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Abstract

We introduce a notion of balanced truncation for generalized Lyapunov opera-
tors and show that it preserves asymptotic stability. The proof relies on the theory
of positive mappings and a result by Hans Schneider. Applications of our result
can be found in model order reduction of stochastic linear systems.

Keywords. Lyapunov equation, positive operator, balanced truncation,
asymptotic stability.
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1 Introduction

In his inspiring paper [1], Positive Operators and an Inertia Theorem, Hans Schneider
pointed out a close relationship between inertia theorems for Lyapunov equations and
positive operators on the space of Hermitian matrices. Among other things, he showed
that Lyapunov’s matrix theorem can be extended to the case where a positive operator
is added to the Lyapunov operator (see Theorem 2.1). This result turned out to be fun-
damental e.g. for the analysis of linear stochastic systems, see [2]. In typical applications
it is interpreted as a criterion for a system to be asymptotically stable.
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There is another famous result involving the Lyapunov operator (see e.g. [3, 4]), which
plays an important role in model order reduction. For an asymptotically stable system
of linear ordinary differential equations it roughly says the following (see Theorem 2.2):
If the associated Lyapunov operator and its adjoint operator share a block diagonal
solution to a certain matrix inequality, then the projected subsystems corresponding to
the blocks are asymptotically stable.

It is immediate to formulate an analogous generalized statement for the case, where
a positive operator is added to the Lyapunov operator, that is for the class of operators
considered in [1]. This is done in Theorem 2.3, which is the main contribution of the
present paper. Its proof turns out to be slightly involved and requires some auxiliary
results, which are also interesting by themselves (see Section 3).

To a large extent, our investigations are motivated by the problem of model order
reduction for stochastic systems, see [5]. In the present paper, however, we omit the
discussion of stochastic aspects, since the problem is attractive also from the purely
linear algebraic point of view.

2 Setup and statement of the main result

Let Hn ⊂ Kn×n (K = R or K = C) denote the real space of real or complex n × n
Hermitian matrices endowed with the Frobenius inner product 〈X , Y 〉 = trace(XY ).
By Hn

+ = {X ∈ Hn
∣∣ X ≥ 0} we denote the closed convex cone of nonnegative definite

matrices and by int
(
Hn

+

)
its interior, i.e. the open cone of positive definite matrices.

The cone Hn
+ induces a partial ordering on Hn. We write X ≥ Y , if X − Y ∈ Hn

+ and
X > Y , if X − Y ∈ int

(
Hn

+

)
. If X, Y ∈ Hn

+, then 〈X, Y 〉 ≥ 0, where equality implies
XY = 0.

For A ∈ Kn×n we define the Lyapunov operator LA : Hn → Hn by

LA(X) = AX +XA∗ . (1)

If N = (N (1), . . . , N (ν)) is a ν-tuple of matrices N (j) ∈ Kn×n, then let ΠN : Hn → Hn be
defined by

ΠN(X) =
ν∑
j=1

N (j)X(N (j))∗ . (2)

Note that the adjoint operators with respect to 〈·, ·〉 are given by L∗A = LA∗ and Π∗N :
X 7→

∑ν
j=1(N (j))∗XN (j) = ΠN∗ , if N∗ := ((N (1))∗, . . . , (N (ν))∗).

If T is an arbitrary linear mapping on a finite dimensional K-vector space, then σ(T )
denotes the spectrum, ρ(T ) = max{|λ|;λ ∈ σ(T )} the spectral radius, and α(T ) =
max{Reλ;λ ∈ σ(T )} the spectral abscissa. By C− we denote the open left half complex
plane and by C− its topological closure.

We now formulate a special version of Schneider’s result [1, Lemma 1] (or [6, 7]). For
ΠN = 0 it is known as Lyapunov’s matrix theorem, e.g. [8].
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Theorem 2.1 For LA, ΠN as in (1), (2), the following are equivalent.

(i) σ(LA + ΠN) ⊂ C−.

(ii) σ(LA) ⊂ C− and ρ(L−1
A ΠN) < 1.

(iii) ∃Y > 0 : ∃X > 0: (LA + ΠN)(X) = −Y .

(iv) ∀Y > 0 : ∃X > 0: (LA + ΠN)(X) = −Y .

For simplicity, we call LA + ΠN stable if σ(LA + ΠN) ⊂ C−. Note that σ(LA) ⊂ C−
if and only if σ(A) ⊂ C−.

From now on, we will assume A and N (j) to be partitioned as

A =

[
A11 A12

A21 A22

]
and N (j) =

[
N

(j)
11 N

(j)
12

N
(j)
21 N

(j)
22

]
with A11, N

(j)
11 ∈ Kr×r . (3)

Naturally, we define LA11 ,ΠN11 : Hr → Hr by

LA11(X) = A11X +XA∗11 and ΠN11(X) =
ν∑
j=1

N
(j)
11 X(N

(j)
11 )∗ (4)

and call LA11 + ΠN11 the truncated operator obtained from LA + ΠN .
In the context of model order reduction it is important to have criteria for the trun-

cated operators to be stable. If ΠN = 0, such a criterion is given by the following result
from [3, 4] (see also [9]).

Theorem 2.2 Let A be as in (3) and assume that there exists a block-diagonal matrix
Σ = diag(Σ1,Σ2) > 0 with Σ1 ∈ Rr×r and σ(Σ1) ∩ σ(Σ2) = ∅, so that

LA(Σ) ≤ 0 and LA∗(Σ) ≤ 0 (5)

Then σ(A11) ⊂ C− if σ(A) ⊂ C−.

In view of Theorem 2.1 it is natural to ask, whether in Theorem 2.2 we can also replace
LA by LA + ΠN . This leads us to our central result.

Theorem 2.3 Let A and N be as in (3), and assume that there exists a block diagonal
matrix Σ = diag(Σ1,Σ2) > 0 with Σ1 ∈ Rr×r and σ(Σ1) ∩ σ(Σ2) = ∅, so that

(LA + ΠN)(Σ) ≤ 0 and (LA + ΠN)∗(Σ) ≤ 0 . (6)

Then σ(LA11 + ΠN11) ⊂ C− if σ(LA + ΠN) ⊂ C−.

The proof of this theorem is provided in Section 4. It requires a number of auxiliary
results that are given in Section 3.
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Remark 2.4 (i) If σ(A) ⊂ C−, then (5) (with possibly σ(Σ1) ∩ σ(Σ2) 6= ∅) is always
satisfied after a suitable similarity transformation of A. In this case, we call the
matrix A or the operator LA balanced. More commonly, if LA(Σ) = −BB∗ and
LA∗(Σ) = −C∗C, then the system (A,B,C) is called balanced. A balancing simi-
larity transformation (A,B,C) 7→ (S−1AS, S−1B,CS) exists if and only if (A,B)
is controllable and (A,C) is observable. In the pure stability analysis, however, we
do not need to focus on the matrices B and C.

(ii) Analogously, we call the operator LA + ΠN balanced if (6) holds. If σ(LA + ΠN) ⊂
C−, then there always exists a similarity transformation

(A,N (j)) 7→ (Ã, Ñ (j)) = (S−1AS, S−1N (j)S) ,

so that LÃ + ΠÑ is balanced. By Theorem 2.3, truncation of balanced systems
preserves asymptotic stability.

(iii) Theorem 2.3 comprises the deterministic continuous and discrete time case of bal-
anced truncation (see e.g. [9]), where for discrete time, we set A = −1

2
I. The same

is true for stochastic systems (see [5]).

3 Spectral properties of operators on matrix spaces

For the proof of Theorem 2.3 we first need to recall some properties of the ordered vector
space Hn and the operator LA + ΠN , which have been summarized e.g. in [2]. Many of
these results hold in a much more general setting, but we state them here in the form
that will be needed later.

Obviously, the operator ΠN is positive in the sense that it maps Hn
+ to Hn

+. In
fact, by its representation (2), it is a special type of positive operators on Hn

+ called
completely positive [10]. The operator T = LA + ΠN is (completely) resolvent positive
(e.g. [11, 12, 13]), which means that for sufficiently large s > 0 the resolvent (sI − T )−1

is (completely) positive (actually, s > α(T ) is sufficient, as follows from Theorem 2.1).
Spectral properties of positive matrices have been analyzed first by Perron [14] and
Frobenius [15], whose results later have been extended to general positive operators
mainly by Krein and Rutman [16]. The following fundamental theorem is a consequence
of these results (see also [17, 12, 18, 2]). In view of our later application, we state it for
the adjoint operators Π∗N and (LA + ΠN)∗.

Theorem 3.1 (i) There exists V ∈ Hn
+ \ {0} so that Π∗N(V ) = ρ(ΠN)V .

(ii) There exists V ∈ Hn
+ \ {0} so that (LA + ΠN)∗(V ) = α(LA + ΠN)V .

We note a simple corollary for the case of semidefinite Y in Theorem 2.1.

Corollary 3.2 For given Y ≥ 0 assume that

∃X > 0 : LA(X) + ΠN(X) ≤ −Y . (7)
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Then σ(LA + ΠN) ⊂ C−.
Moreover, if σ(LA+ΠN) 6⊂ C− and V is given as in Thereom 3.1(ii), then α(LA+ΠN) =
0 and Y V = V Y = 0.

Proof: Scalar multiplication of (7) with V from Thereom 3.1(ii) yields

0 ≥ 〈−Y, V 〉 = 〈(LA + ΠN)(X), V 〉 = α(LA + ΠN)〈X, V 〉 .

Since 〈X, V 〉 > 0 we have α(LA + ΠN) ≤ 0, i.e. σ(LA + ΠN) ⊂ C−.
If σ(LA + ΠN) 6⊂ C− then necessarily α = 0 and 〈Y, V 〉 = 0 which is equivalent to
Y V = V Y = 0. �

In our main result we deal with block matrices. This leads us to mixings of given
operators as in the next proposition, which contains a Cauchy-Schwarz-type inequality
for the spectral radii of two completely positive operators.

Proposition 3.3 For J = {1, . . . , ν} and j ∈ J let Lj ∈ K`×`, Mj ∈ Km×m and define
operators ΠL : K`×` → K`×`, ΠM : Km×m → Km×m and ΠLM : K`×m → K`×m via

ΠL(X) =
ν∑
j=1

LjXL
∗
j , ΠM(Y ) =

ν∑
j=1

MjYM
∗
j , ΠLM(Z) =

ν∑
j=1

LjZM
∗
j .

Then ρ(ΠLM)2 ≤ ρ(ΠL)ρ(ΠM).

Proof: (i) We first assume ρ(ΠL) < 1 and ρ(ΠM) < 1, and show ρ(ΠLM) < 1.
For k ∈ N and a multiindex a = [a1, . . . , ak] ∈ Jk we set

La = La1La2 · · ·Lak and Ma = Ma1Ma2 · · ·Mak .

Then

Πk
L(X) =

∑
a∈Jk

LaXL
∗
a , Πk

M(Y ) =
∑
a∈Jk

MaYM
∗
a , Πk

LM(Z) =
∑
a∈Jk

LaZM
∗
a .

By assumption, Πk
L(X) → 0 and Πk

M(Y ) → 0 as k → ∞ for arbitrary X and Y . In
particular let X = xx∗, Y = yy∗, and Z = xy∗. Then∑

a∈Jk

‖Lax‖2
2 =

∑
a∈Jk

x∗L∗aLax = trace Πk
L(X)

k→∞→ 0

∑
a∈Jk

‖May‖2
2 =

∑
a∈Jk

y∗M∗
aMay = trace Πk

M(Y )
k→∞→ 0

and by the triangle inequality and the Cauchy-Schwarz inequality

‖Πk
LM(Z)‖F ≤

∑
a∈Jk

‖Laxy∗M∗
a‖F ≤

∑
a∈Jk

‖Lax‖2‖May‖2

≤
(
trace Πk

L(X) trace Πk
M(Y )

)1
2 k→∞→ 0 .
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Since matrices of the form Z = xy∗ span the whole space K`×m it follows that ρ(ΠLM) <
1.

(ii) For arbitrary ρ(ΠL) and ρ(ΠM), we let ε > 0 and set

L̃j =
1√

ρ(ΠL) + ε
Lj , M̃j =

1√
ρ(ΠM) + ε

Mj .

Then ΠL̃ = 1
ρ(ΠL)+ε

ΠL, ΠM̃ = 1
ρ(ΠM )+ε

ΠM , ΠL̃M̃ = 1√
(ρ(ΠM )+ε)(ρ(ΠL)+ε)

ΠLM . By construc-

tion, ρ(ΠL̃) < 1 and ρ(ΠM̃) < 1, so that (i) yields ρ(ΠL̃M̃) < 1 implying

ρ(ΠLM)2 < (ρ(ΠM) + ε)(ρ(ΠL) + ε) .

Letting ε→ 0, we obtain ρ(ΠLM)2 ≤ ρ(ΠL)ρ(ΠM). �

We now prove a logarithmic version of Proposition 3.3 for pairs of operators of the
form LA + ΠN . By itself, it is an interesting consequence of Theorem 2.1. Recall that
α(T ) = max Reσ(T ).

Proposition 3.4 Consider the situation of Proposition 3.3. Moreover let K1 ∈ K`×`

and K2 ∈ Km×m and define the linear operators

T1(X) = K1X +XK∗1 + ΠL(X) , T2(Y ) = K2Y + Y K∗2 + ΠM(Y ) ,

T12(Z) = K1Z + ZK∗2 + ΠLM(Z) .

Then α(T12) ≤ α(T1)+α(T2)
2

.

Proof: Assume that for some µ with Reµ > 0 and a matrix Z0 we have

T12(Z0) =

(
α(T1) + α(T2)

2
+ µ

)
Z0 .

We will show that then necessarily Z0 = 0, which proves α(T12) ≤ α(T1)+α(T2)
2

.

To this end let K̃j = Kj − 1
2
(α(Tj) + µ)I, j = 1, 2. For the corresponding operators

T̃1, T̃2, T̃12 with K1, K2 replaced by K̃1, K̃2, we easily check that

α(T̃1) = α(T̃2) = −Reµ , and T̃12(Z0) = 0 .

The identity 2(AX +XB) = (A+ I)X(B + I)− (A− I)X(B − I), yields

T̃1(X) = −1
2
(K̃1 − I)X(K̃1 − I)∗ + 1

2
(K̃1 + I)X(K̃1 + I)∗ + ΠL(X)

T̃2(Y ) = −1
2
(K̃2 − I)Y (K̃2 − I)∗ + 1

2
(K̃2 + I)Y (K̃2 + I)∗ + ΠM(Y )

T̃12(Z) = −1
2
(K̃1 − I)Z(K̃2 − I)∗ + 1

2
(K̃1 + I)Z(K̃2 + I)∗ + ΠLM(Z) . (8)

6



Since necessarily σ(K̃1) ⊂ C− and σ(K̃2) ⊂ C−, we can define

Π1(X) := (K̃1 − I)−1
(

(K̃1 + I)X(K̃1 + I)∗ + 2ΠL(X)
)

(K̃1 − I)−∗

Π2(Y ) := (K̃2 − I)−1
(

(K̃2 + I)Y (K̃2 + I)∗ + 2ΠM(Y )
)

(K̃2 − I)−∗ .

By construction and Theorem 2.1 there exists X > 0 so that

0 > 2T̃1(X) = (K̃1 − I)(−X + Π1(X))(K̃1 − I)∗ ,

whence also −X + Π1(X) < 0. Again by Theorem 2.1, we get ρ(Π1) < 1. Analogously,
ρ(Π2) < 1. From (8) it follows that T̃12(Z0) = 0 implies

Z0 = (K̃1 − I)−1
(
(K̃1 + I)Z0(K̃2 + I)∗ + 2ΠLM(Z0)

)
(K̃2 − I)−∗ =: Π12(Z0) .

But ρ(Π12) < 1 by Proposition 3.3, so that Z0 = 0. �

The next lemma is based on the notion of the field of values (see e.g. [19]) of a linear
mapping T : Km×n → Km×n, where Km×n is equipped with the standard scalar product

〈X, Y 〉 = traceXY ∗ = traceY ∗X .

We define the field of values as F (T ) = {〈T (X), X〉
∣∣ 〈X,X〉 = 1}.

Lemma 3.5 For j = 1, . . . , ν consider L(j) =

[
L

(j)
11 L

(j)
12

L
(j)
21 L

(j)
22

]
∈ K`×` with L

(j)
22 ∈ K`2×`2

and M (j) =

[
M

(j)
11 M

(j)
12

M
(j)
21 M

(j)
22

]
∈ Km×m with M

(j)
11 ∈ Km1×m1.

Define operators T : K`×m → K`×m and T21 : K`2×m1 → K`2×m1 via

T (X) =
ν∑
j=1

L(j)XM (j) and T21(Y ) =
ν∑
j=1

L
(j)
22 YM

(j)
11 .

Then F (T21 + T ∗21) ⊂ [minσ(T + T ∗),maxσ(T + T ∗)].

Proof: The adjoint operators T ∗ : K`×m → K`×m, T ∗21 : K`2×m1 → K`2×m1 are given by

T ∗(X) =
ν∑
j=1

(L(j))∗X(M (j))∗ and T ∗21(Y ) =
ν∑
j=1

(L
(j)
22 )∗Y (M

(j)
11 )∗ .

By self-adjointness, F (T +T ∗) = [min σ(T +T ∗),maxσ(T +T ∗)] (e.g. [20, Fact 8.14.7]).

Let Y ∈ K`2×m1 and consider the block matrix X =

[
0 0
Y 0

]
with 〈X,X〉 = 〈Y, Y 〉.

Then (T + T ∗)(X) =

[
? ?

(T21 + T ∗21)(Y ) ?

]
, so that 〈X, (T + T ∗)(X)〉 = 〈Y, (T21 +

T ∗21)(Y )〉 and F (T21 + T ∗21) ⊂ F (T + T ∗). �

Remark 3.6 We call T21 the lower left block of T .
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4 Proof of Theorem 2.3

To simplify the presentation we will restrict our attention to the case where ν = 1 and
N = N (1), i.e. ΠN : X 7→ NXN∗. From the proof it will be easy to see that this is no
loss of generality. For convenience we restate Theorem 2.3 for this situation.

Theorem 4.1 Let A,N ∈ Kn×n with σ(LA + ΠN) ⊂ C−, and assume that there exists
a matrix Σ = diag(Σ1,Σ2) > 0 with σ(Σ1) ∩ σ(Σ2) = ∅, so that

AΣ + ΣA∗ +NΣN∗ ≤ 0 and A∗Σ + ΣA+N∗ΣN ≤ 0 .

Let A =

[
A11 A12

A21 A22

]
and N =

[
N11 N12

N21 N22

]
be partitioned as Σ. Then

σ(LA11 + ΠN11) ⊂ C− . (9)

Proof: Assume that (9) does not hold. Then by Theorem 3.1 there exists a number
β ≥ 0 and a nonzero matrix V1 ≥ 0 such that

A∗11V1 + V1A11 +N∗11V1N11 = βV1 . (10)

We will show that this implies β ∈ σ(LA + ΠN) in contradiction to our assumption.
Since the proof is rather long we arrange it in several subsections.

4.1 Show that β = 0

Let us choose B such that

AΣ + ΣA∗ +NΣN∗ = −BB∗ . (11)

With suitable partitioning of B, the left upper block of (11) is

A11Σ1 + Σ1A
∗
11 +N11Σ1N

∗
11 = −B1B

∗
1 −N12Σ2N

∗
12 . (12)

By Corollary 3.2 we find that β = 0 and B∗1V1 = 0, N∗12V1 = 0.

4.2 Invariance of kerV1 and imV1

Without loss of generality, we can assume that V1 has maximal rank, i.e.(
Ṽ1 ≥ 0 and A∗11Ṽ1 + Ṽ1A11 +N∗11Ṽ1N11 = 0

)
⇒ rank Ṽ1 ≤ rankV1 . (13)

We now observe that kerV1 is invariant under A11 and N11 and imV1 is invariant under
A∗11 and N∗11. To see this, let V1z = 0. Then

0 = z∗ (A∗11V1 + V1A11 +N∗11V1N11) z = z∗N∗11V1N11z ,
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whence also V1N11z = 0, i.e. N11z ∈ kerV1. From this, we have

0 = (A∗11V1 + V1A11 +N∗11V1N11) z = V1A11z ,

implying A11z ∈ kerV1. Thus A11 kerV1 ⊂ kerV1 and N11 kerV1 ⊂ kerV1.
Since kerV1 = (imV1)⊥, it follows further that imV1 is invariant under A∗11 and N∗11.
Let imV1 = imV11, with V ∗11V11 = I, V1 = V11D11V

∗
11, for some D11 > 0 and kerV1 =

imV12 with V ∗12V12 = I, so that in particular V ∗11V12 = 0. By the invariance properties,
we know that

A∗11V11 = V11Ã
∗
11 and A11V12 = V12Ã22 (14)

for suitable matrices Ã11 and Ã22. Analogously

N∗11V11 = V11Ñ
∗
11 and N11V12 = V12Ñ22 (15)

for suitable matrices Ñ11 and Ñ22.
Note that

0 = A∗11V1 + V1A11 +N∗11V1N11

= A∗11V11D11V
∗

11 + V11D11V
∗

11A11 +N∗11V11D11V
∗

11N11

= V11

(
Ã∗11D11 +D11Ã11 + Ñ∗11D11Ñ11

)
V ∗11 ,

whence Ã∗11D11 + D11Ã11 + Ñ∗11D11Ñ11 = 0 implying that σ(LÃ11
+ ΠÑ11

) ⊂ C− by
Corollary 3.2.

Moreover, N∗12V11 = 0 and B∗1V11 = 0, because N∗12V1 = 0 and B∗1V1 = 0.

4.3 A unitary similarity transformation

Now, let us also choose C such that

A∗Σ + ΣA+N∗ΣN = −C∗C , (16)

and consider the unitary transformation matrix U =

[
V11 V12 0
0 0 I

]
. Then

U∗AU =

 V ∗11A11V11 V ∗11A11V12 V ∗11A12

V ∗12A11V11 V ∗12A11V12 V ∗12A12

A21V11 A21V12 A22


=

 Ã11 0 V ∗11A12

V ∗12A11V11 Ã22 V ∗12A12

A21V11 A21V12 A22

 =:

 Ã11 0 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33

 = Ã ,

9



U∗NU =

 Ñ11 0 V ∗11N12

V ∗12N11V11 Ñ22 V ∗12N12

N21V11 N21V12 N22


=

 Ñ11 0 0

V ∗12N11V11 Ñ22 V ∗12N12

N21V11 N21V12 N22

 =:

 Ñ11 0 0

Ñ21 Ñ22 Ñ23

Ñ31 Ñ32 Ñ33

 = Ñ ,

U∗B =

 V ∗11 0
V ∗12 0
0 I

[ B1

B2

]
=

 V ∗11B1

V ∗12B1

B2

 =

 0
V ∗12B1

B2

 =

 0

B̃2

B̃3

 = B̃ ,

CU =
[
C̃1 C̃2 C̃3

]
= C̃ , U∗ΣU =

 Σ̃11 Σ̃∗21 0

Σ̃21 Σ̃22 0

0 0 Σ̃33

 = Σ̃

with Σ̃33 = Σ2 and σ

([
Σ̃11 Σ̃∗21

Σ̃21 Σ̃22

])
= σ(Σ1).

Let us write Ã1 =

[
Ã11 0

Ã21 Ã22

]
, Ñ1 =

[
Ñ11 0

Ñ21 Ñ22

]
, Σ̃1 =

[
Σ̃11 Σ̃∗21

Σ̃21 Σ̃22

]
and define

T (X) = Ã1X +XÃ∗1 + Ñ1XÑ
∗
1 .

As seen above, T ∗(D1) = 0 for D1 =

[
D11 0
0 0

]
.

4.4 The field of values of T and its lower left block

By construction T (Σ̃1) ≤ 0 and T ∗(Σ̃1) ≤ 0, whence also (T + T ∗)(Σ̃1) ≤ 0 implying

σ(T + T ∗) ⊂ C− ∩ R . (17)

Looking at the left upper blocks of

ÃΣ̃ + Σ̃Ã∗ + ÑΣ̃Ñ∗ = −B̃B̃∗ and (18)

Ã∗Σ̃ + Σ̃Ã+ Ñ∗Σ̃Ñ = −C̃∗C̃ , (19)

we obtain

Σ̃11Ã
∗
11 + Ã11Σ̃11 + Ñ11Σ̃11Ñ

∗
11 = 0 and (20)

Ã∗11Σ̃11 + Σ̃11Ã11 + Ñ∗11Σ̃11Ñ11 = −C̃∗1 C̃1 − Ñ∗21Σ̃22Ñ21 − Ñ∗31Σ̃33Ñ31

− Σ̃∗21Ã21 − Ã∗21Σ̃21 − Ñ∗21Σ̃21Ñ11 − Ñ∗11Σ̃∗21Ñ21 . (21)
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Taking the scalar product of (21) with Σ̃11, we get

〈C̃∗1 C̃1 + Ñ∗21Σ̃22Ñ21 + Ñ∗31Σ̃33Ñ31, Σ̃11〉
= −〈Σ̃∗21Ã21 + Ã∗21Σ̃21 + Ñ∗21Σ̃21Ñ11 + Ñ∗11Σ̃∗21Ñ21, Σ̃11〉 (22)

= −2〈Σ̃∗21Ã21 + Ñ∗11Σ̃∗21Ñ21, Σ̃11〉

= −2 trace
(

(Σ̃∗21Ã21 + Ñ∗11Σ̃∗21Ñ21)Σ̃11

)
= −2 trace

(
Σ̃∗21(Ã21Σ̃11 + Ñ21Σ̃11Ñ

∗
11)
)

= 2〈−Ã21Σ̃11 − Ñ21Σ̃11Ñ
∗
11, Σ̃21〉 . (23)

The second block in the first column of ÃΣ̃ + Σ̃Ã∗ + ÑΣÑ∗ = −B̃B̃∗ is

0 = Σ̃21Ã
∗
11 + Ñ21Σ̃11Ñ

∗
11 + Ñ22Σ̃21Ñ

∗
11 + Ã21Σ̃11 + Ã22Σ̃21

whence

−Ã21Σ̃11 − Ñ21Σ̃11Ñ
∗
11 = Σ̃21Ã

∗
11 + Ñ22Σ̃21Ñ

∗
11 + Ã22Σ̃21 =: T21(Σ̃21) . (24)

Note that T21 is the lower left block of T in the sense of Remark 3.6. Inserting (24) into
(23) and using Lemma 3.5, we obtain

0 ≤ 2〈T21(Σ̃21), Σ̃21〉 = 〈(T21 + T ∗21)(Σ̃21), Σ̃21〉 ≤ 0 , (25)

since F (T21 + T ∗21) ⊂ [minσ(T + T ∗),maxσ(T + T ∗)] ⊂ C− ∩ R. From (25) and (24) it
follows that the right hand side of (23) vanishes, and consequently

C̃1 = 0 , Ñ21 = 0 , Ñ31 = 0 . (26)

Moreover, from (25) we obtain

(T21 + T ∗21)(Σ̃21) = 0, (27)

because the quadratic form defined by T21 + T ∗21 is positive semidefinite.

4.5 Reduction to Sylvester equations

Exploiting (26), we find that the second blocks of the first column of (18) and (19),
respectively take the forms

0 = Σ̃21Ã
∗
11 + Ñ22Σ̃21Ñ

∗
11 + Ã21Σ̃11 + Ã22Σ̃21 = T21(Σ̃21) + Ã21Σ̃11

0 = Ã∗22Σ̃21 + Σ̃21Ã11 + Σ̃22Ã21 + Ñ∗22Σ̃21Ñ11 = T ∗21(Σ̃21) + Σ̃22Ã21 .

Adding these and using (27), we get the homogeneous Sylvester equation

0 = Ã21Σ̃11 + Σ̃22Ã21 .

11



It follows that Ã21 = 0, since all eigenvalues of Σ̃11 and Σ̃22 are strictly positive. Inserting
Ã21 = Ñ21 = 0 in (24) we see that T21(Σ̃21) = 0.

Moreover, the mapping X 7→ Ã∗22X + XÃ22 + Ñ∗22XÑ22 has all eigenvalues in C−.
Otherwise, there would exist a non-zero matrix D22 ≥ 0 with

A∗22D22 +D22Ã22 + Ñ∗22D22Ñ22 = 0 .

But then, with D = diag(D11, D22), we would have

T ∗(D) =

[
Ã11 0

0 Ã22

]∗ [
D11 0
0 D22

]
+

[
D11 0
0 D22

] [
Ã11 0

0 Ã22

]
+

[
Ñ11 0

0 Ñ22

]∗ [
D11 0
0 D22

] [
Ñ11 0

0 Ñ22

]
= 0 .

Thus Ṽ1 = [V11, V12]D[V11, V12]∗ would contradict (13).
Hence, α(T21) < 0 by Proposition 3.4, and T21(Σ̃21) = 0 implies Σ̃21 = 0.
Now the third blocks of the first column of (18) and (19), respectively simplify to

0 = Σ̃33Ã
∗
13 + Ã31Σ̃11 and 0 = Ã∗13Σ̃11 + Σ̃33Ã31 .

By suitable multiplication with Σ̃11 and Σ̃33 we can eliminate either Ã31 or Ã13 to obtain
the equations

0 = Σ̃2
33Ã

∗
13 − Ã∗13Σ̃2

11 and 0 = Σ̃2
33Ã31 − Ã31Σ̃2

11 .

By construction σ(Σ̃11) ⊂ σ(Σ1) and σ(Σ1) ∩ σ(Σ̃33) = ∅. Hence, both Sylvester equa-
tions are uniquely solvable and Ã∗13 = Ã31 = 0.
Finally, with Σ̃0 = diag(Σ̃11, 0, 0) we get

ÃΣ̃0 + Σ̃0Ã
∗ + ÑΣ̃0Ñ

∗ = 0 ,

contradicting asymptotic stability of the full system. �

5 Conclusions

Balanced truncation is a well-known method for model order reduction of linear control
systems. Changing the point of view slightly, we have interpreted it as balancing and
truncation of a Lyapunov operator. This formulation immediatedly generalizes to com-
pletely resolvent positive operators which are given as the sum of a Lyapunov operator
and a completely positive operator. As our main result we have shown that balanced
truncation in this more general framework still has the property of preserving asymp-
totic stability. The result relies essentially on [1] and has been presented in a purely
linear algebraic way. However, it has important implications for model order reduction
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of stochastic linear systems. For instance, it fills one of the gaps left in [5, 21] and plays
a vital role in [22].
As a further generalization one might consider operators which are given as the sum
of a Lyapunov operator and an arbitrary positive operator (not necessarily completely
positive). Since we have exploited the specific structure of the operator ΠN , our proof
does not apply to this case, but we are neither aware of any additional applications that
could be covered by such a generalization.
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