of Figure 3 shows
the number of phases N. Here, the computations are done for the mesh size h = 2−8.
In all calculations, the number of BiCG iterations does not exceed 16. The iteration
numbers for the cases L = I and L = I− 1

N11
T are almost the same, whereby the results

in Figure 2 and 3 are obtained with the latter circulant matrix L. All in all, the results
show the robustness of our preconditioner for both, the mesh size and the number of
phases.
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Figure 2: Results for 50 time steps of the smooth model with N = 7.
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Figure 3: Results for 50 time steps of the smooth model with h = 2−8.

8.3 Iteration numbers with the nonsmooth model

Similar computations are done with the nonsmooth model.
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Figure 4: Results for 20 time steps of the nonsmooth model with N = 5 and L = I.
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Figure 5: Results for 20 time steps of the nonsmooth model with N = 20 and L = I.

Again, we consider various uniform mesh sizes and compare the average number
of BiCG iterations needed per Newton step over 20 time steps. Thereby, we use five
phases in Figure 4 and 20 phases in Figure 5. Themobility matrix here is L = I. Results
for the circulant L are illustrated in Figure 6 and 7 and are quite similar to the ones
with L = I. Unfortunately, the numerical mesh independence of our preconditioner
has been lost. Nevertheless, in consideration of the complexity of the nonsmooth
problem, the gaps in the iteration numbers between two sequent mesh sizes are
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satisfying. Note, that the whole system size is in fact 2Nm. The maximum (maximum
average) BiCG iteration numbers are 255 (219) for five phases and 212 (188) for twenty
phases when L = I is used as well as 202 (158) for five phases and 304 (235) for twenty
phases when L = I − 1

N11
T is used. But we are still thinking about improvements. An

interesting observation arises while comparing the iteration numbers between Figure
4 and 5 for a fixed mesh size. While the numbers for the first three mesh sizes up
to 16641 degrees of freedom are better in the five-phase model, the numbers for the
smallest mesh size (red line) are better in the 20-phase model or at least they are of
the same size as the ones in the five-phase model. We expect this effect to be more
significant for finer meshes or for higher phase numbers.
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Figure 6: Results for 50 time steps of the nonsmoothmodelwithN = 5 andL = I− 1
N11

T.
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Figure 7: Results for 50 time steps of the nonsmooth model with N = 20 and L =
I − 1

N11
T.

Finally, we compare the average BiCG iteration numbers with and without precon-
ditioning for the first time step in Figure 8. Here, the number of phases is three and
L = I. Asmentioned in the beginning of this section, we solvewithin this first time step
seven SSN methods for the sequence of penalty parameters ν1 = 10−1, . . . , ν7 = 10−7,
respectively. As can be seen from this, although the preconditioned iteration numbers
are considerably worse compared to the one in the smooth model, the preconditioned
version always outperforms the unpreconditioned method. A factor of 1500 (3500)
for h = 2−5 (h = 2−6) can be observed and again we would expect this to be even more
significant if a larger number of phases or degrees of freedom is used.
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Figure 8: Preconditioning vs. no preconditioning in the nonsmooth model.

8.4 Comparison of different constant mobilities

In this section, we numerically compare various constant mobilities. We test the
choices L1 = I as well as the two different circulant mobilities L2 = I − 1

N11
T and

L3 =




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




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The test example is taken from [44, Section 4.6] and considers four phases. We use
their initial state on the domain Ω = [0, 1]2 with mesh size h = 2−7 as illustrated
in Figure 9. The expression u

(0)
i
, u(0)

j
indicates that the initial phase u

(0)
i

is set to be

randomly between 0.5 and 0.51 and the initial phase u(0)
j

is set to be 1 − u(0)
i

in the

considered rectangle. The results after 50 time steps are illustrated in Figure 10. There
are no differences in the morphologies, only small time differences seem to occur.
The same observations are made with a smooth potential. In [21] and references
therein, the requirement of concentration dependent mobilities for many applications
is mentioned. For example, if the mobility in the interface is larger than in the pure
phases. Thismotivates us to consider concentrationdependentmobilities in the future
in order to model other physical situations.
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Figure 10: Results for L1, L2 and L3 (from left to right) after 50 time steps.

9 Other available solvers

In this section, we compare our solution technique to existing solution methods. A
block preconditioning strategy for multi-component Cahn–Hilliard problems is pro-
posed by Boyanova et al. [12]. Their technique is a generalization of the two-phase
model from [11, 1]. Both works study the Cahn–Hilliard equations with and without
convection. Contrary to us, they do not consider nonsmooth potentials and their
matrices in the second line of (18) are all of block-diagonal form, including the ad-
ditional convection matrix. The nonlinear systems at each time step are solved by a
quasi-Newton method. Each Newton step involves the solution of a nonsymmetric
linear system with the Jacobian matrix. By simplifying the system matrix they get a
preconditioner, which is proven to yield optimal results. In our previouswork [10], we
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have already tested the method of Boyanova et al. [11] applied to a nonsmooth scalar
Cahn–Hilliard system. The idea was based on ignoring the penalization term within
the preconditioner and we have shown a severe dependency between the mesh size
and the penalty parameter. All in all, this strategy seems to be effective for extremely
fine meshes, but typical simulations do not refine that strongly.
Anonlinearmultigridmethod isproposedbyLee et al. [43, 44]who consider smooth

potentials. The first work uses L = I as mobility and a practically unconditionally
gradient stable scheme is presented which is based on a nonlinear splitting method.
This allows them to decouple theN-component Cahn–Hilliard system intoN−1 scalar
Cahn–Hilliard equations. The efficiency of the approach is shown by means of the
average CPU time whose convergence rate is linear with respect to the number of
phases. Although they could take arbitrarily large time steps, small time steps have
to be used in order to accurately resolve the dynamics. This is an argument for the
implicit discretization scheme. The second work [44] uses a concentration dependent
mobility matrix and Crank-Nicolson’s method for the discretization in time. The
authors develop a Full Approximation Storage multigrid method with a pointwise
Gauß-Seidel relaxation scheme as a smoother. The nonlinearity is treated using one
Newton step. The second-order accuracy of the numerical scheme is demonstrated.
They also visually compare phase separation of four phases with a constant and a
degenerate concentration dependent mobility and the differences in morphologies
and evolution dynamics can be seen.
Gräser et al. [35] propose globally convergent nonsmooth Schur–Newton methods

(NSNMG) for the solution of discrete multi-component Cahn–Hilliard systems. They
consider logarithmic as well as obstacle potentials. NSNMG can be formulated in
primal-dual form and results in a preconditioned Uzawa method. Each step consists
first of the update of the primal variable which includes the direct work with the
inverse (A + ∂ϕ)−1. Here, A is a symmetric positive definite matrix and ∂ϕ is the sub-

differential of the nonsmooth part that includes the indicator function
∑N

i=1 χ[0,∞)(ui).
The second step of NSNMG is to compute the dual variable which can be done by
solving a truncated linear saddle-point problem and updating the step size for the
Uzawa method. The authors solve the linear systems by a preconditioned GMRES
method with restart after 50 steps. They numerically investigated local mesh inde-
pendence of NSNMGaswell as a robust convergence speed of NSNMGand TNNMG
for different numbers of phases.
In our previous works [10, 9] dealing with scalar smooth and nonsmooth Cahn–

Hilliard systems, we have already tested the use of spectral methods based on the
FFT against finite elementmethods (FEM).As the FFT basis functions are eigenvectors
of the difference operators, which form the discrete Laplacian, FFT methods rapidly
solve diffusion equations on simple domains. For the scalar Cahn–Hilliard equation
using a double-well potential, Eyre [26] presents an FFTmethod for the fast inversion
of the preconditioner. He uses a finite difference scheme and suggests unconditionally
gradient stable methods. In order to solve the preconditioned system, Eyre proposes
the use of a conjugate gradient squared (CGS) method. The overall effort for solving
the linear system is dominated by the FFTs and is m log(

√
m). Another use of FFT
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methods appears in [33, 5, 14] for the smooth, scalar Cahn–Hilliard inpainting prob-
lem. They propose a two-dimensional FFT method and achieve fast inpainting. In
fact, regarding the computational time, FFTmethods are hard to beat, butwith respect
to more complex problems, spectral methods on complicated domains are difficult,
see e.g. [13]. Extending the idea of using an FFT based solution scheme to the nons-
mooth problem is a challenge. An efficient FFT based implementation employing a
nonsmooth potential would typically suffer from the nonconstant, nonsmooth term
that originates in the discretization of the penalization term. In general, it holds for
spectral methods, the smoother the function, the faster the convergence. It is shown
in [10, 9] how the iteration numbers increase with the nonsmoothness obtained by
varying the penalty parameter ν. This is the motivation for this work to focus on a
discretization via finite elements especially for the nonsmooth problem.

10 Conclusions

In this paper we have analyzed the linear systems arising in smooth and nonsmooth
vector-valued Cahn–Hilliard systems. For the latter, we have applied a semismooth
Newton method combined with a Moreau–Yosida regularization technique for han-
dling the pointwise constraints. In order to make the semismooth Newton method
more efficient we have used a Krylov subspace solver. We have introduced and
studied block-triangular preconditioners using an efficient Schur complement ap-
proximation. This approximation can be done using multilevel techniques, such as
AMG (as in our case), and the numerical results justify this choice.
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