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Abstract

Nowadays machine engineers heavily depend on mathematical models for sim-
ulation, optimization and controller design. In either of these tasks reduced
dimensional formulations are obligatory in order to achieve fast and accurate re-
sults. Usually, the structural mechanical systems of machine tools are of second
order type. However, they become descriptor systems when extra constraints are
imposed to the systems. This article discusses efficient techniques of Gramian
based model order reduction for second order index-1 descriptor systems. The
primary focus is on second order to second order reduction techniques for such
systems, where the stability of the system can be preserved. The methods are
applied to a structural FEM model of a micro-mechanical piezo-actuators based
adaptive spindle support (ASS). Numerical results illustrate the efficiency of the
techniques.

1 Introduction

This article discusses efficient techniques for model order reduction (MOR) of large-
sparse second order index-1 descriptor systems. Mainly, we focus on second order to
second order balancing of such systems, so that we can preserve the structure of the
original model. We consider the second order systems of the form[

M1 0
0 0

]
︸ ︷︷ ︸

M

[
z̈(t)
ϕ̈(t)

]
+

[
D1 0
0 0

]
︸ ︷︷ ︸

D

[
ż(t)
ϕ̇(t)

]
+

[
K11 K12

KT
12 K22

]
︸ ︷︷ ︸

K

[
z(t)
ϕ(t)

]
=

[
B1

B2

]
︸ ︷︷ ︸

H

u(t),

y(t) =
[
BT

1 BT
2

]︸ ︷︷ ︸
HT

[
z(t)
ϕ(t)

]
+ Dau(t),

(1)

where z(t) ∈ Rn1 , ϕ(t) ∈ Rn2 are the states,M,D andK ∈ Rn×n are the finite element
method (FEM)-matrices, H ∈ Rn×p is the input matrix and the output matrix is HT ,
i.e., we assume collocated actuators and sensors. The corresponding control input and
measurement output to the system are respectively denoted by u(t) and y(t). The
matrix Da ∈ Rm×p represents the direct feedthrough from the input to the output.
The matrices M,D,K, and H are sparse. We assume the block matrix K22 to be
nonsingular. We call (1) an index-1 system due to the analogy to first order index-1
(see the next section) linear time-invariant (LTI) systems [29]. The dynamical system
(1) usually arises in different branches of engineering such as mechanics [11], where an
extra constraint is imposed in order to control the dynamic behavior of the systems,
or mechatronics where mechanical and electrical components are coupled with each
other. In the specific case of the model example we use in the numerical experiments,
the index-1 character results from the multiphysics application with very different
timescales. This allows to treat one variable by a stationary analysis, while the other
is covered fully dynamic.

If the model is very large, performing the simulation with it has prohibitively expen-
sive computational effort, or is simply impossible due to the limited computer memory.
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Therefore, reducing the size of the system is unavoidable for fast simulation. A classi-
cal approach to find a reduced order model (ROM) of second order index-1 descriptor
systems is first to rewrite (1) in first-order form, then model order reduction (MOR)
techniques are applied to find a reduced first-order state space system [29, 28]. In this
circumstance, since the structure of the original model is destroyed, one can not go
back to the second order model again if it is desired in the subsequent computations.

During the recent years structure preserving MOR of second order systems received
a lot of attention, see e.g., [24, 6, 1, 26] and the references therein. But all of those
approaches are only for standard second order systems. As in our earlier work [28, 29, 7]
on this model, also in this article our goal is to apply MOR techniques to the high
dimensional model in (1) and replace it by the substantially lower-dimensional model

M̂ ¨̂z(t) + D̂ ˙̂z(t) + K̂ẑ(t) = Ĥu(t),

ŷ(t) = ĤT ẑ(t) + D̂su(t),
(2)

where M̂, D̂, K̂ ∈ Rl×l, Ĥ ∈ Rl×p and l � n. It is required that ‖y − ŷ‖ is small and
the ROM preserves necessary properties, e.g., stability, passivity and symmetry of the
original model.

This paper is concerned with balancing based structure-preserving MOR of the sec-
ond order index-1 system (1). The central idea of this method is to truncate the less
important states from the system, which correspond to the negligible system Hankel
singular values (HSVs). The system Hankel singular values are the square roots of
the eigenvalues of the product of the controllability and observability Gramians [13]
or equivalently the singular values of the product of the two Gramina factors [27].
A system is balanced if both the Gramians are identical and diagonal with decreas-
ingly ordered entries which are the systems HSVs. Therefore, as a primary task in
this method, by balancing the system one can easily identify which states are to be
truncated.

It is known that the most expensive part in the balancing based MOR method is
to solve the two Lyapunov equations determining the system Gramian factors which
are the key ingredients in the derivation of the truncating projection matrices for
forming the reduced order model. For a large sparse LTI system LRCF-ADI (low-
rank Cholesky factor-alternating direction implicit) [5, 22] is one efficient method to
compute these Gramian factors. We have already investigated this in [7] for a large
sparse second order index-1 descriptor system. In contrast to [7], in this paper the
LRCF-ADI method is updated by exploiting the symmetry properties of the systems,
and computing real Gramian factors applying the ideas from [2]. Moreover, we use
the residual factor based stopping criterion [3] to stop the LRCF-ADI algorithm. The
presented algorithm to compute the low-rank Gramian factor is based on the second
order index-1 descriptor system (1).

This article also investigates the model reduction of symmetric second order index-
1 descriptor systems via projecting the system onto the dominant eigenspace of the
system Gramian. In fact the transformations to obtain the ROM can be computed
cheaply from the low-rank Gramian factors. This idea is originally found in [23, 17]
for standard state space systems. Here, we show that the ROM obtained in this way
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preserve the symmetry of the original system. The proposed techniques are applied
to a piezo-actuated structural FEM model of a certain building block of a parallel
kinematic machine tool. Numerical results illustrate the efficiency of the techniques
comparing with the standard balanced truncation.

2 Model example

We investigate a part of the experimental machine tool as shown in Figure 1. It

Figure 1: Piezo-actuator based mechanical system

is a complex system, where a piezo-actuator based adaptive spindle support (ASS)
is mounted in a parallel kinematic machine in order to gain additional positioning
freedom during machining operations (see [10, 20] for more details). The impor-
tant purpose of the piezo-sensor and -actuator is to control active vibration or shunt
damping so that the machine can ensure a high quality product. For analyzing the
mechanical design and performance of the ASS, a mathematical model as in (1) is
formed using the finite element method, where M, D and K are the mass, damping
and stiffness matrices, respectively. The time dependent state vector z(t) consists
of the components of mechanical displacements and ϕ(t) are the electrical charges.
By separating the mechanical and electrical parts, it is clear that M1, D1 and K11

are respectively, mechanical mass, damping and stiffness matrices. The matrix K is
composed of mechanical (K11), electrical (K22) and coupling (K12) terms. The gen-
eral force quantities (mechanical forces and electrical charges) are chosen as the input
quantities u, and the corresponding general displacements (mechanical displacements
and electrical potential) are the output quantities y. The total mass matrix contains
zeros at the locations of electrical potential. More precisely, the electrical potential
of piezo-mechanical systems (degrees of freedom (DoF) for the electrical part) is not
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associated with an inertia. The equation of motion of the mechanical system in (1)
can be found in [21]. This equation results from a finite element discretization of the
balance equations. For piezo-mechanical systems these are the mechanical balance of
momentum (with inertia term) and the electro-static balance. From this, the electrical
potential without inertia term is obtained. Thus, for the whole system (mechanical and
electrical DoF) the mass matrix has rank deficiency. There are many ways to trans-
form (1) into equivalent first order form [28]. In this paper we prefer the following
representation:

E ξ̇(t) = Aξ(t) + Bu(t), y(t) = BT ξ(t) +Dau(t). (3)

where

E =

 0 M1 0
M1 D1 0
0 0 0

 , A =

M1 0 0
0 −K11 −K12
0 −KT

12 −K22

 , B =

 0
B1

B2

 , and ξ(t) =

 ż(t)z(t)
ϕ(t)

 .
(4)

The advantage of this representation is that if the system (1) is symmetric then (3) is
symmetric. Moreover, the input-output matrices are transpose of each other.

3 The BT method for second order systems and related
issues

In this section we briefly review the BT method for second order LTI systems

Mẍ(t) +Dẋ(t) +Kx(t) = Hu(t),

y(t) = Lx(t) +Dsu(t),
(5)

where M,D and K are nonsingular, and x(t) is the n dimensional state vector. Trans-
forming (5) into first order form yields[

0 M
M D

]
︸ ︷︷ ︸

E

[
ẍ(t)
ẋ(t)

]
︸ ︷︷ ︸
ζ̇(t)

=

[
M 0
0 −K

]
︸ ︷︷ ︸

A

[
ẋ(t)
x(t)

]
︸ ︷︷ ︸
ζ(t)

+

[
0
H

]
︸︷︷︸
B

u(t)

y(t) =
[
0 L

]︸ ︷︷ ︸
C

[
ẋ(t)
x(t)

]
+Dsu(t).

(6)

The controllability Gramian Wc ∈ R2n×2n and the observability Gramian Wo ∈
R2n×2n for the system (6) are the solutions of the Lyapunov equations

AWcE
T + EWcA

T = −BBT and ATWoE + ETWoA = −CTC. (7)
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The Gramians can also be defined from a physical point of view. Defining an energy
function

J(u) =

∫ 0

−∞
u∗(t)u(t)dt,

Golver in [13] shows that the optimal value of the minimization problem

min
u

J(u)

s. t. Eζ̇(t) = Aζ(t) +Bu(t), ζ(0) = ζ0,
(8)

is

ζT0 W
−1
c ζ0. (9)

Which is the required minimal energy to steer the state of the system (6) from t = −∞
to the state ζ0 at time t = 0. Based on the optimization problem (8) the Gramians
for the second order system (5) are first defined in [19]. Let us consider the following
optimization problems

min
ẋ0

min
u

J(u)

s. t. Mẍ(t) +Dẋ(t) +Kx(t) = Hu(t), ẋ(0) = ẋ0,
(10)

and
min
x0

min
u

J(u)

s. t. Mẍ(t) +Dẋ(t) +Kx(t) = Hu(t), x(0) = x0.
(11)

Due to the structure of the system (5) the controllability Gramian can be compatibly
partitioned as

Wc =

[
Pv Po
PTo Pp

]
.

The authors in [19] (see also [8]), prove that the optimal solution to the problem (10) is
ẋ0P

−1
v ẋ0, which is the minimal energy required to reach the given velocity ẋ0 over all

past inputs and initial values. The solution of the problem (11) is x0P
−1
p x0, which is the

minimal energy required to reach the given position x0 overall past inputs and initial
values. Here Pv and Pp are defined as second order controllability velocity Gramian
and position Gramian, respectively. Analogously, one can interpret the observability
Gramian Wo by using duality arguments. Then partitioning Wo as

Wo =

[
Qv Qo
QTo Qp

]
,

it can be proven that Qv and Qp are respectively, the observability velocity Gramian
and position Gramian.
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We consider R as a low rank controllability Gramian factor such that Wc ≈ RRT .
The structure of the first order system allows us to split R as

R =
[
RTv RTp

]T
. (12)

Therefore, the controllability Gramian can be written as

Wc =

[
Pv Po
PTo Pp

]
≈ RRT =

[
Rv
Rp

] [
RTv RTp

]
=

[
RvR

T
v RvR

T
p

RpR
T
v RpR

T
p

]
.

Hence we have

Pv ≈ RvRTv and Pp ≈ RpRTp .

Similarly, considering Wo ≈ LLT we have

Qv ≈ LvLTv and Qp ≈ LpLTp ,

where L =
[
LTv LTp

]T
. Apparently, Rv and Rp are obtained from the first n rows and

the lower n rows of R, respectively. Analogously, Lv and Lp can be obtained from the
first n rows and the lower n rows of the low-rank observability Gramian factor L. Once
we have Rα and Lβ where α ∈ {v, p} and β ∈ {v, p}, the balancing transformation can
be formed using the SVD

RTαMLβ = UαβΣαβV
T
αβ =

[
Uαβ,1 Uαβ,2

] [Σαβ,1
Σαβ,2

] [
V Tαβ,1
V Tαβ,2

]
, (13)

and defining

TL := LβUαβ,1Σ
− 1

2

αβ,1, TR := RαVαβ,1Σ
− 1

2

αβ,1. (14)

Here Uαβ,1 and Vαβ,1 are composed of the leading k columns of Uαβ and Vαβ , respec-
tively. And Σαβ,1 is the first k × k block of the matrix Σαβ . Now, the reduced order
model as in (2) can be formed by constructing the matrices of reduced dimensions:

M̂ = TTLM1TR, D̂ = TTLD1TR, K̂ = TTLKTR, Ĥ = TTLH, and L̂ = LTR. (15)

When α = β = v, the balancing technique by the above procedure is called velocity-
velocity (VV) balancing. Likewise position-position (PP) balancing is obtained if
α = β = p, velocity-position (VP) balancing is obtained if α = v, β = p and position-
velocity (PV) balancing is obtained if α = p, β = v. See, e.g., [24] for more details.

The fundamental draw back of the balancing based model reduction is to compute
the two Gramian factors by solving two respective Lyapunov equations. Among several
approaches the low-rank Cholesky factor alternating direction implicit (LRCF-ADI)
method has been developed that allow to exploit the fact, that often all coefficient
matrices are sparse and the number of inputs and outputs are very small compared to
the number of DoFs. We refer the reader to [5] and the references therein for details
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Algorithm 1: GLRCF-ADI for solving FXĚT + ĚXFT = −NNT .

Input : F, Ě, N , shift parameters {µi}Ji=1 ⊂ C−.
Output: Z = Zi such that X ≈ ZZT .

1 W0 = N, Z0 = [ ], i = 1.

2 while ‖WT
i−1Wi−1‖ ≥ tol or i ≤ imax do

3 Vi = (F + µiĚ)−1Wi−1 for Vi.
4 if Im (µi) = 0 then
5 Zi = [Zi−1,

√
−2µiVi].

6 Wi = Wi−1 − 2 Re (µi) ĚVi.

7 else

8 γi = 2
√
−Re (αi), δi = Re (αi)

Im (αi)
.

9 Zi+1 = [Zi−1, γj (Re (Vi) + δj Im (Vi)) , γi
√

(δ2i + 1) · Im (Vi)].

10 Wi+1 = Wi−1 + γ2i Ě (Re (Vi) + δi Im (Vi)).
11 i = i+ 1

12 i = i+ 1

on the LRCF-ADI approach. Recently this prominent method has been updated by
exploiting the ideas of computing real low-rank Gramian factors [2] and the low-rank
residual based stopping criterion. For convenience the updated version of the LRCF-
ADI (GLRCF-ADI) is summarized in Algorithm 1.

This algorithm either successively computes Z = R for (Ě, F,N) = (E,A,B) or
Z = L for (Ě, F,N) = (ET , AT , CT ). In this algorithm {µi}Ji=1 are called the optimal
ADI shift parameters or simply shift parameters [22]. A set of optimal shift parameters
is necessary for fast convergence of the algorithm. Although several strategies are
available in the literature (see for example [4] and the references therein), in this article
we restrict ourselves to the heuristic approach introduced in [22] and an adaptive choice
following [4]. The algorithm can be stopped by using either a user defined tolerance
tol or considering a maximum number of iteration steps imax.

4 Model reduction of second order index-1 systems

This section discusses the balancing based model reduction methods for the second
order index-1 descriptor system (1). The first subsection shows, how one can apply
balanced truncation to the system (1). While in the next subsection we discuss that
the balancing based model reduction can be performed via projecting the system onto
the dominant eigenspace of the systems Gramian.
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type SVD left proj. TL right proj. TR

VV ZTv M1Zv = UvvΣvvU
T
vv ZvUvv,1Σ

− 1
2

vv,1 ZvUvv,1Σ
− 1

2
vv,1

PP ZTpM1Zp = UppΣppU
T
pp ZpUpp,1Σ

− 1
2

pp,1 ZpUpp,1Σ
− 1

2
pp,1

VP ZTv M1Zp = UvpΣvpV
T
vp ZpUvp,1Σ

− 1
2

vp,1 ZvVvp,1Σ
− 1

2
vp,1

PV ZTpM1Zv = UpvΣpvV
T
pv ZvUpv,1Σ

− 1
2

pv,1 ZpVpv,1Σ
− 1

2
pv,1

Table 1: Balancing transformations for the second order index-1 descriptor systems

4.1 Balanced truncation

First of all transform the second order index-1 descriptor system (1) into a standard
system (5) where

M = M1, D = D1, K = K11 −K12K
−1
22 K

T
12,

H = B1 −K12K
−1
22 B2, L = HT and Ds = Da + C2K

−1
22 B2.

(16)

The first order representation of this standard second order model is obtained as in
(6). Since the first order form is symmetric (AT = A, ET = E) and the input-output
matrices are transposes of each other (C = BT ), the controllability Gramian and the
observability Gramian coincide, i.e., Wc = Wo = W and only one Lyapunov equation

AWE + EWA = −BBT (17)

needs to be solved. Therefore we can consider[
RTv RTp

]T
=
[
LTv LTp

]T
=
[
ZTv ZTp

]T
. (18)

Once we have Zv and Zp by solving (17), following (13-14) we compute four types
of balancing transformations as shown in the Table 1. Now using these projectors
we obtain four types of reduced order model as in (2). In each case the reduced
dimensional matrices are constructed as:

M̂ = TTLM11TR, D̂ = TTLD11TR,

K̂ = TTLK11TR − TTLK12K
−1
22 K

T
21TR,

Ĥ = TTLB1 − TTLK12K
−1
22 B2,

D̂s = Da + C2K
−1
22 B2.

(19)

4.2 Projecting onto dominant eigen-spaces of the Gramian (PDEG)

The model reduction technique via projecting the system onto the dominant eigenspace
of the systems Gramian is first introduced in [23]. However, there the proposed algo-
rithm is for standard state space systems. Here we extend the idea for the specially

8



Algorithm 2: BT-MOR for second order index-1 system (SR method).

Input : M1, D1, K11,K12,K22, B1, B2, and DS from (1).
Output: M̂ , D̂, K̂, Ĥ and D̂a as in (2).

1 Solve Lyapunov equation (17) to compute Zv and Zp.
2 Compute four types of transformations following Table 1

3 Construct M̂ , D̂, K̂, Ĥ, and D̂s following (19)

structured second order index-1 systems. We already have defined the controllability
velocity Gramian Pv and the observability velocity Gramian Qv in Section 3. For
our special model, they are equal and we assume that Pv = Qv = Gv. Since Gv is
symmetric positive definite (SPD), it has a symmetric decomposition, i.e.,

Gv = RvRTv . (20)

The thin SVD of Rv is

Rv = UvΣvV
T
v , (21)

where the diagonal matrix Σv consists of the decreasingly ordered singular values σvi ,
i = 1, 2, . . . , n1 of Rv. Using this SVD we obviously have

Gv = (UvΣvV
T
v )(VvΣvU

T
v ) = UvΣ

2
vU

T
v . (22)

This is also an eigenvalue decomposition, Σ2
v is a diagonal matrix whose entries are

the decreasingly ordered eigenvalues of Gv and Uv is the orthogonal matrix consisting
of the eigenvectors corresponding to the eigenvalues. We observe that Uv is the left
singular vector matrix of Rv. Hence Uv is obtained by the SVD of Rv. Now identifying
the k largest eigenvalues of Gv, i.e., the k largest singular values of Rv, construct

Uk =
[
u1, u2, . . . , uk

]
, (23)

where ui, i = 1, 2, . . . , k are the eigenvectors corresponding to the eigenvalues σ2
i .

Then we construct the k dimensional reduced order model (2), by forming matrices
as in (19) where TL = TR = Uk. Again, if we consider Zv as a low-rank Gramian
factor of the velocity Gramian such that Gv ≈ ZvZTv , then we can compute Uk in (23)
identifying the k largest left singular vectors of the SVD of Zv.

The above procedure that constructs a k dimensional ROM (2) via projecting the
system onto the dominant eigen-spaces of the velocity Gramian Gv is summarized in
Algorithm 3. However, Algorithm 3 can also be used to obtain a k dimensional ROM
via projecting the system onto the eigen-space of the position Gramian Gp, where
Pp = Qp = Gp. In that case we will compute Zp, the position Gramian factor such
that Gp = ZpZ

T
p in Step 2. Note that the pre-assigned order k of the reduced order

model should satisfies the inequality

k ≤ dim(Zv), or k ≤ dim(Zp).
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Algorithm 3: BT-MOR for second order index-1 system (PDEG method)

Input : M1, D1, K11,K12,K22, B1, B2 from (1) and k (dimension of ROM).
Output: M̂ , D̂, K̂, Ĥ and D̂s as in (2).

1 Compute Zv by solving Lyapunov equation;
2 Construct Uk as in (23) using SVD of Zv;
3 Following (19) where TL and TR are replaced by Uk, form reduced

dimensional matrices M̂ , D̂, K̂, Ĥ and D̂s

The transformation Uk is called contra-gradient transformation [16], since using this
transformation we can show that

UTk GvUk = UTk UvΣ
2
vU

T
v Uk

= UTk
[
Uk Un1−k

] [Σ2
k 0

0 Σ2
n1−k

] [
UTk
UTn1−k

]
Uk

=
[
Ik 0

] [Σ2
k 0

0 Σ2
n1−k

] [
Ik
0

]
= Σ2

k,

i.e., the Gramian of the reduced model is diagonal. That is Uk is the balancing
transformation. It can easily be shown that M̂ , D̂ and K̂ are all symmetric. Moreover,
the ROM preserves the definiteness of the original system. Therefore, the stability is
also preserved.

5 Compute the low-rank Gramian factors for the second
order index-1 systems

This section concentrates on the efficient computation of Zv and Zp as defined above
for the second order index-1 DAEs (1) by solving the Lyapunov equation (17). In
contrast to our previous work [29] we want to apply Algorithm 1 with all its efficiency
improving features. In the following we discuss some computational strategies.

We know that the most expensive part in the LRCF-ADI iteration is to solve a linear
system in each iteration step. The linear system can be solved directly or iteratively.
In either cases, for our problem, avoiding the Schur complement formulation, i.e.,
(K11−K12K

−1
22 K

T
12) and exploiting the second order block structure we can accelerate

the computation. In the following we discuss these issues.
When we solve the Lyapunov equation (17) by applying Algorithm 1, in the i−th

step (see Step 3 in Algorithm 1), we need to compute Vi = (A + µiE)−1Wi−1, where
E and A are defined in (6). Let us consider

(A+ µiE)−1Wi−1 = χ,

10



or

(A+ µiE)χ = Wi−1. (24)

Which is equivalent to[
M µiM
µiM µiD −K

] [
χ1

χ2

]
=

[
W

(1)
i−1

W
(2)
i−1

]
. (25)

Now, inserting M , D and K from (16), linear system (25) implies[
M1 µiM1

µiM1 µiD1 − (K11 −K12K
−1
22 K

T
12)

] [
χ1

χ2

]
=

[
W

(1)
i−1

W
(2)
i−1

]
. (26)

It can easily be shown that reversing the Schur complement instead of solving the
linear system (26) we can solve the linear system M1 µiM1 0

µiM1 µiD1 −K11 −K12

0 −KT
12 −K22

χ1

χ2

Γ

 =

W (1)
i−1

W
(2)
i−1
0

 , (27)

for
[
χT1 , χ

T
2

]T
. Although the dimension of the matrices in (27) is higher than that of

(26), it is sparse and therefore it can be treated using a sparse direct solver [9, Ch. 5],
or any suitable iterative solver [25]. The computation can be accelerated further by
splitting the linear system (27) as follows:
A simple algebraic manipulation on (27), again leads us first to solve the linear system[

µ2
iM1 − µiD1 +K11 K12

KT
12 K22

] [
χ2

Γ

]
=

[
µiW

(1)
i−1 −W

(2)
i−1

0

]
(28)

for χ2, then to compute χ1 = M−11 W
(1)
i−1 − µiχ2. Here W

(1)
i−1 and W

(2)
i−1 are already

computed from the previous step (from the ADI residual) by following the expressions

W
(1)
i = W

(1)
i−1 − γµiM1χ2,

W
(2)
i = W

(2)
i−1 − γµi(M1χ1 +D1χ2),

(29)

where γ = 2 Re (µi). This relation can easily be obtained by splitting Wi in Step 6 in

Algorithm 1 as
[
W

(1)
i

T
W

(1)
i

T
]T

. In case, the two consecutive shift parameters are

complex conjugates of each other, i.e., {µi, µi+1 := µi}, (29) should be replaced by

W
(1)
i+1 = W

(1)
i−1 − 2γM1χ2,

W
(2)
i+1 = W

(2)
i−1 − 2γ(M1χ1 +D1χ2).
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Algorithm 4: SOGS-LRCF-ADI for the second order index-1 systems

Input : M1, D1,K11,K12,K22, B1, B2 and shift parameters {µi}Ji=1.

Output: Z, Zv and Zp, where Z = Zi =
[
ZTv ZTp

]T
with W ≈ ZZT .

1 Set Z0 = [], i = 1, W 1
0 = 0 and W 2

0 = B1 −K12K
−1
22 B2.

2 while ‖W (1)
i−1

T
W

(1)
i−1 +W

(2)
i−1

T
W

(2)
i−1‖ ≥ tol or i ≤ imax do

3 Solve

[
µ2
iM1 − µiD1 +K11 K12

KT
12 K22

] [
χ2

Γ

]
=

[
µiW

(1)
i−1 −W

(2)
i−1

0

]
for χ2.

4 Compute Vi =
[
(M−11 W

(1)
i−1 − µiχ2)T χT2

]T
.

5 if Im(µi) = 0 then
6 Zi =

[
Zi−1

√
γ Re (Vi)

]
, where γ = −2 Re (µi),

7 W
(1)
i = W

(1)
i−1 + γM1χ2, W

(2)
i = W

(2)
i−1 + γ(M1χ1 +D1χ2).

8 else

9 δ = Re (µi)
Im(µi)

, Vi+1 = V i + 2δ Im(Vi).

10 Update low-rank solution factor

11 Zi+1 =
[
Zi−1

√
2γ(Re (Vi) + δ Im(Vi))

√
2γ
√

(δ2 + 1). Im(Vi)
]
.

12 Compute χ1 = Re (χ1) + δ Im(χ1), χ2 = Re (χ2) + δ Im(χ2),

13 and W
(1)
i+1 = W

(1)
i−1 + 2γM1χ2, W

(2)
i+1 = W

(2)
i−1 + 2γ(M1χ1 +D1χ2).

14 i = i+ 1

15 i = i+ 1

Thus, in the i-th step Vi can be computed by

Vi = χ =

[
χ1

χ2

]
=

[
M−11 W

(1)
i−1 − µiχ2

χ2

]
The whole procedure is presented in Algorithm 4. Note that in this algorithm to

compute the exact residual our initial guess is W0 = B =

[
0
H

]
, which can be again

spitted as W 1
0 = 0 and W 2

0 = H = B1 −K12K
−1
22 B2.

Shift parameters selection. It is known that for fast convergence of Algorithm 4
proper ADI shift parameters selection is crucial. Several approaches are proposed
in the literature to compute the shift parameters. See, e.g., [4] for an overview of
different shift selection approaches. For a large scale dynamical system an often used
ADI shift selection technique is Penzl’s heuristic procedure [22]. In [4] the authors
propose an automatic shift generation technique that works during the execution of
the algorithm, rather than before. There, the technique is called adaptive procedure
and numerical experiments shows that the approach performs very well for a first
order index-1 power system model [12]. Here, we investigate both the techniques and
propose a modification to the adaptive shift selection procedure.
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The heuristic procedure, to select some suboptimal ADI parameters for the Algo-
rithm 4 has been discussed in our previous work (see e.g., [28, Algorithm 4.4], [7]). For
a second shift selection technique we recall [4]. There, the shifts are initialized by the
eigenvalues of the pencil λE−A projected to the span of B. Then, whenever all shifts
in the set have been used, the pencil is projected to the span of the current Vi and
the eigenvalues are used as the new set of shifts. Here, we use the same initialization.
For the update step however we extend the subspace to all the Vi generated with the
previous set of shifts. Let us assume that this (orthogonalized) extended subspace is
U . Now from the eigenvalues of λUTEU−UTAU , select some desired number of shifts
by solving the so called ADI min-max problem like in the heuristic procedure. Repeat
this approach while the algorithm has not converged within the given tolerance. Note
that our system is dissipative, i.e., all the eigenvalues of λ(E + ET ) − (A + AT ) lie
in the left complex plane. Therefore, Bendixon’s theorem [18] ensures that all the
eigenvalues of the projected pencil are stable and thus are admissible shifts.

6 Numerical Results

In this section we illustrate numerical results to asses the accuracy and efficiency of
our proposed techniques. The techniques are applied to a set of data for the finite
element discretization of an adaptive spindle support (ASS) [15]. The dimension of
the original model is n = 290 137, which consists of n1 = 282 699 differential equations
and n2 = 7 438 algebraic equations.

In this paper all the results have been obtained using MATLAB 7.11.0 (R2010b) on
a board with 4 INTEL XEON E7-8837 CPUs with a 2.67-GHz clock speed, 8 Cores
each and 1TB of total RAM.

To execute both Algorithms 2 and 3 we compute low-rank Gramian factor Z using
Algorithm 4. To implement this algorithm we use both heuristic and adaptive shift
parameters as mentioned in Section 5. First we consider 40 heuristic shifts out of
60 large and 50 small magnitude approximate eigenvalues (see [7] for details on the
computation of heuristic ADI shift parameters for the ASS model). The algorithm is
stopped by the maximum number of iteration steps, i.e., imax = 400. Next we apply
the adaptive shift computation approach to compute the Z. In this case, imax = 400
iteration steps are taken. As we can see in Table 2 the performance of the adaptive
shifts better than that of the heuristic shifts in terms of the the normalized residual
norm. Note that before forming Zv and Zp by taking the upper n1 rows and lower n1
rows of Z we apply the column compression on the low-rank Gramian factor Z (see,
e.g., [14] for the column compression technique).

6.1 Model reduction via balanced truncation

First we apply Algorithm 2 to the ASS model considering the truncation tolerance
10−5. In this case different second order balancing approaches compute different di-
mensional reduced systems as shown in Table 3. The comparisons of the full and
different dimensional reduced systems are shown in Figure 2 on the wide range 101
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no. of iteration normalized residual norm
heuristic shifts adaptive shifts

100 9.88× 10−1 1.85× 10−2

200 9.99× 10−1 8.85× 10−3

300 9.78× 10−1 5.04× 10−3

400 9.69× 10−1 3.99× 10−3

Table 2: The performances of the heuristic and adaptive shifts in the Algorithm 4 for
the ASS model.

label ROM dimension
velocity-velocity (VV) 298
position-position (PP) 69
velocity-position (VP) 90
position-velocity (PV) 90

Table 3: Balancing on different levels and to different dimensional ROMs.

to 104. Figure 2a shows the frequency responses of full and reduced systems with
good matching. The absolute error and the relative error of the frequency responses
of full and reduced systems are exhibited in Figure 2b and Figure 2c respectively. As
we can see in Figure 2c, the relative errors for all reduced systems are far below to
the truncation tolerance (10−5). We further compute the 40, 30, 20 and 10 dimen-
sional reduced order models using the same algorithm via balancing the system on the
position-position level. In this case the frequency responses of the reduced systems
also resemble the graph in Figure 2a. Figure 3 depicts the relative errors between the
full and different dimensional reduced order models. Here we observe that the lower
the dimension of the reduced models the higher the relative error. But in every case,
even a very low dimensional model, e.g., the model of dimension 10, preserves the
important feature of the original model.

Figure 4 discusses some particularly interesting SISO relations for full and different
dimensional reduced order models. Since in the SISO case we know that the transfer
function matrix is just a scalar rational function, here we have computed the absolute
values of the transfer function in different frequencies. The relative error between the
original and reduced order models of the respective SISO relation are also shown in
the same figure.

6.2 Model reduction via PDEG

Algorithm 3 is applied again on the ASS model to obtain the reduced systems via
projecting the system onto the dominant eigenspace of the Gramian. To execute
this algorithm, the computed velocity and position Gramian factors are the same as
mentioned earlier. By predefining the dimension of the ROM we compute 40, 30, 20
and 10 dimensional models by projecting the system onto the dominant eigenspace of
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Ĝ
(j
ω

))

(b) Absolute error

101 102 103 104
10−14

10−10

10−6

ω

σ
m

a
x
(G

(j
ω
)−

Ĝ
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Figure 2: Comparison of original and different dimensional reduced systems (dimen-
sions indicated in the legend) computed by Algorithm 2.

the velocity Gramian. In both cases frequency responses of the original and reduced
systems are seemed to be the same as in Figure 4. Figures 6 and 5, respectively, show
the relative error between the original and different dimensional reduced models when
we project the systems onto the dominant eigenspace of the velocity Gramian (VG) and
position Gramian (PG). We observe that the constructed reduced systems of the ASS
model by PDEG methods are asymptotically stable which is shown in Figure 7. This
figure shows that all the eigenvalues of the reduced systems lie in the left complex half
plane. From this figure one can also see that the successively decreasing dimensional
reduced system contains the eigenvalues approach the imaginary axis.

7 Conclusions

In this article we have shown efficient techniques for structure preserving model re-
duction of second order index-1 differential algebraic systems. The performance of our
proposed strategies have been demonstrated for one large FEM model of an adaptive
spindle support employing piezo actuators with almost 300 000 degrees of freedom,
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Figure 3: Relative error of full and different dimensional reduced systems (dimensions
indicated in the legend) via balancing the system on the position level.

proving the applicability of our method in real world problems. In the numerical re-
sults we have seen that even 10 dimensional model preserve the main features of the
original model, therefore they are expected to have a good performance in controller
design. In this paper, we have discussed four types of balancing methods for second
order index-1 descriptor system of the form (1) using classical balanced truncation
techniques. We have also shown balancing techniques by projecting the system onto
the eigenspace corresponding to the dominant eigenvalues of the Gramian. In [24],
the authors claim that in general none of the existing BT techniques for second-order
systems gurantees stability of the reduced systems. For the case of symmetric systems
with colocated inputs and outputs stability can be guranteed by Bendixon’s theorem,
which is numerically depicted in Figure 7.
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