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Abstract

Recent theoretical and simulation results have shown that Riccati based feedback
can stabilize flows at moderate Reynolds numbers. We extend this established
control setup by the method of LQG-balanced truncation. In view of practical
implementation, we introduce a controller that bases only on outputs rather than
on the full state of the system. Also, we provide a very low dimensional observer
so that the control actuation can be computed in an online fashion.
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1 Introduction

The control of flows is of high interest in practical applications and a field of ongoing
research [11, 12]. The particular aspect of stabilization of flows is of importance,
for example, in technical flows where stable quasi-stationary working conditions are
required.

We consider the generic control setup consisting of a plant, a controller that can act
onto the plant, and a measurement or observation unit that delivers information on
the current state of the plant. In the realm of flow control the plant may be modelled
by semi-discrete Navier-Stokes equations for the evolution of the velocity v(t) and the
pressure p(t) for time t > 0 in an incompressible flow:

Mv̇ = −N(v)v − 1

Re
Lv + JT p+ f, (1)

0 = Jv − g, (2)

v(0) = α. (3)

We assume, that the controller can act onto the system by changing certain com-
ponents of the inhomogeneity f ← f +Bu in (1) and that the observations y are in a
linear relation with v.

The well-understood approach of open-loop control [9] does not well apply for sta-
bilization since it cannot react on perturbations. One rather resorts to closed-loop
control where the controller decides on the current state information. Recent publi-
cations [3, 5] have reported successful applications of static state-feedback boundary
control for the stabilization of flows at moderate Reynolds numbers in simulations. The
presented approach employs low-rank Newton-ADI iterations [4] to solve for Riccati-
based feedback gains and, thus, despite its generality, it is feasible for high-dimensional
systems.

The novelties we propose are of practical impact. In view of a generic control setup,
where the full state is generally not available, we consider a Kalman observer that
determines the feedback control from a few measurements. Combined with the LQG-
balanced truncation model reduction technique, we design a reduced controller of very
low dimension, that can be evaluated in literally no time and, thus, is suitable for
online feedback control.

To derive the low-order controller, we extend the method of LQG-balanced trun-
cation[16] to the case of linearized Navier-Stokes equations. The DAE structure of
the state equations (1-2) will be treated implicitly, as it was derived for the Lyapunov
equations used in balanced truncation in [8] and as it was exploited for the solution
Riccati equations in [2, 3]. Furthermore, since the controller acts only in the differen-
tial equation in (1), and since, though implicitly, we only consider the system that is
projected onto the differential part, we do not need to account for an improper com-
ponent of the system’s transfer function as it was laid out in [6, 18]. For the same
reasons, the relation of our work to [15] is only marginal. In particular, the choice of
the actuation cannot make the system impulse controllable.

The paper is structured as follows. In Section 2, we introduce the method of LQG-
balanced truncation. In view of implementation, we formulate the equations with the
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presence of a mass matrix. In Section 3, we extend the theory and the equations to
case of the linearized Navier-Stokes equations. To show applicability, we present a
numerical example in Section 4. We conclude the paper by summarizing remarks on
the potential impact and on the shortcomings of the presented results.

2 LQG-balanced Truncation for Low-Order Controller
Design

We start with a review of known results for reduced-order controller synthesis by
LQG-balanced truncation. For further reference, we illustrate basic system theoretic
concepts and the derivation of a balanced system by an example problem.

Consider the linear time-invariant system

Mv̇ = Av +Bu, (4)

v(0) = 0, (5)

y = Cv, (6)

with matrices A, M ∈ Rnv,nv , B ∈ Rnv,nu , and C ∈ Rny,nv , a state x(t) ∈ Rnv , an
input u(t) ∈ Rnu , and an output y(t) ∈ Rny . The mass matrix M is assumed to be
symmetric and strictly positive definite.

We will call (4-6) a state space system that realizes a transfer function G:U →
Y, where U and Y denote the spaces of inputs and outputs, respectively. We will
frequently write G = (M,A,B,C,D).

We recall that a transfer function has infinitely many realizations. Particularly, for
invertible transformation matrices W ∈ Rnv,nv and V ∈ Rnv,nv one has that

G = (M,A,B,C,D) equals G̃ = (WTMV,WTAV,WTB,CV), (7)

in the sense that G and G̃ map the same inputs u onto the same outputs y. Among
the realizations, minimal realizations are those for which the state v has minimal
dimension. For a minimal realization, one has the following characteristic properties,
cf. standard textbooks like [13] for a thorough introduction on the LQG control
problem or [16] for an overview directed to the LQG-balanced truncation setup.

Proposition 1 (cf. [16], Prop. 3.3). Let G = (M,A,B,C) be minimal. Then there
exists a unique symmetric positive definite stabilizing solution Xc ∈ Rnv,nv to the
control algebraic Riccati equation (CARE)

ATXcM +MXcA−MXcBB
TXcM + CTC = 0 (8)

and there exists a unique symmetric positive definite stabilizing solution Xo ∈ Rnv,nv

to the filter algebraic Riccati equation (FARE)

AXoM +MXoA
T −MXoC

TCXoM +BBT = 0. (9)
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Then the LQG regulator is given via the control law

u = −BTMXcx̂, (10)

where x̂ is the state of the Kalman observer

M ˙̂x = (A−XoMCTC −BBTXcM)x̂+XoMCT y. (11)

Equations (8-11) are derived from the standard case with M = I through a scaling
of (4) by M−1 and redefining Xc ←M−1XcM

−1 and Xo ←M−1XoM
−1.

In the pioneering work [10] it was found that for minimal realizations the eigenvalues
of the product of the solutions of the CARE and FARE are invariant under equivalence
transformations of the system. Then, as in the case of balanced truncation, cf. [1],
balanced realizations can be defined, interpreted, and truncated. We adapt the results
and arguments given in [16] to the case with a mass matrix M .

Proposition 2 (cf. [16], Prop. 3.4). Let G = (M,A,B,C) be minimal and let Xc

and Xo be the unique symmetric positive definite stabilizing solution to the CARE and
FARE, respectively. Consider transformations as in (7) with regular matrices W and
V with WTMV = I. Then,

• the unique symmetric positive definite stabilizing solutions X̃c and X̃o to the
CARE and FARE associated with the transformed system G̃ fulfill

X̃c = VTMXcMV and X̃o =WTMXoMW (12)

• and XcMXo and X̃cX̃o have the same eigenvalues.

Remark 1. Because of I =WTMV the relations in (12) are the same as the commonly
used relations

X̃c =W−1XcW−T and X̃o =WTMXoMW, (13)

cf., e.g., [1, Ch. 4.3] for the balanced truncation case with M = I. In view of model
reduction, for which we will apply non square transformations W and V, we will stay
with formulation (12).

From the positive definiteness of the matrices M , Xc, and Xo, it follows that the
eigenvalues {µ2

i }
nv
i=1 of XcMXo are real and positive. Because of their invariance

properties they are called LQG-characteristic values[16].
Furthermore, there exist transformation matrices W, V, with WTMV = I such

that for the solutions of X̃c, X̃o of the AREs associated with the transformed G̃ =
(I,WTAV,WTB,CV) it holds that

X̃c = X̃o = S, (14)

where S is the diagonal matrix of the LQG characteristic values {µi}nv
i=1 in descending

order. In line with the notion for balanced truncation, this realization of G is called
balanced realization.

If one has factored the matrices Xc = UUT and Xo = LLT of any minimal realiza-
tion, one can compute the transformations W and V, that realize (14), as follows:
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Algorithm 1.

1. Compute a Singular Value Decomposition of UTML = ZSY T .

2. Set W := UZS−1/2 and V = LY S−1/2.

With W and V chosen by Algorithm 1 we directly confirm that

WTMV = S−1/2ZTUTMLY S−1/2 = S−1/2ZTZSY TY S−1/2 = I (15)

and with (14) that

X̃c = VTMXcMV = S−1/2Y TLTMUUTMLY S−1/2 = S (16)

and that

X̃o =WTMXoMW = S−1/2ZTUTMLLTMUZS−1/2 = S. (17)

Thus, the singular values in S from Algorithm 1 are the LQG-characteristic values.
Following [10], we interpret small values in S as associated with states in the balanced
realization that are both difficult to control and to observe.

Consequently, if in Algorithm 1 we set

W =Wk := LYkS
−1/2
k and V = Vk = UZkS

−1/2
k , (18)

where Sk, Yk, and Zk are the submatrices of S, Y , and Z that correspond to the nk
largest singular values, we can define a truncated system as

G̃k = (WT
kMVk,WT

k AVk,WT
k B,CVk) =: (Ik, Ak, Bk, Ck). (19)

With similar arguments as in (16) and (17), one confirms that

X̃ck := VTkMXcMVk = Sk and X̃ok =WT
kMXoMWk = Sk. (20)

Also, one can prove that X̃ok and X̃ok are the unique stabilizing solutions of the
CARE and FARE for the truncated system G̃k [16, Rem. 3.7].

Finally, we define a truncation of the controller defined in (10) and (11) via

u = −BTk X̃ckx̂k, (21)

and the reduced observer

˙̂xk = (Ak − X̃okC
T
k Ck −BkBTk X̃ck)x̂k + X̃okC

T
k yk, (22)

which is the Kalman observer of the system G̃k, cf. [16].

Remark 2. Although the analysis requires that the considered realization is minimal,
the derived algorithms also work for general realizations. In what follows we will
simply apply LQG balanced truncation to state space systems with unobservable and
uncontrollable states, i.e. to systems that are not minimal. We will only require that
the formally stated CARE and FARE uniquely define positive (semi-)definite solutions.
Then, the fitness of the reduced model has to be checked in a post processing step.

Apart from the objections discussed in Remark 2, the LQG balanced truncation
approach perfectly applies to large-scale cases, where low rank factors Uk and Lk that
approximate Xc ≈ UkU

T
k and Xo ≈ LkL

T
k are computed. In such cases, Algorithm 1

readily provides truncating transformation matrices Wk and Vk.
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3 LQG-balanced Truncation for Linearized
Navier-Stokes Equations

We consider the semi-discrete Navier-Stokes equations modelling the evolution of the
velocity v and the pressure p in an incompressible flow,

Mv̇ = −N(v)v − 1

Re
Lv + JT p+Bu+ f (23)

0 = Jv − g (24)

v(0) = α (25)

y = Cv (26)

starting from an initial state α.
Systems as (23-26) arise, e.g., in a finite element discretization of a flow problem

with distributed control and observation. Here M is the symmetric strictly positive
mass matrix, L is the discretized Laplacian, and N(v) accounts for the convection that
is linear in v. The discrete divergence operator is given by J and the discrete gradient
by JT . The control and the observation are modelled with the matrices B and C.

We assume that J is of full rank, i.e. the pressure p has been fixed to a certain
level. Also we assume, that the source terms f and g in (23) and (24) only contain
the boundary conditions and, thus, are constant in time.

Assume that α is a steady state solution to (23-25) and write the unsteady solution
as v = α + vδ with a deviation vδ that we assume to be small. Then, neglecting the
quadratic term in vδ, from Equations (23-26) we derive a linear model for the deviation
in the output caused by the actuation Bu:

Mv̇δ = Avδ + JT p+Bu (27)

0 = Jvδ (28)

vδ(0) = 0 (29)

yδ = Cvδ, (30)

where Avδ := −N(vδ)α−N(α)vδ − 1
ReLvδ.

Because of the constraint Jvδ = 0, the formulas of Section 2 do not simply apply.
Therefore, we reformulate System (27-30) in terms of the underlying ODE that de-
scribes the motion of the parts of vδ that are not seen by the constraint. We point
out, that the following algebraic manipulations are purely for extending the LQG-
balanced truncation framework to the projected equations. Once we have arrived at
the CARE (8) and FARE (9), we give references to a solution approach that avoids
the numerically unfeasible computation of projectors.

Recall that M is symmetric strictly positive definite and that J is of full rank. Thus,
we can define the projector

P := I −M−1J(JTM−1J)−1J (31)

that comes with the following properties:
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Proposition 3. Consider System (27-30), let vδ be a solution to it, and let P be
defined as in (31). Then,

(a) vδ(t) = Pvδ(t),

(b) PTJT p(t) = 0, for all time t > 0, and

(c) PTM = MP.

Using the relations of Proposition 3, we can state that vδ is a solution to (27-30) if,
and only if, it solves

Mv̇δ = PTAvδ + PTBu (32)

vδ(0) = 0 (33)

yδ = Cvδ. (34)

For System (32-34), the CARE (8) and the FARE (9) write as

ATPTXcM +MXcPA−MXcPBBTPTXcM + CTC = 0 (35)

and
PAXoM +MXoA

TPT −MXoC
TCXoM + PBBTPT = 0. (36)

Low-rank factors approximating the solutions to Equations (35) and (36) can be
obtained efficiently by combining low-rank Newton-ADI iterations [4] with the ideas
of [8] that realize the application of P in an implicit fashion. See, in particular, the
references [2, 3, 5], where Equation (35) is solved to define a stabilizing feedback for
flow problems.

Remark 3. By construction, cf. [8], the resulting transformation matrix Wk fulfills
Wk =WkPT . Thus, a reduced system to (27-30),

G̃k = (Ik, Ak, Bk, Ck) := (WT
kMVk,WT

k AVk,WT
k B,CVk),

can be obtained without resorting the reformulation (32-34).

4 Numerical Example

Motivated by abstract results from [17], the authors of [2, 3] considered LQ regulators
for a linearization of the flow-equations about a stationary solution α. It turned out
that the linear feedback may well be applied in the nonlinear equations to keep the
flow quasi-stationary around α.

To illustrate the applicability of LQG-balanced truncation based low-order con-
trollers in the stabilization of unsteady flows, we consider the two-dimensional cylinder
wake with distributed control and observation, as depicted in Figure 1. As the compu-
tational domain we consider the rectangle [0, 2.2]× [0, 0.41] with the cylinder of radius
0.05 centered at (0.2, 0.2), The spatial coordinates we denote by x1 and x2. The results

6



0

0.41

0.25

0.15

2.20.270.32 0.6 0.7

 Ωc  Ωo

Figure 1: Setup of the 2D cylinder wake with control distributed in ΩC and observation
distributed in ΩO

presented are for Reynolds number Re = 133, calculated with the peak inflow velocity
and the cylinder diameter.

As boundary conditions for the velocities, we impose a parabolic inflow profile at the
left boundary and no-slip conditions on the top and the bottom wall. At the outflow,
we employ do-nothing conditions.

The implementation was done in Python [7]. For the spatial discretization we used
the Python interface dolfin to FeNiCS [14].

The spatial discretization was realized with a nonuniform triangulation of the com-
putational domain and Taylor-Hood finite elements [19]. The considered discretization
resulted in nv = 9356 and np = 1288.

For nu ∈ N, we set the input space U := C(0, T ;U × U), where U is spanned by nu
linear hat functions equally distributed on the unit interval [0, 1].

We define the domain of control to be Ωc = [0.27, 0.32] × [0.15, 0.25], cf. Figure 1,
and the input operator B:U → C(0, T ; C(Ω;R2)) via

B1u(t;x1, x2) =

{[u1(t; θ(x1))
u2(t, θ(x1))

]
, if (x1, x2) ∈ Ωc,

0, elsewhere,

(37)

with the affine linear function θc mapping [0.27, 0.32] onto [0, 1].
For ny, we define the output space Y similar to U . As the domain of observation,

we use Ωo = [0.6, 0.7] × [0.15, 0.25], cf. Figure 1, and for a v ∈ C(0, T ; C(Ω;R2)), we
define the observation operator C: v → y ∈ Y via

Cv(t)(η) =

[
yx1

(t; η)
yx2

(t; η)

]
=

∫ 0.7

0.6

PY
[
v1(t;x1, θo(η))
v2(t;x1, θo(η))

]
dx1, (38)

where θo is an affine linear mapping adjusting [0, 1] to [0.15, 0.25] and where the pro-
jector to the finite dimensional subspace PY : [L2(0, 1)]2 → Y × Y is chosen as the
orthogonal L2 projection.

By definition, C is defined such that it measures the velocity v(t) in Ωo averaged
in x1 direction. The x2-dependence is approximated by ny basis functions of Y . The
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κ nk dk

10−4 42 0.01803696
10−3 22 0.01803715
10−2 13 0.01804118
10−1 4 0.01818847
10−0 2 3.16595044

Table 1: Dimension nk of the reduced system for varying thresholds κ and the inte-

grated deviation from the target output dk :=
∫ 12

0
‖yk(t)− yα‖2dt.

input operator B maps the input into Ωc such that it is constant in x1 direction and
space-varying in x2.

In the semi-discrete setting v is typically assumed in a finite dimensional, continuous
space over Ω. By standard results, for continuous inputs, a solution v of (23-25) is
continuous in time on its interval of existence. Thus, the choice of the input and
output spaces and operators are justified.

In the presented examples we have chosen nu = ny = 3, meaning that the x1 and
x2 components of both input and output signal are described by 3 nodal values each.

We set α to be the steady-state solution and consider the linearized system as in (27-
30). Then we compute low-rank factors Uk and Lk that approximate the solutions to
the projected CARE (35) and the projected FARE (36), Xc ≈ UkUTk and Xo ≈ LkLTk ,
using the methodology described in [2]. As stabilizing initial guesses, we used solutions
for lower Reynolds numbers. From the factors we compute Wk and Vk as defined in
Equation (18) and the reduced system as G̃k = (Ik, Ak, Bk, Ck), cf. Remark 3.

For varying thresholds κ, we cut-off all LQG-characteristic values µi < κ, to get
reduced systems of various size, see Table 1.

The reduced systems G̃k give good approximations to the linearized equations (27-
30) both in in frequency (Figure 3) and time domain (Figure 2). Clearly, the reduced
(linear) system cannot reproduce the nonlinear dynamics (Figure 2(b)).

However, the reduced controller, as defined via Equations (19), (21), and (22), well
stabilizes the closed-loop system:

Mv̇ = −N(v)v − 1

Re
Lv + JT p−BBTk X̃ckx̂k + f, (39)

0 = Jv − g, (40)

v(0) = α, (41)

yk = Cv, (42)
˙̂xk = (Ak − X̃okC

T
k Ck −BkBTk X̃ck)x̂k + X̃okC

T
k (yk − yα), (43)

where α is the steady-state solution and yα := Cα.
For numerical testing, we integrated the nonlinear closed-loop system starting from

v(0) = α+ ε, where ε := 10−3Pe and e ∈ Rnv is the vector of ones. The perturbation
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ε was introduced to trigger the instabilities. We considered the time interval (0, T ]
discretized by a constant time step of length 0.005. As the numerical integration
scheme for the state equations (39-40) we used the trapezoidal rule with an explicit
treatment of the nonlinear part. The observer equation (43) was numerically integrated
using the implicit Euler scheme. The control was lagged by one time-step, so that the
current input was computed from the measurements of the previous states.

As can be seen from Figure 4, plotting the measurement signal y(t) versus the time,
the uncontrolled system is unstable and soon attains a state of periodic fluctuations.
This is characteristic for the cylinder wake at moderate Reynolds numbers. If the loop
is closed, the system stays in a quasi stationary state (Figure 4(a)). Also, see Figure 5
for a plot of the deviation of the output from the starting value for different orders of
reduction. We want to point out that the flow field was indeed stabilized, see Figure
6 for snapshots of the stabilized and the uncontrolled velocity fields.

Remark 4. Note that the feedback control is defined only by the current output.
Furthermore, the estimated state x̂k(t) is obtained via the solution of an observer
system of reduced dimension. In the presented example, a reduced system of order
nk = 4 has been enough for stabilization, cf. Table 1 and Figure 5. Recalling that
the observer (43 is a linear time-invariant system, for a constant time-step length, all
factors for the chosen numerical integration scheme can be precomputed. Thus, the
effort for the update of x̂k reduces to two small matrix-vector multiplications.

5 Conclusion

We have provided a generalization of LQG-balanced truncation to the setup of flow
equations. We have shown that recent results on projected low-rank Newton-ADI
iterations can also be applied here, what makes the approach feasible for very general
large-scale problems. The presented numerical example illustrates the potential of
LQG-balanced truncation for stabilization of flows. Particularly, we could stabilize the
cylinder wake by a very low-order controller that only considers a low-dimensional
output. We have argued, that this controller is capable of online-control in physical
setups.

A shortcoming of the presented theory is the assumption that the control acts dis-
tributed in space, what is difficult to realize in a control setup. One task for future
work will be to adapt the results of [3, 5], that stabilize the cylinder via boundary
control, to the reduced controller setup.
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