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Abstract

The numerical treatment of large-scale, nonsymmetric algebraic Riccati equa-
tions (NARE) by a low-rank variant of Newton’s method is considered. We
discuss a method to compute approximations to the solution of the NARE in a
factorized form of low rank. The occurring large-scale Sylvester equations are
dealt with using the factored alternating direction implicit iteration (fADI). Sev-
eral performance enhancing strategies available for the factored ADI as well as
the related Newton-ADI for symmetric algebraic Riccati equations are general-
ized to this combination. This includes the efficient computation of the norm
of the residual matrix, adapted shift parameters strategies for fADI, and an
acceleration of the Newton’s scheme by means of a Galerkin projection. Nu-
merical experiments illustrate the capabilities of the proposed method to solve
high-dimensional NAREs.
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1 Introduction

We consider non-symmetric algebraic Riccati equations (NARE) of the form

R(X) = FGT +AX +XB −XPQTX = 0 (1)

with A ∈ Rn×n, B ∈ Rm×m, F ∈ Rn×r, G ∈ Rm×r, P ∈ Rm×p, Q ∈ Rn×p, and
the sought solution X ∈ Rn×m. If B = AT , G = F and Q = P , (1) becomes a
continuous-time algebraic Riccati equation (CARE). NAREs arise, e.g., in fluid queue
models [35], in the numerical treatment of transport equations [29], in the study of
open loop Nash games [1], and in methods to compute or refine invariant subspaces of
matrices or pencils [16]. Often, the block matrix

M :=

[
B −PQT

FGT A

]
∈ Rm+n×m+n

is an M-matrix and, hence, the associated NAREs are typically referred to as M-
NAREs. These were recently subject of extensive research in both theoretical and
computational aspects, see, e.g., [13, 29, 24, 22, 33] and the references therein. One
is typically interested in the minimal, nonnegative solution X(min) ≥ 0 which satisfies
X(min) ≤ X for all possible solutions X of (1). Here and from now on, ≤, ≥ refer to
the element wise partial orderings. This minimal, nonnegative solution always exists
if M is a nonsingular, or an irreducible, singular M-matrix [13, Theorem 2.9].

Here we assume that A, B are large and sparse matrices but the number of columns
in F, G, P, Q is much smaller than the dimension of (1), i.e., r, p� min (n,m). This
will enable the approximation of X by a low-rank matrix Xh with rank (Xh) = h �
min (n,m) such that also large-scale NAREs can be dealt with.

The main purpose of this article is, without using M-matrix properties, to present a
Newton style method for large-scale NAREs which computes such a low-rank approx-
imation Xh. The involved Sylvester equations are solved by the factored alternating
directions implicit iteration (fADI) [9]. The remainder of the article is structured as
follows: in Section 2 we briefly review Newton’s method for NAREs and also consider
an analogue to the Newton-Kleinman method for CAREs. The fADI algorithm for
computing low-rank solutions of the occurring large-scale Sylvester equations is topic
of Section 3. To this end, recent improvements of fADI [6] are included and several
performance enhancing strategies which are known for the Newton-ADI for large-scale
CAREs [8] are also adopted. We also give a new result regarding the structure of the
NARE residual matrix and introduce an adapted shift parameter strategy for fADI.
Some modification for dealing with NAREs of special structure or generalized versions
of (1) are also given. The performance of the developed low-rank Newton-ADI method
is evaluated in numerical experiments in Section 4. Section 5 summarizes and proposes
some related future research topics.
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Algorithm 1: Newton’s Method for (1)

Input : A, B, F, G, P, Q as in (1), initial guess X(0).
Output: Approximate solution X.

1 for k = 1, . . . , kmax do
2 R(X(k−1)) = FGT +AX(k−1) +X(k−1)B −X(k−1)PQTX(k−1)

3 Solve the Sylvester equation

(A−X(k−1)PQT )N (k) +N (k)(B − PQTX(k−1)) = −R(X(k−1)) (2)

for N (k) and set X(k) = X(k−1) +N (k).

2 Newton Methods for NAREs

A Newton scheme for (1) is given by

X(k) = X(k−1) +N (k), N (k) := −(R′X(k−1))
−1R(X(k−1)),

where R′X is the Fréchet derivative of R evaluated at X. The increment N (k) is the
solution of the linear matrix equation

R′X(k−1) [N
(k)] = −R(X(k−1))

which turns out to be a Sylvester equation. The resulting iteration is given in Algo-
rithm 1, see, e.g. [13, Listing 3.11]. It is shown in [24, 22] that ifM is a nonsingular or
irreducible, singular M-Matrix, then Algorithm 1 initialized with X(0) = 0 produces a
sequence of nonnegative matrices X(0) ≤ X(1) ≤ . . . ≤ X(min) that converges to the
minimal nonnegative solution X(min). The convergence is quadratic provided M is a
nonsingular M-matrix. For singular and irreducible M-matrices the convergence speed
might in some cases only be linear but there are approaches to cure this: one can either
work on a shifted NARE instead or start the Newton iteration with an appropriate
initial guess X0 [13].

Similar to the derivation of the Newton-Kleinman and Newton-Hewer method [30,
25] for CAREs and, respectively, discrete-time AREs (DAREs), we insert N (k) =
X(k) − X(k−1) into (2) in Algorithm 1. This yields a Newton-Kleinman variant for
NAREs which is illustrated in Algorithm 2. There, we introduced the matrices K(k) :=

X(k)P ∈ Rn×p, L(k) := X(k) T Q ∈ Rm×p which might be considered as complement
to the feedback matrices in the CARE and DARE cases. If K(0) = X(0)P and L(0) =
(X(0))TQ, the Algorithms 1 and 2 are mathematically equivalent and produce the
same results.

The main computational work for both algorithms is the solution of the Sylvester
equation in each step of the iteration. For small to moderate sized problems, methods
based on eigenvalue, Schur, or Hessenberg decompositions of A, B [2, 39, 21], or the
sign function iteration [36, 10] can be applied. Due to their in general cubic complex-
ity and quadratic storage requirements, their application to large-scale problems is not

2



Algorithm 2: Newton-Kleinman Method for (1)

Input : A, B, F, G, P, Q as in (1), initial guesses K(0), L(0).
Output: Approximate solution X.

1 for k = 1, . . . , kmax do
2 F (k) := [F,K(k−1)], G(k) := [G,L(k−1)].
3 Solve the Sylvester equation

(A−K(k−1)QT )X(k) +X(k)(B − P (L(k−1))T ) = −F (k)(G(k))T (3)

for X(k).

4 Set K(k) := X(k)P , L(k) := (X(k))TQ.

feasible. The Sylvester equations in (2) and (3) are defined by the same coefficients

but different right hand sides. It holds rank
(
F (k) G(k) T

)
≤ r + p � n in (3) which

enables us to employ low-rank solvers for Sylvester equations as first suggested in [3].
In contrast, the right hand sides in the original Newton scheme in Algorithm 1 do not
share this property in general. In the following we therefore develop and investigate a
low-rank version of Algorithm 2, where occurring large Sylvester equations are dealt
with by the factored alternating directions implicit (ADI) iteration [9, 6]. This com-
bination, low-rank variant of ADI within a Newton iteration, has been successfully
applied for CAREs [8, 37, 27, 18] as well as DAREs [5].

3 Low-rank Newton-ADI for NAREs

Before we state our low-rank version of Algorithm 2 to deal with large-scale NAREs,
we concisely review the low-rank variant of the ADI iteration for Sylvester equations
as well as some recent improvements of it.

3.1 The Factored ADI Method for Large-Scale Sylvester Equations

Here we consider Sylvester equations

AX +XB + FGT = 0 (4)

with A ∈ Rn×n, B ∈ Rm×m, F ∈ Rn×r, G ∈ Rm×r. We assume that the spectra of
A, B satisfy Λ(A) ∩ Λ(−B) = ∅ to ensure the existence of a unique solution. The
alternating directions implicit iteration [40, 42] for (4) is given by the two-step scheme

(A+ βjIn)Xj+ 1
2

= −Xj(B + βjIm)− FGT ,

Xj+1(B + αjIn) = −(A+ αjIn)Xj+ 1
2

+ FGT ,
(5)
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where αi /∈ Λ(B), βi /∈ Λ(A), βi 6= −αi, i ≥ 1 are shift parameters that steer the
convergence speed of (5). Setting X0 = 0 and rewriting (5) into a single-step scheme
leads, as thoroughly described in [9], to the factored ADI iteration (fADI)

V1 = (A+ β1In)−1F, W1 = (B + α1Im)−HG, (6a)

Vj = Vj−1 − (βj + αj−1)(A+ βjIn)−1Vj−1, (6b)

Wj = Wj−1 − (αj + βj−1)(B + αjIn)−HWj−1 for j > 1. (6c)

It computes a low-rank approximation of X in a factored form Xj = ZjΓjY
H
j , where

the factors are in the course of (6) build via

Zj = [Zj−1, Vj ] ∈ Cn×rj , Yj = [Yj−1, Wj ] ∈ Cm×rj ,
Γj = diag (Γj−1,−(βj + αj)Ir) ∈ Crj×rj

with Z0, Γ0, Y0 set as empty arrays. The above iteration (6) is particularly efficient
if r � min (n,m) because only r new columns have to be processed in each iteration
step. The main computational effort is caused by the solution of two shifted linear
systems with r right hands sides. In [6] it is shown that the residual at iteration step
j is given as

S(Xj) = AXjΓj(Yj)
H +XjΓj(Yj)

HB + FGT = SjT
H
j ,

Sj = Sj−1 − (βj + αj)Vj ∈ Cn×r,

Tj = Tj−1 − (βj + αj)Wj ∈ Cm×r.

Hence, although S(Xj) is in general a dense, n ×m matrix, it is of rank at most r.
By exploiting the above low-rank factorization of S(Xj), its norm can be efficiently
computed via

‖S(Xj)‖ = ‖SjTHj ‖ = σmax(SjT
H
j )

=
√
λmax(TjSHj SjT

H
j ) =

√
λmax((SHj Sj)(T

H
j Tj)).

(7)

For this relation we used the well known property that the nonzero eigenvalues of AB
are the same as those of BA for all A ∈ Cn×m, B ∈ Cm×n, see, e.g., [26, Theorem
1.32]. Hence, computing the residual norm essentially requires the computation of the
largest eigenvalue of the r × r matrix (SHj Sj)(T

H
j Tj). Although the eigenvalues of

this matrix are obviously real, roundoff errors might introduce very small, spurious
imaginary parts such that it is wise to take the square root only over the real part of
the computed largest eigenvalue. This strategy is slightly more efficient than using a
QR factorization of either Sj or Tj as in [6]. With S0 := F , T0 := G, the residual
factors Sj , Tj can be explicitly inserted into the low-rank iteration (6) which yields
the modified version of the fADI method illustrated in Algorithm 3. In Line 2 it uses
the scaled residual norm as stopping criterion via ‖S(Xj)‖ ≤ τADI‖FGT ‖.
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Algorithm 3: Factored ADI iteration for (4)

Input : A, B, F, G as in (4), shift parameters {α1, . . . , αjmax
},

{β1, . . . , βjmax}, and stopping tolerance τADI � 1.
Output: Zj ∈ Cn×rj , Yj ∈ Cm×rj , Γj ∈ Crj×rj such that ZjΓjY

H
j ≈ X.

1 S0 := F, T0 := G, Z0 = Γ0 = Y0 = [ ], j = 0.

2 while ‖SjTTj ‖ ≥ τADI‖FGT ‖ do
3 j = j + 1.

4 Vj = (A+ βjIn)−1Sj−1, Wj = (B + αjIm)−HTj−1.
5 Sj = Sj−1 + γjVj , Tj = Tj−1 + γjWj , γj := −(βj + αj).
6 Update the low-rank solution factors

Zj = [Zj−1, Vj ], Yj = [Yj−1,Wj ], Γj = diag (Γj−1, γjIr) .

Shift Parameters The shift parameters of (5), (6), and Algorithm 3 can be related
to the rational optimization problem

min
αj ,βj∈C

(
max
1≤`≤n
1≤k≤m

J∏
j=1

∣∣∣∣ (λ` − αj)(µk − βj)(λ` + βj)(µk + αj)

∣∣∣∣
)
, λ` ∈ Λ(A), µk ∈ Λ(B), (8)

see [41]. For large-scale Sylvester equations this problem is hard to solve as the involved
spectra Λ(A), Λ(B) are not efficiently available. Some strategies to compute a fixed
number of optimal, approximate shifts a priori, i.e., before the actual iteration, can be
found in [42, 38, 9]. One approach which we will employ in our numerical experiments is
the heuristic strategy proposed in [32, 9]. The spectra Λ(A), Λ(B) in (8) are replaced
by much smaller sets consisting of a fixed number J � min (n,m) of approximate
eigenvalues of A, B. The approximations are typically chosen as k+ and k− Ritz-,
and inverse Ritz values obtained from Arnoldi processes w.r.t A, B and, respectively
A−1, B−1. These sets of Ritz values alone often provide good α- and β-shifts, [6].
Alternatively, one can use the Ritz values to solve (8) in an approximate way to get
k+ + k− α- and k+ + k− β-shifts as illustrated, e.g, in [9, Algorithm 2]. Generating
these heuristic shift parameters introduces additional costs because of the involved
matrix vector products and linear systems solves with A and B. Also, there is no
known rule for adjusting the setup parameters J, k+, k− to get optimal results as it
is criticized in [7]. Even slight changes in these values can yield a noticeable different
convergence behavior of fADI.

As second shift strategy we will use the novel approach proposed in [7] for efficiently
and automatically computing shifts in the course of the iteration. The main idea is to
generate, at inner iteration step j, orthogonal matrices UA ∈ Cm×r and UB ∈ Cn×r
corresponding to Vj and, respectively, Wj . Then, the shifts for the iteration steps j+1
to j + r are taken as the eigenvalues of the projected matrices UHA AUA and UHB BUB .
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After these r iteration steps, the generation is repeated with Vj+r and Wj+r. These
self-generating shifts are in the remainder called A-B-shifts. They are, obviously, very
cheap to compute, because only a small number of matrix vector multiplications with
the original large matrices A, B, but no linear system solves, are required.

Moreover, another big advantage is that the construction is completely automatic,
since no setup parameters are involved. These A-B-shifts often outperform the heuris-
tic and other approaches, especially for problems with complex spectra as reported in
[7].

Generating real solution factors in the presence of complex shifts The shifts can,
regardless of the method used for their generation, be complex numbers, especially if
at least one of the spectra Λ(A), Λ(B) contains complex eigenvalues. Then, Algorithm
3 will produce complex iterates and consequently also complex low-rank solution fac-
tors. Since this increases the computation cost and memory requirements of the fADI
method, a further modification of the algorithm was introduced in [6, Algorithm 2]
to circumvent this issue. Under the assumption that complex shifts always occur in
complex conjugated pairs, the modified fADI iteration generates real low-rank solution
factors at a significantly reduced amount of complex arithmetic operations. Since the
involved formulas are rather long and complicated, but not important for the remain-
der, for the sake of brevity we keep the simpler representation given in Algorithm 3.
However, in our numerical examples, whenever the fADI method is applied to solve
(4), this should be understood as the usage of the modified version [6, Algorithm 2]
such that real, low-rank solution factors Zj ∈ Rn×rj , Yj ∈ Rm×rj , Γj ∈ Rrj×rj are
efficiently obtained in the end.

3.2 Combination of factored ADI and the Newton-Kleinman
method for NAREs

Employing Algorithm 3 to solve the Sylvester equation in Line 3 of the Newton-
Kleinman scheme (Algorithm 2) for NAREs yields the low-rank Newton-ADI (LR-
NADI-N) method which is illustrated in Algorithm 4. This algorithm can be seen
as inner-outer method as it consists of an outer (the Newton iteration) and an inner
iteration (the fADI iteration). To distinguish these two stages we will from now on use
the notation that subscripts j and bracketed superscripts (k) will refer to quantities
associated to the inner and, respectively, outer iteration.

We will now discuss some of the major steps of Algorithm 3 in more detail.

3.2.1 Solving the Linear Systems

The coefficient matrices (A(k) + β
(k)
j In), (B(k) + α

(k)
j Im) defining the linear systems

in Line 6 will in general be dense matrices, even if A and B are sparse. In that case
the coefficient matrices are given as a sum of a sparse matrix and a low-rank update.
It is often mandatory to employ the Sherman-Morrison-Woodbury formula [20] which
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Algorithm 4: Low-Rank Newton-ADI for NAREs (LR-NADI-N)

Input : Matrices A, B, F, G, P, Q defining (1), initial guesses K(0), L(0),
and stopping tolerance τADI � 1.

Output: Zkmax ∈ Cn×(r+p)j , Ykmax ∈ Cm×(r+p)j , Γkmax ∈ C(r+p)j×(r+p)j such
that ZkmaxΓkmaxY

H
kmax

≈ X.

1 for k = 1, 2, . . . , kmax do

2 Determine shifts {α(k)
1 , . . . , α

(k)
J }, {β

(k)
1 , . . . , β

(k)
J } w.r.t.

A(k) := A−K(k−1)QT and B(k) := B − P L(k−1)H .

3 S
(k)
0 = [F,K(k−1)], T

(k)
0 = [G,L(k−1)], Z

(k)
0 = Γ

(k)
0 = Y

(k)
0 = [ ], j = 0

4 while ‖S(k)
j (T

(k)
j )H‖ > τADI‖S(k)

0 (T
(k)
0 )H‖ do

5 j = j + 1
6 Solve

(A(k) + β
(k)
j In)V

(k)
j = S

(k)
j−1, (B(k) + α

(k)
j Im)HW

(k)
j = T

(k)
j−1

for V
(k)
j , W

(k)
j .

7 Update low-rank factors of Sylvester residual

8 S
(k)
j = S

(k)
j−1 + γjV

(k)
j , T

(k)
j = T

(k)
j−1 + γjW

(k)
j , γj = −(β

(k)
j + α

(k)
j ).

9 Augment the low-rank solution factors

Z
(k)
j = [Z

(k)
j−1, V

(k)
j ], Y

(k)
j = [Y

(k)
j−1, W

(k)
j ], Γ

(k)
j = diag

(
Γ
(k)
j−1, γjIr

)
.

10 K(k) = Z
(k)
j Γ

(k)
j ((Y

(k)
j )HP ) , L(k) = Y

(k)
j (Γ

(k)
j )H(Z

(k)
j )HQ.

amounts, e.g., for obtaining V
(k)
j to

[VS , VK ] = (A+ β
(k)
j In)−1[S

(k)
j−1, K

(k−1)],

V
(k)
j = VS + VK

(
Ip −QTVK

)−1
(QTVS).

(9)

The equations for generating W
(k)
j are similar. Hence, r + 2p linear systems with the

sparse coefficient matrices (A+β
(k)
j In), (B+α

(k)
j Im) have to be solved which makes this

approach especially helpful if sparse-direct solvers are applied. Iterative solvers that
work only with matrix vector products of the coefficient matrices might also directly

be applied to (A(k) + β
(k)
j In), (B(k) + α

(k)
j Im). However, the low-rank updates might

severely increase the condition number such that the Sherman-Morrison-Woodbury
formula might still be preferable.

7



3.2.2 Implicit Updates of K(k), L(k)

The approximate solution of the Sylvester equation is constructed via

X
(k)
j = Z

(k)
j Γ

(k)
j (Y

(k)
j )H =

j∑
i=1

γiV
(k)
i (W

(k)
i )H = X

(k)
j−1 + γjV

(k)
j (W

(k)
j )H

in each inner iteration step. It is possible to recursively update K(k), L(k) in every
inner iteration step as well:

K
(k)
j := X

(k)
j U = K

(k)
j−1 + γjV

(k)
j (W

(k)
j )HP,

L
(k)
j := (X

(k)
j )HQ = L

(k)
j−1 + γjW

(k)
j (V

(k)
j )HQ.

(10)

Hence, if only K(k), L(k) are of interest, storing the low-rank solution factors can
be omitted. Also Line 9 in Algorithm 4 is not required, and Line 10 is moved into
the fADI loop in the form (10). This can greatly reduce the storage requirements
of the LR-NADI-N method and is the analogous situation to the implicit low-rank
Newton-ADI method for CAREs [8, Algorithm 6].

3.2.3 Stopping Criteria

Both the inner and outer iteration require suitable conditions when to stop because the
number of required steps is typically not known in advance. Here we employ stopping
criteria based on the norm of the residual matrices. For fADI as inner iteration, this

is already indicated in Line 4 of Algorithm 4, where ‖S(k)
j (T

(k)
j )H‖ can be efficiently

computed by (7).
The following theorem shows that, as a consequence of the low-rank factorization

of the Sylvester residual matrix, also the NARE residual matrix is given in a similar
factored form of low rank. It can be seen as a generalizations of results from [12, 6].

Theorem 1. The NARE residual matrix w.r.t. the solution X
(k)
j = Z

(k)
j Γ

(k)
j (Y

(k)
j )H

produced at outer iteration k ≥ 1 and inner iteration j in Algorithm 4 has at most
rank 2p+ r and is given by

R(X
(k)
j ) = C

(k)
j (D

(k)
j )H , (11a)

where

C
(k)
j := [S

(k)
j , K(k−1) −K(k)

j ], D
(k)
j := [T

(k)
j , L

(k)
j − L

(k−1)] (11b)

with K
(k)
j , L

(k)
j defined as in (10).

Proof. Writing out the NARE residual and including the definitions of K(k−1), L(k−1)
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as well as K
(k)
j , L

(k)
j yields

R(X
(k)
j ) = AX

(k)
j +X

(k)
j B −X(k)

j PQTX
(k)
j + FGT

= (A−K(k−1)QT )X
(k)
j +X

(k)
j (B − P (L(k−1))H)

+K(k−1)QTX
(k)
j +X

(k)
j P (L(k−1))H −X(k)

j PQTX
(k)
j

+FGT +K(k−1)(L(k−1))H −K(k−1)(L(k−1))H

= A(k)X
(k)
j +X

(k)
j B(k) + S

(k)
0 (T

(k)
0 )H

+K(k−1)(L
(k)
j )H +K

(k)
j (L(k−1))H −K(k)

j (L
(k)
j )H −K(k−1)(L(k−1))H

= S
(k)
j (T

(k)
j )H + [K(k−1) −K(k)

j ][L
(k)
j − L

(k−1)]H

from which (11) follows. Thus, rank
(
R(X

(k)
j )

)
≤ 2p + r since C

(k)
j and D

(k)
j are of

rank at most 2p+ r.

There are some possibilities for rank deficiencies in C
(k)
j and D

(k)
j . For instance,

consider C
(k)
j and observe that if K(0) = 0 we have rank

(
S
(1)
j

)
≤ r, and hence,

rank
(
C

(1)
j

)
≤ p+ r. Similarly, rank

(
D

(1)
j

)
≤ p+ r if L(0) = 0. Furthermore, simple

manipulations reveal that the low-rank factors of the Sylvester residual matrix can be
equivalently represented as

S
(k)
j = (A(k) − α(k)

j In)V
(k)
j , T

(k)
j = (B(k) − β(k)

j Im)HW
(k)
j .

Consequently, if αj ∈ Λ(A(k)) or βj ∈ Λ(B(k)), then (A(k)−α(k)
j In) or (B(k)−β(k)

j Im)

are singular, and, thus, S
(k)
j or T

(k)
j can be of rank smaller than r + p, see also [6,

Theorem 4] for a similar discussion. Of course, solving the inner Sylvester equation

exactly, i.e. S
(k)
j (T

(k)
j )H = 0, will also lead to rank

(
R(X

(k)
j )

)
≤ p.

The result of the above theorem can be equivalently proven as in [27, 12] by using
a Taylor expansion of R(X) of order two.

Computing the norm of R(X
(k)
j ) can then be done in the same fashion as (7) for

the Sylvester residual matrix:

‖R(X
(k)
j )‖ = ‖C(k)

j (D
(k)
j )H‖ =

√
λmax((C

(k)
j )HC

(k)
j (D

(k)
j )HD

(k)
j ),

where some of the matrices from the computation of ‖S(k)
j (T

(k)
j )H‖ can be reused for

forming (C
(k)
j )HC

(k)
j (D

(k)
j )HD

(k)
j . Hence, computing ‖R(X

(k)
j )‖ boils down to finding

the largest eigenvalue of a matrix of size r + 2p. The norm of the NARE residual
matrix can then be used to terminate the outer iteration, e.g., via

‖R(X
(k)
j )‖ ≤ τNM‖FGT ‖, 0 < τNM � 1. (12)
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This criterion can actually also be monitored during each single or every couple of
steps of the inner iteration. This allows to stop the fADI iteration when (12) is
satisfied, regardless of the magnitude of S(Xj). Especially in the last outer iteration
this can lead to a reduction of the number of carried out inner iterations and, thus, to
computational savings. Motivated by the expected quadratic convergence rate of the
Newton process, we propose to start monitoring the inner NARE residual norm when
‖R(X(k−1))‖ ≤ √τNM‖FGT ‖. Alternatively, one can terminate the inner iteration

when a stagnation of ‖R(X
(k)
j )‖ is detected.

For a given τNM one typically chooses τADI < τNM to ensure that the required
accuracy can be achieved. From the theory of inexact Newton methods it might
conceptually be possible to solve the Sylvester equation in each outer iteration less
accurately and still maintain quadratic convergence of the Newton process. In the
context of algebraic Riccati equations this appears to be less straightforward because
one has to additionally ensure that the Newton method still converges to the desired
minimal solution. Since this issue is, to the authors knowledge, not sufficiently well
understood and subject of ongoing research initiated, e.g., by [18], we will not further
consider inexact solves of the inner Sylvester equations in the sense τADI > τNM.

3.2.4 Shift Parameters for the Inner Iteration

As mentioned above, fADI requires two sets of shift parameters {α(k)
1 , . . . , α

(k)
J }, {β

(k)
1 , . . . , β

(k)
J }

corresponding to the matrices A(k) := A − K(k−1)QT and B(k) := B − P (L(k−1))H .
In Line 2 these are in each outer iteration step exemplary computed before the fADI
iteration is started. As proposed in [37], this could be relaxed by keeping the same
sets of shifts for a couple of outer iterations. Moreover, the shift computation can
be moved outside the Newton-loop such that only the shift parameters w.r.t. A(1)

and B(1) are used in the whole process. This might, depending on the magnitude of
the changes in K(k) and L(k), slow down the fADI convergence speed but save some
execution time due to skipping the shift generation. In case of an M-NARE, after con-
vergence the spectra of the matrices A(k), B(k) will be located in the right half plane
[13, Theorem 2.11.] such that it might be wise to neglect or negate the occasionally
computed anti-stable eigenvalues of the projected matrices.

The self-generating A-B-shift parameters from [7] which we mentioned before can be
included into LR-NADI-N in a straightforward manner by carrying out the projections
using the matrices A(k), B(k). The same remarks as above concerning computed stable
eigenvalues apply here as well.

An alternative but similar approach is based on the following proposition which is
established very easily.

Proposition 2 (Generalization of [4, Theorem 5(c)]). The error E(k)j := X − X(k)
j

at the inner and outer iteration steps j and k of Algorithm 4 is the solution of the
residual NARE

A
(k)
j E

(k)
j + E(k)j B

(k)
j − E(k)j PQTE(k)j + C

(k)
j (D

(k)
j )H = 0, (13)

where A
(k)
j := A−K(k)

j QT and B
(k)
j := B − P (L

(k)
j )H .
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The matrix

Ĥ
(k)
j :=

[
B

(k)
j PQT

C
(k)
j (D

(k)
j )H −A(k)

j

]
∈ Cn+m×m+n

is associated to (13). Let Q̂HĤ
(k)
j Q̂ = T̃ be the Schur form of Ĥ with Q̂T Q̂ = Im+n

and partition the Schur vectors as q̂h =
[
ûh

v̂h

]
, ûh ∈ Cm, v̂j ∈ Cn for h = 1 . . . ,m +

n. As Algorithm 4 converges, the lower left block of Ĥ
(k)
j will become smaller and

smaller, and in the limit (13) will have a trivial solution. Hence, the norms ‖v̂h‖
and ‖ûh‖ corresponding to the stable and, respectively, anti-stable eigenvalues of Ĥ

(k)
j

will also converge towards zero. Assume for simplicity that (13) is associated to a

nonsingular M-matrix. Then by [13, Theorem 2.11], Ĥ
(k)
j has exactly n stable and

m anti-stable eigenvalues which are also identical to the spectra −Λ(A
(k)
j −E

(k)
j PQT )

and Λ(B
(k)
j − PQTE

(k)
j ), respectively. In case of a singular M-matrix, there will be at

least one zero eigenvalue in one of these sets. Extending the approach mentioned in [4,
Section 3, Example 6-7], a natural idea is to select the next shift αj+1 as the negative

of the stable eigenvalue of Ĥ
(k)
j whose v̂h has the largest norm. Likewise, βj+1 is taken

as the anti-stable eigenvalue of Ĥ
(k)
j with the largest norm of ũh. However, since Ĥ

(k)
j

is a high-dimensional matrix, this generation of αj+1, βj+1 is not feasible. Instead we
propose to work with the reduced, at most r + p dimensional matrix

H̃
(k)
j :=

[
UHB B

(k)
j UB UHB PQ

TUA

UHA C
(k)
j (D

(k)
j )HUB −UHA A

(k)
j UA

]
,

where UA and UB are again orthogonal matrices associated to span(V
(k)
j ) and span(W

(k)
j ).

We will call the shift parameters obtained with this strategy H-shifts.

Since the matrices A(k), B(k) and Ĥ
(k)
j are in general not symmetric even if A, B

are, they might often have complex eigenvalues which in turn leads to complex shift
parameters, regardless of the actual generation strategy. The efficient handling of these
complex shift parameters can be carried out exactly as shown in [6] for the standalone
fADI for solving Sylvester equations. If this reformulated fADI method is used within

Algorithm 4 then next to the matrices Z
(k)
j , Γ

(k)
j , Y

(k)
j , S

(k)
j , T

(k)
j also K

(k)
j and L

(k)
j

will be real matrices. As before we keep the complex formulation to simplify the
presentation, but in our numerical examples the real fADI version [6, Algorithm 4]
will be used when needed.

3.2.5 Accelerating the Outer Iteration

In [37, 11] the outer iteration of the low-rank Newton-ADI method for GCAREs is
accelerated by performing a Galerkin projection onto the space spanned by the low-
rank solution factor. This often leads to an impressive convergence boost where the
number of outer iterations is reduced to one or two. This projection based approach
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can be incorporated into Algorithm 4. Let for this U
(k)
Z ∈ Cn×g and U

(k)
Y ∈ Cn×h

be rectangular, orthonormal matrices for the spaces spanned by the low-rank solution
factors Z(k) and Y (k) after the inner iteration in the outer iteration step k has been
finished. A clever orthogonalization routine should neglect nearly linearly independent

columns in Z(k), Y (k) such that g ≤ (r+p)j
(k)
it is possible, where j

(k)
it is the number of

performed inner iteration steps. Assuming we look for an approximate solution of (1)

of the form Xpr = U
(k)
Z X̃(U

(k)
Y )H for which the residual R(Xpr) satisfies the Galerkin

condition (U
(k)
Z )TR(Xpr)U

(k)
Y = 0. This is equivalent to X̃ ∈ Cg×h being the solution

of the projected NARE

ÃX̃ + X̃B̃ − X̃S̃T̃T X̃ + F̃ G̃T = 0 (14)

with Ã := (U
(k)
Z )HAU

(k)
Z , B̃ := (U

(k)
Y )HBU

(k)
Y , S̃ := (U

(k)
Y )HS, T̃ := (U

(k)
Z )HT ,

F̃ := (U
(k)
Z )HF , and G̃ := (U

(k)
Y )HG. Since (14) is of much smaller dimension than the

original NARE (1) it can be solve directly, e.g., by the Newton methods in Algorithms
1, 2, or by the Schur vector method [13, Listing 3.5]. The latter method can run into
numerical problems when (14) is associated to a singular M-matrix. In that case a
modified and more stable variant of the Schur vector method proposed in [23] should
be used.

Once X̃ is computed, the next outer iteration step k + 1 in Algorithm 4 is started

with the updated matrices Kpr := XprS = U
(k)
Z X̃S̃ and Lpr := XH

prT = U
(k)
Y X̃H T̃ . It

is important to note that the NARE residual R(Xpr) will no longer have the low-rank
structure (11) from Theorem 1. Hence, ‖R(Xpr)‖ has the be computed differently,
e.g., via applying a Lanczos process to R(Xpr)

HR(Xpr) to get an approximation of
the largest singular value which coincides with the spectral norm. Our numerical ex-
periments confirm that this Galerkin projection indeed decreases the required number
of outer iteration steps significantly. However, in contrast to the projection for the

self-generating shift parameters above which use V
(k)
j and W

(k)
j , computing orthonor-

mal bases for Z(k), Y (k) is usually noticeable more expensive because the number of
columns to be orthogonalized is a multiple of r + p. Hence, regarding the computa-
tional costs the acceleration of the outer iteration will only pay off if the costs for the
orthogonalization of Z(k), Y (k) are not too high. One obvious way to achieve this is
by keeping the number of processed inner iteration small, e.g., by using high quality
shift parameters. Another way is to employ sophisticated or implicit orthogonalization
routines [37].

Remark 1. The presented acceleration via a Galerkin projection is a straightforward
generalization of the idea in [9, Section 4], where the authors use basically the same
approach for accelerating the convergence of the fADI iteration. Hence, in principle one
could also implement the Galerkin projection within the inner iteration of Algorithm 4.
We refrain from this idea because of the following reasons. At first, since orthonormal
spaces for the low-rank solutions factors are required, one could have used a projection
method as inner iteration from the start. Popular representatives of these methods are
Krylov subspace methods, e.g., [17, 28, 15], which produce the required orthonormal
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matrices anyway. In [19] it is shown that the fADI method is in fact a rational Krylov
method, although it works without any orthogonalization. Hence, from this viewpoint
adding explicit orthogonal bases for the low-rank solution factors is not expected to
give significantly better results than the plain fADI iteration given in Algorithm 3. A
similar argumentation can, for the low-rank ADI iteration for Lyapunov equations, be
found in [43].

3.2.6 Complexity Assessment

Here we briefly give a rough estimate of the computational costs for Algorithm 4.
Suppose the linear systems with a single right hand side and coefficient matrices A, B
can be dealt with by sparse direct or iterative solvers. Let us therefore assume that the
computational costs for computing matrix vector products and solving linear systems
with A, B (as well as their shifted versions (A+βjIn)), (B+αjIm)) can be estimated by
O(c), where c = max(n,m). We begin by considering the inner iteration, where in each
inner iteration step of Algorithm 4 the shifted linear systems (Line 6) have to be solved.
If (9) is used, r + 2p right hand sides have to be processed. Constructing the small p
dimensional, dense matrix requires p2 inner products of vectors of length m or n. It
can therefore be done in p2O(c). Solving the corresponding linear systems by Gaussian
elimination in Line 6 adds further O(p3). We assume that p � min(m,n) and such
that O(p3) does not dominate O(c). The product QTVS is slightly more expensive
since it require p(r + p) inner products. Note, however, that both matrix-matrix
products of dense rectangular matrices can be performed in highly optimized BLAS
level-3 calls in contrast to the memory bandwidth limited operations with the sparse
quadratic matrices. Therefore, the relatively large constants in the corresponding O(c)

expressions will be observed much smaller in practice. Independent of this fact, V
(k)
j

and W
(k)
j are obtained at an approximate complexity O(c)(r + (r + 2)p+ p2), which,

since also r � min(m,n) is still O(c). In step k of the outer iteration j
(k)
it inner fADI

iteration steps to achieve the desired accuracy are required. Of course, these numbers
will in a reasonable implementation be restricted to a maximal number, say jmax inner
iteration steps. Hence, the computational effort of one complete run of fADI in a

single step of the outer iteration can be estimated as θ
(k)
inner := jmaxO(c). Thus, kit

outer iteration steps of Algorithm 4 are roughly of complexity θouter := kitjmaxO(c).
To conclude, the computational costs of LR-NADI-N are essentially dominated by the
solutions of the linear systems.

The costs for the shift parameter generation can also be influential. Generating
the heuristic shift parameters, as described above, before each other iteration step by
k+, k− steps of Arnoldi processes w.r.t. A(k), B(k) and their inverses will introduce
additional costs of order O(c)(k+ + k−)kit. Since solving linear systems is typically
significantly more costly than performing matrix vector products, using the A-B-, or
H-shifts is clearly cheaper although the computations for their generation appear more
often than for the heuristic shifts. For this we assume by a similar reasoning as above
that the involved eigenvalue computations (of order O(k3+ + k3−) and O((p+ r)3)) are
negligible.
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Using the Galerkin projection from Section 3.2.5 yields additional costs for the

construction of the orthonormal bases of Z
(k)
j , Y

(k)
j . This is because the number of

columns j
(k)
it (p + r) to be processed might still be smaller than min(n,m), but the

effort for the orthogonalization, estimated as

O(c)(j
(k)
it (p+ r))2 if QR-decompositions are used, which are often noticeable. This is

observed in one of the examples in Section 4.

3.3 Miscellaneous

3.3.1 Problems with Special Structure

In some applications, e.g. [29], the matrices A, B are of the form

A = Ψ− stT , B = Ψ̂− xyT , (15a)

where Ψ ∈ Rn×n, Ψ̂ ∈ Rm×m are diagonal matrices and s, t ∈ Rn, x, y ∈ Rm. In that
case the solutions of the linear system are, by another use of the Sherman-Morrison-
Woodbury formula, given by

V
(k)
j = ṼS + ṼK(Ip+1 − [t, T ]T ṼK)−1[t, T ]T ṼS ,

ṼS := (Ψ + βjIn)−1S
(k)
j−1, ṼK := (Ψ + βjIn)−1[s,K]

(15b)

and similarly for W
(k)
j . Since the inversions of Ψ + βjIn and Ψ̂ +αjIm come basically

for free, this leads to a very low computational effort for solving the linear systems
and, thus, also for the overall algorithm. More precisely, the complexity for solving
a linear system defined by a diagonal matrix of dimension n and r right hands sides

can described adequately by 2nr. Hence, obtaining V
(k)
j , W

(k)
j using (15b) will require

costs of order (2p+r+1)c with c = max(n,m) as in Section 3.2.6. Hence, the complete
algorithm will basically have a linear complexity. Tricks similar to (15b) have also been
applied in other methods for M-NAREs, see, e.g., [24, 29, 14, 34].

3.3.2 Generalized Equations

Everything we discussed so far can also be carried over to NAREs of the form

R(X) = FGT +AXC + EXB − EXPQTXH = 0 (16)

which we shall refer to as generalized NAREs (GNARE). For simplicity we assume
that E ∈ Rn×n and C ∈ Rm×m are nonsingular. We only list the changes in LR-
NADI-N (Algorithm 4) in Algorithm 5 which can be derived easily by following, e.g.,
the manipulations done in [6] for generalized Sylvester equations.

4 Numerical Experiments

The experiments are done in MATLAB® 8.0.0.783 on an Intel®Core�2 E8400 CPU
with 3.00 GHz and 4 GB RAM. The linear systems in the fADI method are solved with
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Algorithm 5: Low-Rank Newton-ADI for GNAREs

2’ Determine shifts {α(k)
1 , . . . , α

(k)
J }, {β

(k)
1 , . . . , β

(k)
J } w.r.t. the matrix pairs

(A(k), E) and (B(k), C).

6’ Solve (A(k) + β
(k)
j E)V

(k)
j = S

(k)
j−1, (B(k) + α

(k)
j C)HW

(k)
j = T

(k)
j−1 for

V
(k)
j , W

(k)
j .

8’ S
(k)
j = S

(k)
j−1 + γjEV

(k)
j , T

(k)
j = T

(k)
j−1 + γjC

TW
(k)
j , γj = −(β

(k)
j + α

(k)
j ).

11’ K(k) = EZ
(k)
j Γ

(k)
j ((Y

(k)
j )HP ) , L(k) = CTY

(k)
j (Γ

(k)
j )H(Z

(k)
j )HQ.

the sparse direct solvers provided by the MATLAB backslash operator. If applicable,
the Sherman-Morrison-Woodbury formula is used as explained in Section 3.2.1. The
outer iteration is terminated when ρ(k) := ‖R(X(k))‖/‖FGT ‖ ≤ τNM and, likewise,
the inner iteration is stopped using the criterion employed in Algorithm 4 with τADI

or when jmax iteration steps have been performed. Additionally, the scaled NARE
residual norm is also monitored within the inner iteration. If not stated otherwise,
the initial guess X(0) = 0 is used, i.e., K(0) = 0 and L(0) = 0. We use the following
examples for evaluating the performance of LR-NADI-N.

Example 1. As an adaptation of [13, Example 3.18] we take

A =

 3 −1
. . .

. . .
3 −1

−1 1.9

 ∈ Rn×n, B =


2 −1

3
. . .
. . . −1

−1 3

 ∈ Rm×m,

F =

[
F1

0

]
∈ Rn×r, F1 =

−1 −1. . .
. . .
−1 −1
−0.9

 ∈ Rr×r, G = Im,r,

P =

[
P1

0

]
∈ Rm×p, P1 =

 1
1 1

. . .
. . .
1 1

 ∈ Rp×p, Q = In,p.

with n = 30000, m = 20000, r = 3, and p = 5.

Example 2. A setting from [29] which inherits the structure (15a) with

Ψ = diag (δ1, . . . , δn) , Ψ̂ = diag
(
δ̂1, . . . , δ̂n

)
,

t = x = F = G = (q1, . . . , qn)T , s = y = P = −Q = 1n,

δi =
1

cξi(1 + ν)
, δ̂i =

1

cξi(1− ν)
, qi =

ωi
2ξi

for i = 1, . . . , n.

There, 0 < c ≤ 1, 0 ≤ ν < 1, ξi, ωi are the quadrature nodes and weights corresponding
to a Gaussian quadrature on [0, 1], and 1h denotes the column vector of length h where
all entries are equal to one. It obviously holds r = p = 1 and the other dimension is set
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to n = m = 20000. We set the other defining constants to c = 0.5 and ν = 0.3. The
obtained NARE is an M-NARE and the relation (15b) is used to solve the occurring
shifted linear systems.

Example 3. Consider 5-point, centered finite difference discretizations of the opera-
tors

A(x) := ∆x+ eξ1ξ2
∂x

∂ξ1
+ sin(ξ1ξ2)

∂x

∂ξ2
+ (ξ22 − ξ21)x,

B(x) := ∆x+ 100eξ1
∂x

∂ξ1
+ 10(ξ1 + ξ2)

∂x

∂ξ2
+
√
ξ12 + ξ22x

for x = x(ξ1, ξ2) defined on Ω = (0, 1)2 with homogeneous Dirichlet boundary con-
ditions. The matrices A and B are obtained from using 110 and, respectively, 90
equidistant grid points for each spatial dimension such that n = 12100, m = 8100.
The matrices F, G, P, Q are random matrices with uniformly distributed entries and
r = 10 and p = 5. This example is very close to the Sylvester equations used in [28,
Example 2].

We were not able to acquire implementations of other methods for large-scale NAREs,
e.g., [33], yet. Therefore, we leave the comparison to other methods for future work.

4.1 Influence of Different Shift Generation Strategies

At first we test the performance of LR-NADI-N for these examples when different
shift strategies for the inner fADI iteration are used. We employ the heuristic Ritz
value based shifts [9], the A-B-shifts [7], as well as the Ĥ-shifts introduced above in
Section 3.2.4. Other approaches, e.g. the one proposed in [38, Algorithm 2.1] or the
parsyl1 routine provided in [42] were not able to compete with this those strategies.
The necessary orthonormal bases for the A-B-, and H-shifts were constructed using
the MATLAB built-in orth routine. The setup parameters as well as the results are
summarized in Table 1. There, heur(k+, k−) refers to the heuristic shifts mentioned
above which are generated by using k+ and k− Ritz and inverse Ritz values. The final
rank, rf = rank

(
X(kit)

)
of the obtained approximate solution is also listed.

Apparently, regardless of the used shift parameters strategy, the LR-NADI-N algo-
rithm is able to compute low-rank solutions of the the large-scale NAREs in a small
amount of time.

For Example 1, the A-B-shifts required the smallest number of inner iterations jit,
closely followed by the H-shifts. This evidently yields, compared to the heuristic shifts,
smaller execution times.

Similar observations can be made for Example 2, where the heuristic shift approach
required a high numbers k+, k− of Ritz values to provide convergence of the inner
iteration within jmax steps. Due to the computation costs for generating the heuristic
shifts, and because the required inner iteration steps are still larger compared to the

1Available at http://extras.springer.com/2013/978-1-4614-5121-1.
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Table 1: Results and setup parameters for the examples using different shift strategies
for the inner iteration: tolerance for outer and inner iteration τNM, τADI,
maximum number of fADI iteration steps jmax, required outer and inner
iteration steps kit, jit. The numbers in brackets behind jit are the average
numbers of inner iterations. We also list the scaled NARE residual norm
ρ(kit), the rank rf of the approximated solution, as well as the computation
time spend in seconds.

Ex. τNM, τADI, jmax shifts kit jit (avg.) ρ(kit) rf time

1 10−10, 10−12, 40

heur(10,10) 5 77 (15.4) 1.44·10−12 11 16.7

A-B-shift 5 48 ( 9.6) 1.41·10−11 11 7.7

H-shift 5 55 (11.0) 1.11·10−13 11 9.6

2 10−9, 10−10, 300

heur(50,40) 3 413 (137.7) 9.26·10−10 38 16.2

A-B-shift 3 236 (78.7) 5.28·10−10 40 2.8

H-shift 3 290 (96.7) 2.11·10−10 39 3.9

3 10−8, 10−10, 100

heur(10,10) 11 408 (37.1) 5.23·10−9 120 177.9

A-B-shift 11 476 (43.3) 3.07·10−9 126 179.5

H-shift 11 621 (56.5) 4.34·10−9 126 251.0

A-B-, and H-shifts, this approach leads to significantly higher computation times. The
A-B-shift strategy leads again to the best performance.

For this M-matrix example the obtained low-rank approximations

X(k) = Z
(k)

j
(k)
it

Γ
(k)

j
(k)
it

(
Y

(k)

j
(k)
it

)T
, k = 1, . . . , kit

were indeed nonnegative matrices. Hence, as for the Algorithms 1 and 2, the LR-
NADI-N method produced a sequence of nonnegative approximations. The low-rank
solution factors alone were, however, not nonnegative.

Example 3 appears to be the hardest one for the LR-NADI-N method resulting in
the largest number of outer iteration steps kit. The usage of an appropriately chosen
initial guess X(0) could be of great value. Here, the heuristic shifts lead to a slightly
better performance of the inner iteration compared to the A-B-shifts. The latter ones
can, however, be generated cheaper such that the computation time is still smaller than
for the heuristic shifts. We observed that the A-B-, and H-shifts lead in some outer
iteration steps to a highly oscillatory behavior of the inner Sylvester residual norm.
A similar observation is mentioned in [6, Section 3.6]. The H-shifts had difficulties to
steer the inner iteration towards convergence within jmax steps. This was especially
apparent in the early stage of the outer iteration when the approximate solution is
still too far from the real solution. Hence, the H-shifts lead to the largest number of
total inner iterations jit as well as the highest execution times.

In Figure 1 we illustrate these issues. The left plot shows the progress of the scaled
inner Sylvester residual norm at the fifth outer iteration for all three shift approaches.

The right picture shows how the number of total required inner steps j
(k)
it at outer
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Figure 1: Problematic behavior of the inner iteration for Example 3. Left plot: History

of scaled Sylvester residual norm ‖S(5)j ‖/‖FGT ‖ of fADI in the fifth outer

iteration step. Right plot: number of required inner iteration steps j
(k)
it

against outer iteration index k.
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iteration step k changes as the outer iteration proceeds.
The used shift parameters strategy does largely not effect the progress of the outer

iteration, as is it can be seen by the constant number of required outer iteration steps
kit. The exception is the last outer iteration step, where the final obtained accuracy
differs to some extend. It appears that the H-shift lead to slightly smaller residual
norms, at the expense of an often slower convergence of the inner iteration compared
to the A-B-shifts. It is also noteworthy that in all examples the estimated rank r̃ of
the approximate solution is smaller than the column dimension of Zkit , Y kit . This
points towards the conclusion that the used shift parameters approaches used are not
yet the best possible ones. As we remarked earlier, the numerical efficient generation
of high quality shift parameters for fADI is in some aspects still under current research.
One could include an additional rank truncation step by, e.g., employing the approach
given in [31] after or in between the outer iteration steps to throw away nearly linearly
dependent columns in Zkit , Y kit and free up the unnecessary storage.

4.2 Effect of the Galerkin Acceleration in the Outer Iteration

Now we repeat the complete above example series but employ the Galerkin acceler-
ation described in Section 3.2.5 in each outer iteration step after the inner iteration
is finished. The required orthonormal bases of Z(k), Y (k) are also computed with the
orth routine. The small, projected NAREs are dealt with by a basic version of the
Newton-Kleinman method (Algorithm 2). The settings for τNM, τADI, jmax and for
the shift parameter generation are kept unchanged. The results are summarized in
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Table 2: Results for the examples with Galerkin projection in each outer iteration step.

Ex. τNM, τADI, jmax shifts kit jit (avg.) ρ(kit) rf time

1 10−10, 10−12, 40

heur(10,10) 1 11 (11.0) 3.59·10−12 13 2.2

A-B-shift 1 10 (10.0) 1.81·10−11 12 1.2

H-shift 1 10 (10.0) 1.03·10−13 12 1.3

2 10−9, 10−10, 300

heur(50,40) 2 265 (132.5) 9.52·10−10 38 18.1

A-B-shift 2 147 (73.5) 5.48·10−10 40 4.1

H-shift 2 150 (75.0) 1.74·10−10 40 4.5

3 10−8, 10−10, 100

heur(10,10) 2 79 (39.5) 5.23·10−9 120 27.4

A-B-shift 1 41 (41.0) 3.53·10−9 129 9.5

H-shift 1 39 (39.0) 2.34·10−9 126 8.5

Table 2. It is apparent that the Galerkin projection reduces the number of required
outer iteration steps down to one or two. This naturally also leads to a reduction of
the computation time compared to the results in Table 1. The exception is Example
2, where the acceleration of the outer iteration does not pay off because the numer-
ical costs of the required orthogonalization procedure overwhelm the extraordinarily
cheap solution of the linear systems by (9). Employing more efficient orthogonalization
methods than orth or using an implicit orthogonalization can help to reduce this cost.

5 Conclusions

We investigated the numerical solution for large NAREs by a low-rank Newton iter-
ation. Motivated by similar approaches for other matrix equations, the core idea is
to approximate the NARE solution by a factorization of very low rank. In each step
of the Newton iteration a large Sylvester equation has to be solved, for which we em-
ployed the fADI method [9]. It efficiently computes low-rank approximate solutions of
the Sylvester equations. Several improvements known for fADI [6] have been adopted
in this combination of Newton scheme and fADI. For instance, the residual of the
NARE w.r.t. the approximate solution at any stage of the iterative process can be
expressed explicitly as low-rank factorization which allows the cheap computations of
its norm. The efficiency of the fADI method heavily relies of certain shift parameters
for which we adapted existing strategies known for the fADI itself [9, 7], but also for
the Newton-ADI for CAREs [4]. An acceleration strategy for the Newton iteration
based on a Galerkin projection [11] has also been presented and shows remarkable
speedups in the execution time at essentially no accuracy loss.

The proposed Newton-ADI method for NAREs does in principle only require that
linear systems of equations with the coefficient matrices defining the NARE can be
solved. It does not rely on a certain additional structures of the coefficient matrices.
However, special cases given in some applications [29], e.g. diagonal matrices with
a low-rank update, can be incorporated right away. Numerical experiments showed
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that the proposed method can solve large-scale NAREs very efficiently in a short
amount of time. Using the Galerkin acceleration can reduce the computation time
even further. Although the proposed shift parameter strategies for the fADI iteration
worked satisfactory there is still room for improvement. The numerically feasible
generation of high quality shift parameters for ADI based methods for various kinds
of matrix equations is a currently active research topic [7]. strategy
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