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Abstract

In the past decades, Model Order Reduction (MOR) has demonstrated its ro-
bustness and wide applicability for simulating large-scale mathematical models
in engineering and the sciences. Recently, MOR has been intensively further
developed for increasingly complex dynamical systems. Wide applications of
MOR have been found not only in simulation, but also in optimization and con-
trol. In this survey paper, we review some popular MOR methods for linear and
nonlinear large-scale dynamical systems, mainly used in electrical and control
engineering, in computational electromagnetics, as well as in micro- and nano-
electro-mechanical systems (NEMS/MEMS) design. This complements recent
surveys on generating reduced-order models for parameter-dependent problems
[37, 53, 169] which we do not consider here. Besides reviewing existing methods
and the computational techniques needed to implement them, open issues are
discussed, and some new results are proposed.
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1 Introduction

In this paper we are concerned with continuous-time systems of the following general
form,

d
dtg(x(t)) = f(x(t)) +Bu(t),

y(t) = LTx(t),
(1)

where x(t) ∈ Rn is the vector of unknowns, also called “state vector” in control or
electrical engineering, the entries of x(t) are referred to as “state variables”. B ∈
Rn×m, L ∈ Rn×q are input and output matrices, and g, f : Rn → Rn. The state space
dimension n is called the order of the system and is assumed to be very large. Systems
where the input u(·) and the output y(·) are both scalar functions are called single-
input single-output (SISO) systems. Correspondingly, if both u(·) and y(·) are vector
functions, the system is called multi-input multi-output (MIMO) system. For MIMO
systems we generally require that the dimensions of the input and output spaces are
much smaller than the dimension of the state space, i.e. m, q � n.

In many engineering applications, e.g. microelectronics, Microelectromechanical
systems (MEMS), electromagnetism, fluid dynamics and control etc, complex large-
scale mathematical models have to be solved, for example, the system in (1). It
usually consists of a large number of differential equations and/or additional algebraic
equations. The number of the degrees of freedom easily reaches n ≥ O(105).

Conventional numerical simulation methods cannot handle the many-query require-
ment in the applications, where the large system must be repeatedly solved. It is quite
usual, that one solution has not yet obtained after several days. Model order reduction
(MOR) has been proved to be very promising in obtaining a reliable solution much
more quickly.

The general goal of MOR is to reduce the original degrees of freedom to a very
small size, while the input-output accuracy is kept. To this end, the state vector x(t)
is projected onto a low-dimensional subspace, while the redundant or “less important”
elements in x(t) are removed.

Through discovering an approximation for x(t), a transformation matrix V , and a
projection matrix W ∈ Rn×r are computed. Usually, it is required WTV = Ir, such
that VWT is a projector onto an r-dimensional subspace. Here, Ir is the identity
matrix in Rr×r, and r � n.

A reduced model is obtained by the approximation x(t) ≈ V z(t),

dg(V z(t))
dt = f(V z(t)) +Bu(t) + res(t),
ŷ(t) = LTV z(t),

(2)

and a Petrov-Galerkin projection with W ,

dWT g(V z(t))

dt
= WT f(V z(t)) +WTBu(t), (3)

where WT res(t) ≡ 0 holds. The model reduction methods differ in the choice of the
matrices W and V . One basic requirement is that the behavior of the reduced model
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should be sufficiently “close” to that of the original model, i.e., given the input u(·)
to both systems, the error between the output response of the reduced model ŷ(·) and
that of the original model y(·) should be very small in some norm. Then, the original
model can be replaced by the reduced model in the later analysis.

We call (1) a linear system if g(·) and f(·) are linear, otherwise the system is called a
nonlinear (control-affine) system. MOR methods for linear systems have already been
well developed. The methods for nonlinear systems are mainly extensions of the MOR
methods for linear systems. We discuss them separately in Section 2 and Section 3. In
each section, we point out some open problems and elaborate the difficulties. Besides,
we also present some new results. In order to clearly analyze the problems, we give
some illustrative numerical simulation results.

With the ongoing development of MOR methods, the complex dynamical systems
tackled become more and more complicated. Many complex mathematical models
nowadays include parameters that may be considered as deterministic or stochastic
variables. MOR for parametric systems is a vast topic. Various kinds of methods
have been proposed to deal with parametric systems, like multi-moment matching
methods, interpolation based methods, methods based on proper orthogonal decom-
position (POD), reduced basis methods etc. An extensive number of papers has been
published in both of these areas. MOR for parametric and stochastic systems is not
further considered here since this is beyond the focus of the survey. For a very de-
tailed explanation of reduced basis approximations (and a posteriori error estimation)
for parametric systems, we refer to [169]. A more general, but less detailed, perspective
on MOR methods for parametric systems is given in [37]. Reduced basis approaches
for stochastic problems are reviewed in [53] whereas a review of computational stochas-
tic methods (also model reduction techniques) with emphasis on spectral stochastic
approaches can be found in [147].

Furthermore, this work is somewhat limited since MOR methods for some special
systems are not included, e.g., systems with a large number of inputs/outputs and
second order systems. MOR for systems with a large number of inputs and outputs
currently focus on linear systems. This issue is not widely noticed in the past, but
attracts more attention at present [49, 72, 137, 133, 145, 178]. MOR on second order
systems is discussed e.g. in [18, 39, 69, 173, 185, 202].

Methods based on pure eigenvalue considerations as modal truncation for linear
systems [61, 62, 140] and an approach related to approximate inertial manifolds for
the order reduction of nonlinear problems [115] are also not discussed here.

To sum up, this survey discusses well-established to very recent approaches for
MOR of linear and nonlinear systems. We are focusing here on large-scale dynamical
systems with (control) inputs and with a user’s interest in observing/controlling certain
output variables, sometimes called the quantities of interest. Thus, the MOR methods
under consideration are based on systems theory with emphasis on frequency domain
considerations. In particular, most approaches discussed here are based on the transfer
function representation of the given dynamical system in frequency domain, lending
itself to the problem of rational approximation. That is, the model reduction problem
is solved by finding a low-order rational function approximating the given transfer
function. This clearly distinguishes the approaches we focus on from snapshot based
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methods like POD or the reduced basis method.

2 Model order reduction of linear systems

We first consider linear time-invariant (LTI) systems

ẋ(t) = Ax(t) +Bu(t),
y(t) = LTx(t),

(4)

with a constant matrix A ∈ Rn×n and ẋ(t) ≡ d
dtx(t). For simplicity, the initial

condition is assumed to be zero, i.e., x(0) = 0 (systems with x(0) 6= 0 will be discussed
later). Furthermore, we restrict our attention to stable systems, that is, all eigenvalues
of the system matrix A, denoted by Λ(A), are assumed to be in the open left half of
the complex plane C−. We shortly comment on methods for unstable systems later.
Linear, large-scale systems arise in many practical applications as, for instance, in
circuit simulations and in control problems where the underlying physical process is
modeled by partial differential equations. For these problems we are interested in
constructing reduced-order systems

˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = L̂T x̂(t),
(5)

where Â = WTAV ∈ Rr×r, B̂ = WTB ∈ Rr×m, L̂ = V TL ∈ Rr×q, and r � n, with
good approximation properties for (4).

2.1 Gramian based model order reduction

For linear problems, as considered in systems theory and control of ordinary differen-
tial or partial differential equations, balanced truncation (BT) [143, 144] and related
methods are the methods of choice since they have some desirable properties: they
preserve the stability of the system [157] and provide a global computable error bound
between the transfer function of the original system and that of the reduced-order
system [66, 94]. This implies bounds in the frequency domain and in the time domain
via the theorem by Plancherel.

The transfer function or transfer function matrix (TFM) of the system (4) H(s) ∈
Cq×m is defined as the relation between the output response and the input signal in
the frequency domain (assuming x(0) = 0)

H(s) = Y (s)/U(s) = LT (sI −A)−1B, (6)

where Y (s) and U(s) are obtained by applying the Laplace transformation to (4):

sX(s) = AX(s) +BU(s),
Y (s) = LTX(s).

3



Driving the original and the reduced-order system with the same input u(·), an ex-
pression for the error between the original and the reduced system output is obtained:

‖y − ŷ‖2 ≤ ‖H − Ĥ‖∞‖u‖2, (7)

where Ĥ(s) is the TFM of the reduced system (5), ‖ · ‖2 is the L2-norm for square-
integrable functions, and ‖ · ‖∞ denotes the H∞-norm of a rational transfer function,
which is given for stable systems by

‖H‖∞ = sup
ω∈R

σmax(H(jω)),

see, for instance [5, p.126]. Here, σmax(H(jω)) is the largest singular value of the q×m
matrix H(jω) and j =

√
−1. The error estimate (7) is valid both in time domain and

in frequency domain.
Standard BT doesn’t preserve the passivity of the system. In the meantime, there

exist several implementations of passivity-preserving balancing-related model reduc-
tion. These methods are applicable to standard state space systems as well as to
differential-algebraic equations (DAEs), see [160, 164, 174, 201].

The basic idea of BT relies on balancing the two system Gramians, the controllability
Gramian P and the observability Gramian Q, defined as follows (see, e.g. [125]):

P =

∞∫
0

eAtBBT eA
T tdt, Q =

∞∫
0

eA
T tLLT eAtdt, (8)

by applying a transformation T ∈ Rn×n, det(T ) 6= 0, to (4),

˙̃x(t) = TAT−1x̃(t) + TBu(t),
y(t) = LTT−1x̃(t).

(9)

The transformation is chosen so that the Gramians P̃ and Q̃ are equal and diagonal:

P̃ = TPTT = Q̃ = T−TQT−1 = Σ = diag(σ1, σ2, . . . , σn), (10)

where σ1, . . . , σn are the non-increasingly ordered Hankel singular values (HSVs) of the
system (4). The matrices V and W for computing the reduced-order system (5) can be
constructed from the dominant invariant subspace of P̃ Q̃ where the eigenvalues of P̃ Q̃

are related to the HSVs by σi =
√
λi(P̃ Q̃) for i = 1, . . . , n. Projecting the system onto

the eigenspaces corresponding to the largest eigenvalues keeps the important dynamics
of the system, i.e., the states which are easiest to reach and easiest to observe. The
global error between H(·) and Ĥ(·) is bounded by

‖H − Ĥ‖∞ ≤ 2(σr+1 + σr+2 + . . .+ σn), (11)

where σr+1, . . . , σn are the neglected HSVs. The error bound (11) allows for an adap-
tive choice of the reduced order r depending on a prescribed error tolerance.
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For descriptor systems or generalized state space systems,

Cẋ(t) = −Gx(t) +Bu(t),
y(t) = LTx(t),

(12)

where the matrix C ∈ Rn×n might be singular, there exist generalizations of balanced
truncation, see, for instance, [10, 27, 138, 142, 156, 183, 184]. Note that for nonsingular
C the system (12) can be transformed to a system in standard form (4) by setting
A = −C−1G.

In the following paragraphs we will discuss different implementations of BT. For a
survey on balanced truncation model reduction see [105].

Balanced truncation

The original balanced truncation [143, 144] computes a balancing transformation ma-
trix T by spectral decompositions of P and of the projected Gramian Q:

VP
TP VP = ΛP

2,

VQ
T
[
(VPΛP )TQ(VPΛP )

]
VQ = ΛQ

2,

where VP , VQ ∈ Rn×n are real orthogonal and the entries in ΛP = diag(λP1 , . . . , λ
P
n ),

ΛQ = diag(λQ1 , . . . , λ
Q
n ) are in non-increasing order. Applying the similarity transfor-

mation
T = VPΛPVQΛQ

−1/2 ∈ Rn×n

to (4) results in a balanced system (9) satisfying (10). We denote the transformed
matrices by Ã = TAT−1, B̃ = TB, L̃T = LTT−1. A reduced-order system (5) can be
computed by simple truncation from the balanced realization in partitioned form:

˙̃x(t) =

[
Ã11 Ã12

Ã21 Ã22

]
x̃(t) +

[
B̃1

B̃2

]
u(t),

y(t) =
[
L̃T1 L̃T2

]
x̃(t),

with Ã11 ∈ Rr×r, i.e. Â = Ã11, B̂ = B̃1, and L̂ = L̃1.

Square-root method of balanced truncation

An efficient and numerically more robust implementation of BT, the square-root (SR)
method [126, 187], is based on Cholesky factorizations of the Gramians, i.e. P = ZPZ

T
P

and Q = ZQZ
T
Q. The transformation matrices V and W are computed by a singular

value decomposition (SVD) of the product of the Cholesky factors,

ZTPZQ =
[
Ũ1 Ũ2

] [ Σ̃1 0

0 Σ̃2

] [
Ṽ T1
Ṽ T2

]
, (13)

with Σ̃1 = diag(σ1, . . . , σr).
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The singular values {σ1, . . . , σn}, which equal the HSVs of the system, are assumed
to be in non-increasing order. Then, the matrices

WT = Σ̃
−1/2
1 Ṽ T1 Z

T
Q ∈ Rr×n, V = ZP Ũ1Σ̃

−1/2
1 ∈ Rn×r,

are parts of the balancing transformation matrix T ,

T =

[
WT

∗

]
, T−1 = [V, ∗ ],

and directly balance and reduce the system (4) following step (2) and (3). Note that
ZP Ũ1, ZQṼ1 are the right and left eigenvectors, respectively, of PQ corresponding to
the r largest eigenvalues.

The SR method computes a balanced and stable reduced system which satisfies the
BT error bound (11).

For highly unbalanced systems it is not advised to compute balanced reduced-order
systems by possibly ill conditioned transformation matrices. This motivates the de-
velopment of balancing-free MOR methods.

Balancing-free methods

The Schur method [172] computes a reduced-order system by projecting onto the dom-
inant left and right eigenspaces of PQ without computing balancing transformations.
The algorithm enhances the numerical robustness of the SR method in some aspects.
Based on Schur decompositions of PQ, the right and left eigenspaces Vr ∈ Rn×r and
V` ∈ Rn×r of the matrix corresponding to the r largest eigenvalues are computed. By
an SVD of the product of the two dominant invariant subspaces,

V`
TVr = Ũ Σ̃Ṽ T ,

the transformation matrices

WT = Σ̃−1/2ŨTV`
T ∈ Rr×n, V = VrṼ Σ̃−1/2 ∈ Rn×r

are derived. The resulting reduced-order system (3) is not balanced but still satisfies
the balanced truncation error bound (11).

The balancing-free SR method [192] combines the SR with the Schur method using
orthogonal bases of range(V ) and range(W ) from two QR factorizations:

ZP Ũ1 = [P1 P2]

[
R̂
0

]
, ZQṼ1 = [Q1Q2]

[
R̃
0

]
,

where the matrices Ũ1 and Ṽ1 were computed by (13) and ZP , ZQ are the Cholesky
factors of the Gramians. A further SVD

QT1 P1 = Ũ Σ̃Ṽ T
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yields the well-conditioned transformation matrices

WT = Σ̃−1/2ŨTQ1 ∈ Rr×n, V = P1Ṽ Σ̃−1/2 ∈ Rn×r.

The reduced-order system is obtained by (2) and (3). Note that a numerically robust
implementation would avoid the explicit computation of the product PQ by using a
product QR algorithm (see [123] and the references therein) and a product SVD [78,
109] instead.

Cross-Gramian method

A closely related class of methods which contains information about the controllability
as well as the observability of the system is based on another system Gramian, the
cross-Gramian,

XCG :=

∫ ∞
0

eAtBLT eAtdt. (14)

For SISO or symmetric MIMO systems (systems with symmetric TFM) it satisfies

XCG
2 = PQ,

such that the dominant invariant subspace of the cross-Gramian can be used for
MOR [79, 80, 127]. The reduced-order model has the same properties as in BT model
reduction, i.e. the stability is preserved and a computable global error bound exists.

In [3], the dominant eigenspace of XCG is computed by an ordered real Schur form,[
U1

T

U2
T

]
XCG

[
U1 U2

]
=

[
S11 S12

0 S22

]
,

followed by a block diagonalization, using the solution X of a Sylvester equation

S11X −XS22 + S12 = 0.

The reduced-order system is obtained without computing balancing transformations,
applying the transformation matrices

WT = U1
T −XTU2

T ∈ Rr×n, V = U1 ∈ Rn×r

directly in step (2) and (3). Model reduction based on the cross-Gramian is also
considered in [6, 23, 181].

Computing the Gramians

The computation of the system Gramians (or of factors of them) as first computational
step is required in all methods described above. The Gramians (8) are equivalently
given by the solutions of the two Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA+ LLT = 0, (15)
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such that the main computational task in most implementations is the solution of
these matrix equations. At the end of this paragraph we will mention an alternative
approach for computing the Gramians by numerical quadrature.

The cross-Gramian (14) is given by the solution of one Sylvester equation,

AXCG +XCGA+BLT = 0.

The matrix equations are of the same dimension as the original system, thus the work
complexity of BT and related methods is usually O(n3) and the storage requirements
are of order O(n2).

Direct methods and standard iterative approaches for the solution of Lyapunov
equations are therefore restricted to problems of size n = O(1000) (depending on the
computer capacities) and hence of limited use. Using recent MATLAB R© distributions
for 64 Bit operating systems [141], larger Lyapunov equations with orders up to a
few thousands can be solved with direct methods provided that sufficient memory is
available. Using parallel algorithms for distributed memory machines [43, 44, 47] or
modern multi-core or multi-GPU systems [36], the limits of these techniques can be
further advanced nowadays.

The (balancing-free) SR methods as described above are based on Cholesky factors
of the Gramians. These methods and related approaches can also be implemented by
using low-rank approximations to the Gramians [44], i.e.

P ≈ Z̃P Z̃TP , Q ≈ Z̃QZ̃TQ, (16)

with Z̃P ∈ Rn×rP and Z̃Q ∈ Rn×rQ . This was motivated by the observation that in
the large-scale setting often the Gramians have a low numerical rank rP , rQ � n,
[7, 97, 154, 182]. Thus, it is advised to use implementations based on such low-rank
approximations since they usually need significantly less storage and are of reduced
costs. This problem has attracted the interest of many mathematicians, there are many
iterative methods which exploit the low-rank property particularly for the solution of
large-scale, sparse Lyapunov equations, see, e.g.,

• Krylov subspace methods [188, 67, 68, 111, 113, 114, 116, 118, 136, 171, 179, 180],
and tensor Krylov subspace methods [31, 124],

• the factorized sign function iteration [34, 42, 43], and data-sparse implementa-
tions of the method [22, 24, 99],

• multi-grid methods [152, 167], based on low-rank arithmetic [98],

• low-rank alternating direction implicit (ADI) methods or Smith iterations, e.g.,
the Cholesky Factor ADI (CF-ADI) algorithm [40, 129, 131, 153], cyclic low-rank
Smith methods [108, 153] and parallelizations of the low-rank ADI iteration [9],

• a method based on optimization on a Riemannian manifold [32, 191].

Due to the progress in computer hardware, but even more because of advances in
techniques from Numerical Linear Algebra, Lyapunov equations for really large scale
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systems with n up to a billion can nowadays be solved on standard workstations.
We will describe the implementation of BT model order reduction based on these
techniques, yielding approximate low-rank Gramians, in the next paragraph.

The use of efficient solvers for large-scale Lyapunov equations improves the imple-
mentations of BT, see, e.g., [24, 26, 41, 44, 47, 107, 163, 189] and of balancing-related
model reduction methods, e.g., an optimal Hankel norm approximation [48, 94], sin-
gular perturbation approximation [45, 139, 192], frequency weighted BT [66, 93, 105],
and balanced stochastic truncation [46].

For unstable systems, generalizations of BT can be applied, see [20, 33, 205]. The
major computational problems arising in theses approaches are similar to those for
usual BT since they require the numerical solution of algebraic Bernoulli equations
(ABEs) and/or of Lyapunov equations. Numerical methods for the solution of ABEs
require O(n3) flops and the storage of O(n2) real numbers. Using parallel distributed-
memory computers the iterative solvers benefit from their suitability to apply parallel
implementation techniques [20, 33].

Yet another approach for implementing an “approximate” BT method is based on
avoiding the explicit solution of the Lyapunov equations (15) by applying numerical
quadrature to the integral form of the Gramians (8). Instead of computing these
integrals directly in the time domain [171], the integrals of the Gramians in frequency
domain (applying Parseval’s theorem [176, pp. 410-411]) are approximated by

P = 1
2π

∞∫
−∞

(jωI −A)−1BBT (jωI −AT )−1dω

≈
∑m
i=1 wi(jωiI −A)−1BBT (jωiI −AT ),

(17)

using weights wi and quadrature points ωi, i = 1, . . . ,m. This technique was intro-
duced first in [195] and was interpreted there as frequency-domain POD — it can be
understood as dual POD, using snapshots of the dynamical system itself for the con-
trollability Gramian and snapshots of the dual system for the observability Gramian.
The approach was later called Poor Man’s Truncated Balanced Reduction (PMTBR)
method in [161], Note that PMTBR as introduced in [161] is only suitable for systems
with A = AT and B = L and hence P = Q. The transformation matrix V for MOR is
obtained from an eigendecomposition of the approximate Gramian. For PMTBR, the
error between the approximate and the original Gramian is highly dependent on the
numerical quadrature scheme and the chosen underlying frequency integral (i.e. the
range spanned by the quadrature points ωi).

Properties of the reduced-order model using approximate Gramians

In general, using low-rank approximations to the system Gramians (16) or approxima-
tions of the Gramians for a given frequency range computed by numerical quadrature,
it can not be assured that model reduction by BT still preserves the stability of the
original system. However, in practice, this seems to be negligible.

The global error bound (11) is based on the assumption that the transformation
matrices for MOR are computed in exact arithmetic. Using approximate low-rank
factors ZP , ZQ, the bound is expected to hold only approximately, see [24, 107].
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Moreover, the original error bound cannot be computed anymore since only a few
HSVs {σ1, . . . , σk} with k := min{rP , rQ} were computed by all low-rank methods.
The remaining HSVs {σk+1, . . . , σn} have to be estimated.

Dominant subspace projection

The dominant subspace projection method (DSPMR) [155] is a heuristic, balancing-
free method that uses approximate low-rank factors Z̃P , Z̃Q from (16). An orthonormal
basis V for the projection (with V = W ) is computed using an economy-size SVD of

Z = [Z̃P , Z̃Q] ∈ Rn×(rP+rQ)

with (rP + rQ)� n and r := rank(Z):

Z = Ũ Σ̃Ṽ T , Ũ ∈ Rn×(rP+rQ).

Then V V T with V := [ũ1, . . . , ũr] ∈ Rn×r is a projector onto the range of Z and

range(V ) = range(Z̃P ) + range(Z̃Q).

A modification of this method is proposed in [130] where the system is projected
onto the sum of the dominant eigenspaces of the two Gramians. By a choice of k ≤
min{rP , rQ} and two economy-size SVDs of the approximate low-rank factors

Z̃P = ŨP Σ̃P Ṽ
T
P , Z̃Q = ŨQΣ̃QṼ

T
Q ,

an orthogonal projection V onto an r dimensional space is obtained by a QR decom-
position of the first k columns of ŨP and ŨQ,[

ŨP (:, 1 : k), ŨQ(:, 1 : k)
]

= V R,

with k ≤ r = rank(V ) ≤ 2k.

Error bound for systems with nonzero initial conditions

We want to point at an often neglected aspect concerning the global error bound
of balanced truncation. The original bound (11) is derived only for systems with
zero initial conditions. For systems with x(0) 6= 0 it can be observed that the error
between the original output and the reduced output can be rather large. We illustrate
this observation for a random system of size n = 100 in Fig. 1 and Fig. 2.

The system is reduced to order r = 4 by balanced truncation. Both the original
system and the reduced model are simulated in time domain with a sine wave input of
amplitude 10. In Fig. 1 it can be seen that the time simulation of the reduced-order
system is not distinguishable from the original one using zero initial values. If the
initial states are chosen as random values with relatively large norm, i.e. ‖x(0)‖2 =
O(103), the two time simulation results differ significantly as illustrated in Fig. 2.
This remarkable error is caused by an additional part in the estimate of the output
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error (7) for systems with non-zero initial conditions. The system output is calculated
in the frequency domain by

y(s) = (LT (sIn −A)−1B)u(s) + LT (sIn −A)−1x(0),

and
ŷ(s) = (L̂T (sIr − Â)−1B̂)u(s) + L̂T (sIr − Â)−1WTx(0),

respectively, which expands the error between the outputs in (7), i.e. the BT error
bound (11), to

‖y − ŷ‖2 ≤ 2

n∑
i=r+1

σi‖u‖2 + ‖LT [(sIn −A)−1 − V (sIr − Â)−1WT ]‖∞‖x(0)‖2.

In [110], an extension of the standard balanced truncation method to systems with
inhomogeneous initial conditions is presented and error estimates were given. We
propose a slightly different approach and derive an error bound at the end of this
section. For systems with x(0) = x0 6= 0, we propose to apply BT to a transformation
of (4)

˙̃x(t) = Ax̃(t) + B̃ũ(t),
ỹ(t) = LT (x̃(t) + x0),

(18)

with x̃(t) = x(t) − x0, x̃(0) = 0 and B̃ = [B,Ax0] and ũ(t) = [u(t), 1]T . The reduced
system is obtained by using the approximation x̃ ≈ V x̂:

˙̂x(t) = Âx̂(t) + B̂ũ(t),

ŷ(t) = L̂T x̂(t) + LTx0,
(19)

where Â = WTAV , B̂ = WT B̃, L̂ = V TL. The output y(t) of the original system in
(4) is approximated by the output of the reduced system in (19), y(t) ≈ ŷ(t).

The results of the modified approach are shown in Fig. 3 using the same non-zero
initial conditions as in Fig. 2. It is observed that the time simulation results of the
original and the reduced-order system nearly coincide. From Laplace transformations
of (18) and (19), the error between y(s) and ŷ(s) in (19) can be bounded by:

‖y(s)− ŷ(s)‖ = ‖ỹ(s)− ŷ(s)‖ (because y(t) = ỹ(t))

= ‖(LT x̃(s) + LTx(0)/s)− (L̂T x̂(s) + LTx(0)/s)‖
= ‖LT (sIn −A)−1B̃ũ(s)− L̂T (sIr − Â)−1B̂ũ(s)‖
≤ ‖LT (sIn −A)−1B̃ − L̂T (sIr − Â)−1B̂‖‖ũ(s)‖
≤ 2

∑n
i=r+1 σ̃i‖ũ‖2.

Note, that the σ̃i’s are not the HSVs of the original system (4) but of the associated
system:

ẋ(t) = Ax(t) + B̃u(t),
y(t) = LTx(t).

(20)
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We denote the controllability Gramian of the original system (4) by P , the correspond-
ing balancing transformation by T and the Gramian of (20) by P̃ (x0). The difference
between the two Gramians is given by

∆(x0) := P − P̃ (x0) = −
∞∫
0

eAtAx0x
T
0 A

T eA
T tdt.

Since A is stable, we may choose M, ω > 0 such that

‖eAt‖2 ≤Me−ωt, for all t ≥ 0.

Then Bauer-Fike [95, Theo. 7.2.2] gives the following estimate for the difference of the
HSVs:

|σ2
i − σ̃2

i | = |λi(PQ)− λi(P̃ (x0)Q)|
= |λi(PQ)− λi (PQ−∆(x0)Q) |
≤ ‖T‖2‖T−1‖2 ‖∆(x0)Q‖2

≤ ‖T‖2‖T−1‖2‖A‖22‖x0‖22‖Q‖2

∞∫
0

M2e−2ωtdt

≤ ‖T‖2‖T−1‖2‖A‖22‖x0‖22‖Q‖2
M2

2ω
.

2.2 Methods based on Krylov subspaces

The next important class of MOR methods for linear systems is based on Krylov
subspaces. They are often called moment-matching methods or Padé approximation
methods. These methods are very efficient in many engineering applications, including
circuit simulation and simulation of machine tools [69].

Methods based on Krylov subspaces are often designed for a direct application to
descriptor systems (12). In order to be in agreement with the previous section, we
describe the methods for the application to the standard state space system in (4).

The basic steps are as follows. First, the transfer function (6) is expanded into a
power series at an expansion point s0 ∈ C ∪ ∞. Let s = s0 + σ, then, within the
convergence radius of the series, we have

H(s0 + σ) = LT [(s0 + σ)I −A]−1B = LT [σI + (s0I −A)]−1B
= LT [I + σ(s0I −A)−1]−1[(s0I −A)]−1B
= LT [I − σ(s0I −A)−1 + σ2[(s0I −A)−1]2 + . . .]× (s0I −A)−1B

=
∞∑
i=0

LT [−(s0I −A)−1]i(s0I −A)
−1
B︸ ︷︷ ︸

:=mi(s0)

σi,

wheremi(s0) are called the moments of the transfer function about s0 for i = 0, 1, 2, . . ..
If the expansion point is chosen as zero then the moments simplify to mi(0) =
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LT(−A−1)i+1B. For s0 = ∞ the moments are also called Markov parameters which
can be computed by LTAi−1B.

The goal in moment-matching model reduction is the construction of a reduced-order
system where some moments m̂i of the associated transfer function Ĥ match some mo-
ments of the original transfer function H. A few important classes of approximations
are listed in Table 1.

Name of reduced-order system Matched moments
Padé approximation [19] mi(s0) = m̂i(s0), i = 0, 1, . . . , 2r − 1
Partial realization [96] mi(∞) = m̂i(∞), i = 0, 1, . . . , 2r − 1
Multipoint Padé approximation or mi(sj) = m̂i(sj), i = 0, 1, . . . , 2rj − 1,
rational interpolation [4, 19] for j = 1, . . . , k,

and r1 + . . .+ rk = r

Table 1: Some examples for MOR by moment-matching

The matrices V and W for model order reduction can be computed from the vectors
which are associated with the moments, for example, using one expansion point s0 = 0,
by

range(V ) = span{A−1B, (A−1)2B, . . . , (A−1)rB}, (21)

range(W ) = span{L,A−TL, (A−T )2L, . . . , (A−T )r−1L}. (22)

The derived reduced-order system matches the first 2r moments; the corresponding
transfer function Ĥ has good approximation properties around 0. Using a set of k
distinct expansion points {s1, . . . , sk}, the reduced-order system obtained by, e.g.,

range(V ) = span{(A− s1I)−1B, . . . , (A− skI)−1B}, (23)

range(W ) = span{(A− s1I)−TL, . . . , (A− skI)−TL}, (24)

matches the first two moments at each sj , j = 1, . . . , k, see [101]. For the case of one
expansion point in (21), (22), it can be seen that the columns of V , W span Krylov
subspaces which can easily be computed by Arnoldi or Lanczos methods. The matrices
V and W in (23), (24) can be computed with the rational Krylov algorithm in [101]
or with the modified Gram-Schmidt process. In these algorithms only a few number
of linear systems need to be solved, where matrix-vector multiplications are only used
if using iterative solvers, which are simple to implement and the complexity of the
resulting methods is roughly O(nk2) for a sparse matrix A.

A reduced-order system (5) is obtained following (2) and (3).
The early work on moment-matching is the Asymptotic Waveform Evaluation (AWE)

method in [162]. However, this method suffers from numerical instability because the
moments are explicitly computed. For instance, instead of computing the matrices
V and W in (21), (22), the vectors on the right hand sides of (21) are directly com-
puted to obtain the moments and the poles of the transfer function. As a result, the
vectors become linearly dependent, and converge to an eigenvector of the matrix A
corresponding to the smallest eigenvalue.
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To overcome the numerical instability of the AWE method, more recent work led to
numerically more robust methods as Padé via Lanczos (PVL) [70] (see also [71, 92]),
and a passive reduced-order interconnect macromodeling algorithm (PRIMA) [148].
Here, the orthogonal bases V and W of the Krylov subspaces (e.g. in (21)-(24)) are
computed implicitly, and the moments are implicitly matched by the reduced model.
For matching the transfer function over a larger frequency range, rational methods in-
cluding multiple expansion points as the dual rational Arnoldi and the rational Lanc-
zos method were proposed in [101]. Using restarting techniques as described in [102]
or the implicitly restarted dual Arnoldi method in [117], a subsystem is retained as
reduced-order model which has purely stable eigenvalues.

In general, methods based on Krylov subspaces do not preserve important properties
of the original system as stability and passivity. For some reduced-order systems this
can be achieved using post-processing techniques [13, 14]. For RCL sub-circuits there
exist several approaches where the reduced-order models are guaranteed to be stable
and passive, see [15, 89, 90, 91, 120, 148, 177]. Further preservation of structural
properties can be found, e.g. in [88, 134].

Issues on automatic generation of the reduced model

Some important issues for moment-matching methods are: How to adaptively deter-
mine the number and the location of the expansion points, and the number of the
matched moments? How to determine the order of the reduced model? Is there any
error bound for the reduced model? These issues have to be considered if the reduced
model needs to be automatically generated. Automatic generation of the reduced
model is very important for the robustness of the related simulation tools in today’s
design automation for MEMS and Integrated circuits (IC).

To illustrate this problem, we show some simulation results for a system obtained
from modeling large-scale interconnects in IC design (see Fig. 4). The interesting
frequency range is ω ∈ [0, 2π1010]. The method PRIMA in [148] is used to obtain the
transfer function of the reduced model.
Fig. 5– Fig. 8 show the magnitudes of the relative errors between the original trans-

fer function H(s) and the reduced transfer function Ĥ(s) of order r = 54, obtained
using different expansion points and numbers of moments matched. The reduced trans-
fer function used in Fig. 5 is computed by expanding H(s) at zero and by matching
54 moments. For Fig. 6, Ĥ(s) is obtained by expanding H(s) at a high frequency
ω = 2π1010 (the corresponding expansion point is s0 = jω, j =

√
−1), and by match-

ing 27 moments. Since the computed matrix V using this s0 is a complex matrix,
the final projection matrix is the combination of the real and the imaginary parts of
V , and thus has 27 × 2 = 54 columns (there is no deflation in the Arnoldi process in
PRIMA for this example). We see that if only one expansion point is chosen, Ĥ(s) is
accurate only in a limited frequency band. Classical moment-matching (i,e., s0 = 0)
apparently is more accurate than using the high frequency expansion point as can be
seen from Fig. 6. The reason is that it matches twice the number of moments. How-
ever, there are still large errors around the high frequency ω = 2π1010 in Fig. 5 where
expansion at this frequency yields a small error there. The relative errors obtained
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Fig. 4 An interconnect circuit example

by expanding H(s) at both zero and ω = 2π1010 can be seen in Fig. 7 and Fig. 8.
In Fig. 7, 34 moments at zero and 10 moments at ω = 2π1010 are matched to get
Ĥ(s). 14 moments at zero and 20 moments at ω = 2π1010 are matched by the reduced
transfer function used in Fig. 8. The relative error shown in Fig. 7 is very small and
is below the usual accuracy needs in industrial applications, whereas the one in Fig. 8
exhibits large errors at the frequencies in the middle. The above analysis shows that
the accuracy of the reduced model depends not only on the choice of the expansion
points, but also on the number of the moments matched.

An early method called CFH (Complex Frequency Hopping) is proposed in [58] to
describe a principle of choosing multiple expansion points of the transfer function. By
using a binary search algorithm, the expansion points are chosen with respect to the
common poles contained in both circles of the neighboring expansion points. However,
like the AWE method in [162], the poles of the transfer function are computed based
on explicit computation of the moments. Therefore, the computed poles are actually
not accurate, because of numerical instability, although they would represent the ac-
tual poles if computed with precise arithmetic. A transfer function-based approach is
proposed in [1] by using a similar binary search algorithm as in [58]. However, one
reduced model is constructed at each expansion point, which means 10 reduced models
are constructed if 10 expansion points are chosen. Furthermore, the reduced models
are obtained by explicitly calculating the moments, which causes the same numerical
instability problem as in [162].

Recent progresses on the above issues

Remarkable progresses have been made in this active research area since the early
work in [1, 58]. In [59], the expansion points are automatically selected according to
the error between the jth order moments mj(si) and m̂j(si) . There is not a stopping
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Fig. 5 Relative error of Ĥ(s) by expanding H(s) at ω = 0 (54
moments matched)
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Fig. 7 Relative error of Ĥ(s) by expanding H(s) at ω = 0 (34
moments matched) and at ω = 2π1010 (10 moments matched)
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Fig. 8 Relative error of Ĥ(s) by expanding H(s) at ω = 0 (14
moments matched) and at ω = 2π1010 (20 moments matched)
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criterion for the selection process since no error estimation for the reduced model is
available. As a result, the reduced model cannot be derived automatically.

A few years ago, the issue of multi-point expansion of the transfer function was
readdressed in [106]. Methods based on interpolation are proposed in the paper, which
claim some rules for selecting the interpolation points needed for approximating the
transfer function. However, the methods are actually not adaptive in choosing the
number of interpolation points. In [106] it is shown that the H2-error

‖H − Ĥ‖H2 :=

 1

2π

∞∫
−∞

|H(jω)− Ĥ(jω)|2dω

1/2

is minimized for SISO systems if the expansion points are chosen as sj = −λ̂j , where

λ̂1, λ̂2, . . . , λ̂k are the simple poles of the reduced order system (the mirror images of
Ĥ). For this optimal shift selection, the following moments are matched:

m0(−λj) = m̂0(−λj), m1(−λj) = m̂1(−λj),

for j = 1, . . . , k. An iterative rational Krylov algorithm (IRKA) [106, Algorithm 4.1] is
proposed and successfully applied to larger problems. The method is numerically effec-
tive, only LU decompositions and linear solvers are required and the solution satisfies
interpolation based first-order necessary conditions for H2 optimality. The preserva-
tion of stability cannot be guaranteed in advance but only seems to be a problem for
an initial shift selection which is very different from the mirror spectrum of A. A
generalization of the approach to MIMO systems can be found in [55, 106, 190]. Based
on IRKA, a new interpolatory approach for H∞ approximation was developed in [83].
The method can be efficiently applied to large-scale SISO systems and computes high
fidelity (nearly optimal) H∞ solutions.

In a recently published work [65] an adaptive computation of shifts for rational
Krylov subspace methods of Galerkin type is presented. This approach computes
slightly less accurate reduced-order systems than IRKA but with much less computa-
tional cost.

The SPARK algorithm in [150] is an iterative scheme to adaptively chose the ex-
pansion points in Krylov subspace methods, and in particular the order of the reduced
model. It implicitly guarantees preservation of stability and contains an optimization
algorithm that converges to an H2 optimum. Though less efficient than IRKA , it
allows to choose the reduced order on-the-fly and does not suffer from the stability
issue. In general, only the first moment at each expansion point is matched. There is
limited flexibilty of adaptively choosing the number of moments.

An adaptive approach similar to the idea in [1, 58] is proposed in [76]. There
are some advantages over the algorithms in [1, 58]. Firstly, a single reduced model
can be obtained. Secondly, the error estimation of the reduced model is the error
between the reduced model and the original model computed at a few points in the
frequency interval. This can be computed cheaply. Thirdly, the moments are computed
based on implicit moment-matching [148], which can maintain numerical stability.
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Finally, according to the adaptive scheme, not only the expansion points, the number
of matched moments, but also the order of the reduced model can be determined
adaptively.

A new method is proposed in [50]. The method addresses the problem of adaptively
choosing the expansion points based on a similar binary principle as the methods
in [76]. It is shown that the adaptive rules of selecting the expansion points in [50] can
be combined with the method of selecting the moments in [128] to give an adaptive
scheme of selecting both the expansion points and the moments. How to determine
the order of the reduced model is unknown.

All the above adaptive schemes include more or less heuristics, since there is not
a convincing error estimation for the reduced model. Earlier results concerning error
bounds for Krylov subspace based methods [17] yield only local bounds for the transfer
function. Such error bounds can only be used to estimate the accuracy of the transfer
function in a certain frequency range, and cannot give a global estimation in the whole
frequency domain. Some heuristic error indicators are proposed in [101, 25], where the
error between the transfer functions of two different reduced models are used as the
error of the reduced model. However, they are not provable error estimations for the
error between the reduced model and the full system.

A provable error estimator for lossless systems (systems without resistors) which is
independent from the choice of expansion points is introduced in [121, 122].

A posterior error estimation for linear time invariant systems is proposed in [74].
The error estimation is an error bound for the transfer function. According to the
error estimation, the expansion points can be adaptively selected through a greedy
algorithm, where the point which causes the biggest error is selected as the next
expansion point. So far, the method is valid only for special linear time invariant
systems in (12), where C is symmetric positive definite, G is symmetric.

A Gramian-based output error bound is proposed in [197]. The error bound requires
the explicit computation of the observability Gramian Q and is therefore not compu-
tationally practical for very large systems. However, using a certain factorization of
the error system yields an H2 error bound which is valid for any reduced system ob-
tained by Krylov subspace methods provided that the observability Gramian has been
computed once [199]. In [151], global H2 and H∞ error bounds for Krylov subspace
methods are derived. They apply to systems with C symmetric positive definite and
G+GT > 0.

Another method of adaptively selecting the expansion points is proposed in [194].
The expansion points are selected also through certain greedy algorithm. However,
during the greedy algorithm, the error estimation for the reduced model is based
on the error between the state vector of the original system and the approximate
state vector computed from the reduced model, rather than the error between the
transfer functions used in [74]. Most often, we are interested in the time domain output
response or the transfer function of the system, but not in the state vector. The error
between the output of the original system and that of the reduced model often tends
to be overestimated by the error between the state vectors. It is not clear how to
automatically choose the expansion points based on other moment-matching methods
as described in [70, 148], which are widely used in circuit and MEMS simulation.
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For survey papers on model reduction based on Krylov subspaces see, e.g. [11, 86,
87, 75].

2.3 Hybrid methods

Hybrid methods try to benefit from the combination of Krylov subspace methods with
Gramian based approaches. They compute intermediate models of moderate but still
high order by a projection onto Krylov subspaces. The reduced size of the intermediate
model allows for a further reduction by implementations of BT (and related methods)
based on direct methods for the solution of Lyapunov equations [119]. Note, that for
hybrid methods the preservation of stability in the first reduction step plays an essential
role. Otherwise, a further reduction by BT would not be possible. A framework for
this two-step approach allowing also for other reduction techniques in the first step
is discussed in [200]. An approach using Krylov subspace projection in both steps is
described [196].

2.4 Relationships between different methods

In this subsection, we will explore relationships between some of the methods for linear
model order reduction. Since for general unsymmetric systems, connections between
different methods are not obvious, we concentrate on symmetric systems where A = AT

and B = L. Note that for symmetric systems, the two Gramians P and Q are equal.
Therefore, MOR by BT simplifies to the problem of computing the dominant invariant
subspace V1 ∈ Rn×r of the Gramian P ,

P = [V1, V2]

(
Λ1 0
0 Λ2

)
[V1, V2]T ,

with non-increasingly ordered eigenvalues diag(Λ1) ∪ diag(Λ2) = {λ1, . . . , λn}. Note
that V = V1 is used as transformation matrix (with W = V ) for MOR in (2) and (3).

Therefore, if the Gramian is approximated via its low-rank factor Z ∈ Rn×rP where
rP is the numerical rank of P , P ≈ ZZT , the original BT method as well as the SR
method, the Schur method, the cross-Gramian approach, DSPMR, and the modifica-
tion on DSPMR given in [130], project onto V := range(V1) with

range(P ) = range(Z) ⊇ range(V1) = V.

Thus, we do not distinguish between these methods in the following. Instead, we ex-
amine how the range of the low-rank approximate factor Z differs for some algorithms
proposed for the numerical solution of matrix equations.

We consider the CF-ADI algorithm [131], the numerical quadrature in (17) [161],
and a POD approach for the computation of a low-rank factor Z that can be used
in the Gramian based model reduction methods mentioned above. Let Z be the mth
CF-ADI approximation to the Cholesky factor of P and the number m be chosen as
the largest number such that the columns in Z are linearly independent. For distinct
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CF-ADI shifts {p1, . . . , pm}, and by use of Ai := A + piI, the columns of Z in [131]
span the subspace

range(P )
(∗)
= range(Z)
(∗∗)
= span

{
(A−11 B, . . . ,

m∏
i=1

A−1i B

}
(∗∗∗)
= span

{
A−11 B

}
⊕ . . .⊕ span

{
A−1m B

}
= span

{
A−11 B, . . . , A−1m B

}
.

(25)

(*) [131, Prop. 7.6], (**) [131, Prop. 7.3], (***) [131, Theo. 5.4]
If the Gramian P is approximated by numerical quadrature as in PMTBR [161], the

factor Z is described by

Z = [(jω1I −A)−1B, . . . , (jωmI −A)−1B ]diag(
√
w1, . . . ,

√
wm), (26)

where {w1, . . . , wm} are the weights and {ω1, . . . , ωm} are the frequency sampling
points.

This formulation of Z is very similar to the one computed by the POD method as
introduced in [195]:

Z = 1/
√
m[(jω1I −A)−1B, . . . , (jωmI −A)−1B ], (27)

where (jωiI −A)−1B, i = 1, 2, . . . ,m, are called the snapshots. This approach can be
considered as POD in frequency domain since ωi are frequency sampling points.

The above observations provide some insights into possible connections between the
factors Z for the different methods, which are summarized in the following proposi-
tions.

Proposition 1. For stable linear systems (4) with A = AT and B = L, the method
PMTBR and POD in frequency domain compute an equivalent factor Z, if the fre-
quency points ωi in (26) and in (27) are chosen equal, and the weights in (26) are
taken as wi = 1/

√
m, for i = 1, 2, . . . ,m.

Proof. This can be concluded from (26) and (27).

Proposition 2. For stable linear systems (4) with A = AT and B = L, the columns of
the Cholesky factor Z computed by the CF-ADI algorithm after m iteration steps and
by PMTBR using m distinct frequency points span the same subspace if the CF-ADI
shifts {p1, . . . , pm} in (25) and the quadrature points {−jω1, . . . ,−jωm} in (26) for
PMTBR are chosen equal.

Proof. Can simply be followed from (25) and (26).

As discussed in Section 2.2, the transformation matrix V (with W = V ) for moment-
matching methods using multiple interpolation points {s1, . . . , sm} can be computed
by

range(V ) = span{(A+ s1I)−1B, . . . , (A+ smI)−1B}. (28)

Then from (25), (26), (27), (28), we get the following equivalence result of Gramian
based methods and moment-matching.
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Proposition 3. For stable linear systems (4) with A = AT and B = L, all Gramian
based methods with a low-rank factor Z computed by CF-ADI (25), by PMTBR (26)
as well as by POD in frequency domain (27) can be considered as moment-matching
methods.

Proof. It directly follows that the transformation matrices V computed by each of
these methods as the dominant invariant subspace of the Gramians corresponding to
the low-rank factors in (25), (26), (27), respectively, form an orthonormal basis for the
subspace V with V ⊆ span{(A+ s1I)−1B, . . . , (A+ smI)−1B}, see (28).

There are other works which explore relations between different methods for com-
puting low-rank solutions of Lyapunov equations.

It is shown in [81, 84, 188] that approximations to the solutions of Sylvester equations
obtained from ADI and rational Krylov subspace methods coincide for H2-optimal
shifts. The connection of ADI and Krylov subspace methods is exploited in [198] for
providing a constructive way of computing the ADI approximation.

For connections between (balanced) POD and MOR by rational interpolation, we
refer to [149]. In this work, the selection of time sampling points and of the numerical
method for computing the (time-domain) snapshots for POD is set into correlation to
interpolation at infinity or at certain distinct points.

For surveys on MOR methods for linear large-scale systems, see [5, 6, 11, 85, 86], for
techniques especially for micro-electro-mechanical systems and for systems that arise
in circuit simulation, see [12, 75].

At the end of this section we summarize open issues and problems of interest in
MOR for linear systems.

1. Gramian based MOR fails to reduce highly undamped systems since the Lya-
punov solvers don’t converge. One way out might be a different stopping criterion
as, for instance proposed in [38], the convergence of some of the Hankel singular
values.

2. Still progress is needed in the development of efficient solvers for large-scale
matrix equations corresponding to general systems.

3. Improvements on the efficient computation of sharp and rigorous global error
bounds for Krylov subspace methods (though partially solved in [74, 199, 151,
122]) would be valuable.

3 Model order reduction for nonlinear systems

In this section we consider nonlinear systems which appear in many engineering ap-
plications in the following form,

dx(t)
dt = f(x(t)) +Bu(t),
y(t) = LTx(t),

(29)
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where x(t) ∈ Rn and f(·) ∈ Rn is a nonlinear, vector valued function. The reduced
model

dz(t)

dt
= WT f(V z(t)) +WTBu(t) (30)

can be obtained with a projection matrix W and a transformation matrix V with
WTV = I. At present there are several kinds of MOR methods for nonlinear systems.
One method is the quadratic method [57], which is also the simplest one. The bilin-
earization method [16, 158] is more accurate than the quadratic method. Methods
based on variational analysis [29, 30, 77, 103, 104, 159, 170], in general, yield smaller
errors than the previous two methods. A method based on a piece-wise linear ap-
proximation of the nonlinear function f(·) [165] could be preferred when dealing with
strong nonlinearities. These methods are, in some sense, extensions of the moment-
matching methods or of BT for linear systems. They can be considered as frequency
domain MOR methods, where transfer functions are used to measure the accuracy of
the reduced model.

All nonlinear MOR methods as mentioned above either approximate the nonlinearity
f(V z(t)) by a polynomial of low degree [16, 57, 77, 158, 159] (can also be, a weighted
sum of some low degree polynomials [165]), or transform (29) into a quadratic bilinear
system [29, 30, 103, 104]. There, the direct computation of f(V z(t)) in the reduced
model (30) is replaced by the evaluation of a polynomial or a quadratic bilinear ap-
proximation. For other time-domain and snapshot-based nonlinear MOR methods like
POD and the reduced basis method [100], the nonlinearity f(V z(t)) must be directly
evaluated. There are some techniques, which provide efficient estimates of f(V z(t))
as the (discrete) empirical interpolation methods (DEIM or EIM) [21, 56], the missing
point estimation method [8], or a best points interpolation method [146]. In [112],
three different methods of approximating f(V z(t)) are analyzed and compared in de-
tail: a polynomial approximation [57, 77, 159], an approximation by a weighted sum
of low degree polynomials or linear functions [165] and an approximation (estimation)
by DEIM interpolation [56].

As already mentioned in the introduction, we are focusing here on frequency domain
considerations and generalizations of moment matching. Thus, we will not discuss
POD and other methods based on sampling in this section.

Throughout the section we use the nonlinear circuit example in Fig. 9 (see [57])
to provide some simulation results. The order of the original nonlinear system with
n = 100 is rather small, but it suffices to illustrate basic properties of the discussed
methods.

3.1 Quadratic method

We first analyze the quadratic MOR method proposed in [57]. This method approxi-
mates the nonlinear function f(·) by its Taylor expansion at, e.g., x0 = 0, which can
be rewritten into a Kronecker product formulation of x,

f(x(t)) = f(0) +A1x(t) +A2(x(t)⊗ x(t)) +A3(x(t)⊗ x(t)⊗ x(t)) + . . . , (31)
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Fig. 9 Nonlinear circuit example

where A1 ∈ Rn×n is the Jacobian of f and, in general, Aj ∈ Rn×nj

denotes a matrix
of the jth partial derivatives of f . A quadratic system is obtained by a truncation
of (31)

dx(t)
dt = A1x(t) +A2(x(t)⊗ x(t)) +Bu(t) + f(0),
y(t) = LTx(t).

(32)

If f(0) = 0, the transformation matrix V is computed as an orthonormal basis of the
Krylov subspace Kq as below

range(V ) = span{A−11 B,A−21 B, . . . , A−q1 B} =: Kq(A
−1
1 , A−11 B). (33)

Note that V is constructed only by use of the linear part of the quadratic system.
By approximating x ≈ V z, a reduced-order system is derived,

dz(t)
dt = V TA1V z(t) + V TA2(V z(t)⊗ V z(t)) + V TBu(t),
y = LTV z(t).

It can be seen that the idea of the quadratic method comes from the moment-matching
method for linear systems. The transformation matrix V is computed in the same way
as moment-matching methods.

If f(0) 6= 0, then f(0) can be considered as a part of the input, i.e. the system in
(32) can be reformulated into,

dx(t)
dt = A1x(t) +A2(x(t)⊗ x(t)) + [B, f(0)][u(t), 1]T ,
y(t) = LTx(t),

which is a multiple input system. The input matrix B in (32) is replaced by the matrix
[B, f(0)], which means f(0) can always be treated as a part of the input matrix of the
system, therefore for simplicity, we assume below f(0) = 0.
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3.2 Bilinearization method

It is shown in [170, 175], that a bilinear system can be obtained by applying the
Carleman linearization process to the nonlinear system (29). In [16, 158], the bilin-
ear system is derived by approximating f(x(t)) with a two-degree polynomial in the
Carleman linearization process. By use of the first two terms in (31), we obtain the
following approximation of f(x(t)),

f(x(t)) ≈ A1x(t) +A2(x(t)⊗ x(t)).

With the definitions

x⊗ =

(
x(t)

x(t)⊗ x(t)

)
, B⊗ =

(
B
0

)
, L⊗ =

(
L
0

)
,

A⊗ =

(
A1 A2

0 A1 ⊗ I + I ⊗A1

)
,

N⊗ =

(
0 0

B ⊗ I + I ⊗B 0

)
,

the nonlinear system (29) can be approximated by the following bilinear system,

dx⊗
dt = A⊗x⊗ +N⊗x⊗u(t) +B⊗u(t),
y(t) = LT

⊗x⊗,
(34)

see [16, 158] for more details. We can see that the above bilinear system is of much
larger state-space dimension than the original nonlinear system (29). It is possible
to use more than the first two terms in (31) to get more complex bilinear systems,
where the dimension of the resulting bilinear system is even larger, see [82, 170]. In
the following we will introduce the process of constructing the transformation matrix
V for MOR.

Once the nonlinear system is approximated by the bilinear system (34), there are
several choices of doing MOR. Multimoment-matching methods extend the moment-
matching methods for linear systems to bilinear systems by studying the transfer
function of the bilinear system. Following the principle of the Gramian based MOR
methods for linear systems, the Gramian based bilinear MOR methods construct the
matrices W and V by exploring the Gramians of the bilinear systems. These two kinds
of methods will be described and discussed separately.

Multimoment-matching methods

The bilinearization MOR methods in [16, 158] construct the matrices W,V , W = V
for the reduced model by approximating the transfer function of the bilinear system.
These two methods are analyzed. Then, a method [73] is introduced, which is a
combination of them and is shown to be more robust than both methods. Note that
only SISO systems are considered in [16, 158]. For MIMO systems, the expression of
the transfer function will be different, see [82, 135]. In [135], a method similar to [158]
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was extended to MIMO systems. In the following description, we restrict ourselves to
SISO bilinear systems.

The output response of the bilinear system (34) can be expressed by a Volterra
series [170],

y(t) =

∞∑
k=1

yk(t),

with yk(t) described by

yk(t) =
∫ t
0

∫ t1
0
. . .
∫ tk
0

h
(reg)
k (t1, . . . , tk)u(t− t1 − t2 . . .− tk)×
u(t− t2 − t3 . . .− tk) . . . u(t− tk)dtk . . . dt1

and
h
(reg)
k (t1, . . . , tk) = LT

⊗e
A⊗tkN⊗e

A⊗tk−1 . . . N⊗e
A⊗t1B⊗. (35)

In (35), hk(reg) is called the regular kernel of kth degree. The multivariate Laplace

transform of this kernel defines the kth transfer function H
(reg)
k :

H
(reg)
k (s1, . . . , sk) = LT

⊗(skI −A⊗)−1N⊗(sk−1I −A⊗)−1N⊗ . . . N⊗(s1I −A⊗)−1B⊗.
(36)

By using the Neumann expansion around 0,

(I − sA−1⊗ )−1 = I + sA−1⊗ + s2A−2⊗ + s3A−3⊗ + . . . ,

H
(reg)
k (s1, s2, . . . , sk) can be expanded in a multivariable Maclaurin series,

H
(reg)
k (s1, . . . , sk) =

∞∑
lk=1

. . .
∞∑
l1=1

m(l1, . . . , lk)sl1−11 sl2−12 . . . slk−1k , (37)

with so called kth order multimoments m(l1, . . . , lk) defined by

m(l1, . . . , lk) = (−1)kLT
⊗A
−lk
⊗ N⊗ . . . A

−l2
⊗ N⊗A

−l1
⊗ B⊗, l1, . . . , lk = 1, 2, . . . . (38)

Construction of the transformation matrices

In [158], the transformation matrix V is constructed from a series of Krylov subspaces
for given q1, . . . , qJ ∈ N by the following J steps:

range(V (1)) = Kq1(A−1⊗ , B⊗), (39)

and
range(V (j)) = Kqj (A−1⊗ , N⊗V

(j−1)), (40)

for 1 < j < J . The matrix V is defined by the union of the subspaces that are spanned
by the columns of V (j),

range(V ) =

J⋃
j=1

colspan{V (j)}. (41)
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Using x⊗ ≈ V z⊗ in (34), and multiplying with V T from the left on both sides of the
first equation, the reduced-order model for the nonlinear system (29) is given by

dz⊗
dt = Â⊗z⊗ + N̂⊗z⊗u(t) + B̂⊗u(t),

ŷ(t) = L̂T
⊗z⊗,

(42)

where Â⊗ = V TA⊗V, N̂⊗ = V TN⊗V, B̂⊗ = V TB⊗, L̂⊗ = V TL⊗.
There are two differences between the methods in [158] and [16]. One is that the

Krylov subspaces for generating V in (41) are different. In [16] the Krylov subspaces
are as follows:

range(V (1)) = Kq1(A−1⊗ , A−1⊗ B⊗), (43)

and for j > 1,
range(V (j)) = Kqj (A−1⊗ , A−1⊗ N⊗V

(j−1)). (44)

The final transformation matrix V is

range(V ) =

J⋃
j=1

colspan{V (j)}. (45)

From the definition of the multimoments in (38), we see that all of the indices l1, l2, . . . , ln
in the multimoments start from 1, therefore the first vectors in the Krylov subspaces
generating V (j), j = 1, 2, . . . , should be A−1⊗ B⊗, A

−1
⊗ N⊗V

(j), j = 1, 2, . . . respec-

tively, rather than B⊗, N⊗V
(j), j = 1, 2, . . . as defined in (39)-(41). As a result, the

definitions in (39)-(41) include the following redundant vectors,

B⊗, N⊗V
(j), j = 1, 2, . . . ,

which are not the multimoments of the regular kernel, and may affect the accuracy of
the reduced model.

The other difference is that in [16], the reduced model of the bilinear system (34) is
derived in the following more complex way: First, A−1⊗ is multiplied from the left on
both sides of the equation

A−1⊗
dx⊗
dt = x⊗ +A−1⊗ N⊗x⊗u(t) +A−1⊗ B⊗u(t),
y(t) = LT⊗x⊗.

Using the approximation x⊗ ≈ V z⊗ and by some further transformations, the reduced
model is obtained

dz⊗
dt = Ã⊗z + Ñ⊗z⊗u(t) + Ã⊗V

TA−1⊗ B⊗u(t),
y(t) = LT⊗V z⊗,

(46)

where Ã⊗ = (V TA−1⊗ V )−1, Ñ⊗ = Ã⊗V
TA−1⊗ N⊗V .

In [73], it is proved that if the projection matrix V is constructed with (43)-(45)
rather than (39)-(41), then the reduced model in (42) can match as many multimo-
ments as the reduced model (46). This is a combination of both methods, which pro-
vides a different way of model reduction for bilinear systems. Here, we name the third
method in [73] as BICOMB. If the reduced model in (42) is obtained by BICOMB, it
is not only as accurate as the reduced model in (46) but also can be obtained more
efficiently than (46) (without computing the inverse of A⊗).

28



Simulation results of the proposed method BICOMB

Simulation results are missing in [73] to further aid the theoretical analysis there. We
present some simulation results of the method BICOMB, and compare it with [158] as
well as with [16]. We use the same input functions u(t) = e−t and u(t) = (cos(2πt/10)+
1)/2) as in [16] to see if the accuracy of [158] is improved by BICOMB. We apply the
same practical scheme proposed in Section 4 in [16] to construct the projection matrix
V . That is, we first define q1 for V (1) in (43), then we take the first p2 columns in
V (1) (denoted by V (1)[1 : p2]) to construct V (2) in (44). The matrix V (2) is actually
constructed by

range(V (2)) = Kq2(A−1⊗ , A−1⊗ N⊗V
(1)[1 : p2]).

Here we only take two matrices V (1) and V (2) for the final V in (45) as in [16]. In
the end, the number of columns in V (2) is q2 × p2 if there is no deflation during the
orthogonalization process. We take q1 = 20, p2 = 1, q2 = 1 for all methods.

The time-domain output responses y(t) of the nonlinear circuit excited by different
inputs are presented in Fig. 10 and Fig. 11. The relative errors

εre = ||y(t)− ŷ(t)||2/||y(t)||2

of the outputs ŷ(t) computed by different methods are shown in Fig. 12 and Fig. 13,
where y(t) is the output computed by full simulation of the original nonlinear system.
From the figures we can see that BICOMB is as accurate as the method in [16] and the
accuracy of the method in [158] is really improved by BICOMB. By using BICOMB
instead, the complexity of the method in [16] is largely reduced. It is noticed that
Neumann expansion around zero is used to get the series expansion (37) of the kth
transfer function in (36). It is possible to use nonzero expansion as well. It is shown
in [54] that a reduced model with better accuracy can be derived with the nonzero

multi-expansion points σ1, . . . , σq for the Neumann expansion of H
(reg)
k .

Common issues for multimoment-matching methods

All the three methods above need to construct a transformation matrix V . The trans-
formation matrix V depends on the multimoments included in (39)-(41) or in (43)-(45).
The accuracy of the reduced system depends on the number of multimoments included
in V . However, different choices of q1, p2, q2, . . . influence the accuracy of the reduced-
order system as can be seen in Fig. 14- Fig. 17. The order of all reduced models is
q1 + p2× q2 = 21. The results in Fig. 14 and in Fig. 15 are obtained from BICOMB,
and the results in Fig. 16 and in Fig. 17 are produced by the method in [16]. The
accuracy of both methods depends on the proper choice of q1, p2, q2. However, we
can observe the following principles in Fig. 14- Fig. 17. If we choose q1 large enough
(here 17) then the accuracy of the reduced-order system is not improved significantly
by a further increase of q1 (20). On the contrary, if q1 is too small (here 5) then the
error will be large. Thus, matching sufficiently many multimoments of first degree is
important for the accuracy of the reduced model.
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Balanced truncation for bilinear systems

Another possibility of reducing bilinear systems is the BT bilinear MOR method which
was proposed first in [2] and reviewed and further developed in [60] and [35]. The idea
is similar to the standard BT method for linear state space systems as presented in
Section 2.1. To get the reduced model, the two Gramians P andQ need to be computed
from the generalized Lyapunov equations for the bilinear system in (34):

A⊗P + PAT⊗ +N⊗PN
T
⊗ = −B⊗BT⊗,

AT⊗Q+QA⊗ +NT
⊗QN⊗ = −L⊗LT⊗.

(47)

Analogously to the linear system, a transformation matrix T = VPΛPVQΛ
−1/2
Q can

be computed from the spectral decomposition of the Gramian P and of the projected
Gramian (VPΛP )TQ(VPΛP ):

V TP PVP = Λ2
P ,

V TQ [(VPΛP )TQ(VPΛP )]VQ = Λ2
Q.

(48)

The balanced bilinear system is

dx⊗
dt = T−1A⊗Tx⊗ + T−1N⊗Tx⊗u(t) + T−1B⊗u(t),
y(t) = LT

⊗Tx⊗.
(49)

The Gramians of the balanced bilinear system become equal and diagonal. Recalling
the linear case, the reduced model can be obtained likewise, by truncating the part
in the system matrices in (49) corresponding to small values on the diagonal of the
Gramian.

Although it is shown in [35], that the BT bilinear MOR method often outperforms
the multimoment-matching method, it is obvious that two generalized Lyapunov equa-
tions must be solved, which is computationally complicated. Fast numerical methods
need to be developed for large-scale systems. The error bound for the reduced model
remains unknown for this approach.

Interpolation-based H2-model reduction for bilinear systems

The definition of the H2-norm was extended to bilinear systems in [203]. An alterna-
tive computation of this norm was proposed and used to derive first order necessary
conditions for H2-optimality of the reduced model in [28]. Furthermore, it is shown
that if the reduced model is H2-optimal, then the Volterra series of the reduced bi-
linear system interpolates the Volterra series of the original system in the frequency
domain. See [82] for more discussions about interpolation properties of the reduced
bilinear system.

Two algorithms were presented in [28] which compute reduced-order systems that
locally minimize the H2-error. The first algorithm computes the matrices W and V
from the solutions X and Y of two generalized Sylvester equations:

A⊗X +XÂT⊗ +N⊗XN̂
T
⊗ = −B⊗B̂T⊗,

AT⊗Y + Y Â⊗ +NT
⊗Y N̂⊗ = −L⊗L̂T⊗,
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where Â⊗ = WTA⊗V , N̂⊗ = WTN⊗V , B̂⊗ = WTB⊗, L̂T⊗ = LT⊗V . Here WT =
(UTV )−1UT . The columns in U and V are orthogonalizations of Y andX, respectively.
The reduced model obtained after convergence (consisting of Â⊗, N̂⊗, B̂⊗, L̂⊗) satisfies
theH2-optimal necessary conditions. This is also the case for the solution computed by
the second algorithm in [28], which is called BIRKA. BIRKA is a generalization of the
iterative rational Krylov algorithm and is shown to compute more accurate reduced-
order systems w.r.t. the relative H2-norm than BT by several numerical examples.

3.3 Variational analysis method

The third kind of nonlinear MOR methods [30, 77, 103, 104, 132, 159] originates
from the variational analysis in nonlinear systems theory [170]. In [77, 132, 159], the
original nonlinear system is firstly approximated by a polynomial system, then the
variational analysis is applied to the polynomial system to get a reduced polynomial
system. In [30, 103, 104], an exact quadratic-bilinear transform of the nonlinear system
is proposed, such that the nonlinear system can be represented by a quadratic-bilinear
system without loss of accuracy, but at the sacrifice of increased state variables. The
variational analysis is finally applied to the quadratic-bilinear system to obtain a quad-
ratic-bilinear reduced model.

Methods using polynomial approximation

In the following, we describe the method developed in [77]. The main difference of the
method in [159] from the method in [77] is the construction of the projection matrices
V2 and V3, and will be explained later.

With the Taylor expansion of f(x(t)) in (31), the original nonlinear system (29) is
first approximated by a second order polynomial system

dx(t)
dt = A1x(t) +A2(x(t)⊗ x(t)) +Bu(t),
y(t) = LTx(t),

(50)

or by a third order polynomial system

dx(t)
dt = A1x(t) +A2(x(t)⊗ x(t)) +A3(x(t)⊗ x(t)⊗ x(t)) +Bu(t),
y(t) = LTx(t).

(51)

It is shown that the original nonlinear system (29) is equivalent to a group of linear
systems. Thus, the transformation matrix V can be computed from the linear systems.

Consider the response of (29) to the special input αu(t),

dx(t)
dt = f(x(t)) +B(αu(t)),
y(t) = LTx(t),

(52)

where α is an arbitrarily small number. Assuming that the response to u(t) = 0 is
x(t) = 0 (in [170], it is called forced response), then x(t) can be expanded into a power
series in α,

x(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . . (53)
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Substituting both (53) and (31) into the right hand side and (53) into the left hand
side of (52), we get

αdx1(t)
dt + α2 dx2(t)

dt + α3 dx3(t)
dt + . . . = αA1x1(t)+

α2[A1x2(t) +A2(x1(t)⊗ x1(t))] + . . .+B(αu(t)).

Since this equation holds for all α, coefficients of powers of α can be equated. This
gives the variational equations:

dx1(t)

dt
= A1x1(t) +Bu(t), (54)

dx2(t)

dt
= A1x2(t) +A2(x1(t)⊗ x1(t)), (55)

dx3(t)

dt
= A1x3(t) +A2(x1(t)⊗ x2(t) + x2(t)⊗ x1(t))

+A3(x1(t)⊗ x1(t)⊗ x1(t)), . . . . (56)

It is worth pointing out that the assumptions on the forced response can be relaxed,
and similar variational equations on xδ = x(t) − x̂(t) can be derived. Here x̂(t) is
the response of a certain input û(t) for a fixed initial state x(0) = x0. For detailed
discussion, see Section 3.4 in [170].

Construction of the transformation matrix

We notice that all of these variational equations are linear systems of order n for the
vectors of unknowns x1(t), x2(t), . . ., respectively. Since x(t) is a linear combination
of x1(t), x2(t), . . . (see (53)), they stay in the same subspace. The transformation
matrix V can be computed from the subspace containing x1(t), x2(t), . . ..

Based on this observation, the method in [77] constructs V based on the linear vari-
ational equations (54)-(56) rather than from the nonlinear system. From the moment-
matching MOR for linear systems, a transformation matrix V1 for x1(t) in the first
linear system (54) is constructed as

range(V1) = span{A−11 B,A−21 B, . . . , A−q11 B}.

Then, x1(t) can be approximated by x1(t) ≈ V1z1(t). The transformation matrix V2
for x2(t) in the second linear system (55) is similarly constructed by

range(V2) = span{A−11 A2, A
−2
1 A2, . . . , A

−q2
1 A2}, (57)

such that x2(t) ≈ V2z2(t). The transformation matrix V3 for x3(t) in (56) can be
derived in a similar way [168]. From (53), we have

x(t) ≈ αV1z1(t) + α2V2z2(t) + α3V3z3(t),
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which indicates that the solution x(t) of (51) can be approximated by the linear com-
bination of the column vectors in V1, V2 and V3. Therefore the final transformation
matrix V can be computed by

range(V ) = colspan{V1, V2, V3}. (58)

The reduced model is thus derived from the polynomial system (51) and by approxi-
mation x(t) ≈ V z(t),

dz(t)
dt = V TA1V z(t) + V TA2(V z(t)⊗ V z(t))+

V TA3(V z(t)⊗ V z(t)⊗ V z(t)) + V TBu(t),
y(t) = LTV z(t).

The approach can be applied analogously to (50). The advantage of this method is that
it has the flexibility to use a more accurate polynomial system (51) to approximate
the original nonlinear system. Furthermore, given a fixed polynomial system, the
transformation matrix V can be constructed by using more than the three linear
systems in (54)-(56), which may produce a more accurate model.

It is possible that for the quadratic method, the system (32) can also be replaced by
a more accurate polynomial system. However, the transformation matrix V computed
by the quadratic method is much less accurate than the matrix V in (58), because it
is computed only by the linear part of the nonlinear system.

For approximation of the original nonlinear system (29), the bilinear system is less
accurate than the polynomial system (51). Moreover, since the bilinear system is
derived by approximating the nonlinear function f(x) by its Taylor expansion up to
the second order, the transformation matrix V only uses the information of the Taylor
expansion of f(x) at most to the second order, which is less accurate than the matrix
V computed by the variational analysis method.

One of the problems of the variational analysis method is that the number of the
vectors in the subspace for constructing V2 or V3 is very large. It is impossible to
include all of them to compute V2 or V3. Therefore, the question is which vectors
should be used to construct V1, V2, V3?

In [159], the second projection matrix Ṽ2 is constructed from the approximate system
by replacing x1 with V1z1 in (55),

dx2(t)

dt
= A1x2(t) +A2(V1z1(t)⊗ V1z1(t)), (59)

as basis of

range(Ṽ2) = span{A−11 A2(V1 ⊗ V1), A−21 A2(V1 ⊗ V1), . . . , A−q21 A2(V1 ⊗ V1)}. (60)

The advantage of this approach is that there are much less columns in A2(V1⊗V1) than
in A2 in (57). Thus, Ṽ2 matches more moments than V2 in (57) if the matrices have the
same number of columns. However, Ṽ2 only matches approximate moments because the
input matrix A2 in (55) is approximated by A2(V1 ⊗ V1) in (60). Therefore, although
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Ṽ2 matches more moments, its accuracy is weakened by the approximate moments.
In Fig. 18 and Fig. 19 the accuracy of the two methods is compared.

By computing reduced models of the same order r = 9, the method in [77] is slightly
more accurate than the method in [159].

At the end of this subsection, we would like to mention another method [132] which
is based on both, Volterra series expansion of the output response and variational
analysis. Here, the original system (29) is approximated by the polynomial system
in (51) rather than by a bilinear system. Then, the Volterra series representation of
the output response of the polynomial system is employed to introduce the nonlinear
transfer functions of (51). The kth order nonlinear transfer function is similar to the

kth transfer function H
(reg)
k (s1, s2, . . . , sk) for the bilinear system. The transformation

matrix V is constructed based on the moments of the nonlinear transfer functions.
Instead of doing Laplace transform of the Volterra kernels as in (36), the nonlinear
transfer functions are computed from the variational linear systems (54) - (56), whose
transfer functions are equivalent with the first order, second order and third order
nonlinear transfer functions, respectively. The basic idea of [132] is quite similar to
the methods in [16] and [158]. The main difference is that [16] and [158] are based on
the bilinear approximation of the original nonlinear system, whereas [132] is based on
a more accurate approximation (51).

Methods based on quadratic-bilinearization

The previously described nonlinear MOR methods approximate firstly the nonlinear
function f(·) by a polynomial and reduce the approximate polynomial system after-
ward. When the function f(·) is weakly nonlinear, approximations by a polynomial of
degree two (32) , (34), (50) or by a polynomial of degree three (51) are sufficiently well.
However, if f(·) is strongly nonlinear, the low-degree polynomial approximations are
insufficient. An approximation by higher degree polynomials is much more complex.
Furthermore, it is much more difficult to compute its corresponding reduced-order form
and the storage requirements are prohibitive even if the original state space dimension
is moderate.

The methods based on quadratic-bilinearization provide a solution for the above
problems caused by polynomial approximation. Instead of approximating the nonlinear
part f(x) by a polynomial function, some equivalent transformations are applied to the
nonlinear system in (29). The nonlinear system is firstly transformed into a polynomial
system by adding polynomial algebraic equations or by taking Lie derivatives and
adding more differential equations. The polynomial system is then transformed into
a quadratic-bilinear system by either adding quadratic algebraic equations or taking
Lie derivatives again. The detailed explanation can be found in [103, 104].

The equivalent quadratic-bilinear system is as below

x̃ = G1x̃+G2(x̃⊗ x̃) +D1x̃u+D2(x̃⊗ x̃)u+ B̃u(t), (61)

where x̃ is the expanded state vector, which includes the state vector x for the original
nonlinear system. It is noticed that in [103, 104], the system (61) is called quadratic-
linear differential algebraic equation (QLDAE). However, the system above obviously
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includes the bilinear term D1x̃u and the quadratic-bilinear term D2(x̃⊗x̃)u. Therefore,
the notion quadratic-bilinear differential algebraic equations (QBDAEs) as introduced
in [30] is used in this paper.

Once the QBDAEs are derived after several steps of transformations, the variational
analysis (52)-(56) in the previous subsection can be applied to the QBDAEs. The
transformation matrix V can also be computed likewise. Then, Galerkin projection
can be applied to (61) to get the reduced QBDAEs, which are considered as reduced
model for the original nonlinear system in (29).

It is discussed above that starting from the second variational equation (55), the
input matrix has many vectors, which make the computation of the transformation
matrix V2 tricky. In [103, 104], a different way of computing the transformation ma-
trix V for the reduced model is proposed based on the transfer functions of the QB-
DAEs (61). The expression of the transfer functions of the QBDAEs can be originally
found in [170]. For example, the first two transfer functions are

H1(s) = LT (sI −G1)−1B,
H2(s1, s2) = 1

2!L
T [(s1 + s2)I −G1]−1×

{G2[H1(s1)⊗H1(s2) +H1(s2)⊗H1(s1)]+
D1[H1(s1) +H2(s2)]}.

(62)

Using Taylor expansions of the transfer functions, the matrix V can be recursively
computed from the coefficients of the series expansions. The Taylor expansions of H1

and H2 at zero expansion point (nonzero expansion is straight forward) are given as

H1(s) = LT
∞∑
k=0

AkR1s
k,

H2(s1, s2) = 1
2!L

T
k∑
i=0

Ak+1(s1 + s2)k

{G2[(
∞∑
k=0

AkR1s
k
1)⊗ (

∞∑
k=0

AkR1s
k
2)+

(
∞∑
k=0

AkR1s
k
2)⊗ (

∞∑
k=0

AkR1s
k
1)]+

D1[
∞∑
k=0

AkR1s
k
1 +

∞∑
k=0

AkR1s
k
2 ]},

(63)

where A = G−11 , R1 = −G−11 B. In [103, 104], the transformation matrix V is con-
structed as

range(V1) = span{AiR1, i ≤ q},
range(V2) = span{Ai+1D1A

jR1, i+ j ≤ q},
range(V3) = span{Ai+1G2(AjR1)⊗ (AkR1), i+ j + k ≤ q, k ≤ j},
range(V ) = span{V1, V2, V3}

(64)

It can be seen that if the system matrix B is a vector, the Kronecker product (AjR1)⊗
(AkR1) is also a vector so that the construction of V3 is easy. In general, if B has
m columns, (AjR1)⊗ (AkR1) has m2 columns. The number of columns in (AjR1)⊗
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(AkR1) is still moderate if m is small. This is an advantage over the way of computing
V through variational analysis.

In [30], the method is extended to two-sided projection based on the transfer func-
tions (62) of the QBDAEs. It is proved that by using two-sided projection, the reduced
transfer function matches almost double the moments of the original transfer functions
which are matched by the one-sided projection used in [103, 104]. Simulation results
also show better accuracy than the one-sided projection. However, the two-sided pro-
jection sometimes causes numerical instability, which may produce unstable reduced
models [30].

Note that the subspace dimension in (64) will grow exponentially if the coefficients
of the series expansion of the higher order transfer functions, e.g. H3(s1, s2, s3), are
also included to compute the transformation matrix V . This easily leads to a reduced
model with no reduced number of equations. In [204], the higher order multivariate
transfer functions H2(s1, s2), H3(s1, s2, s3), . . ., are transformed to single-s transfer
functions H2(s), H3(s), . . . by association of variables without losing accuracy. The
series expansion of H2(s) or H3(s) only depends on the single variable s, such that
the exponential growth of the subspace dimension can be avoided. Compared with
the method in [104], a more compact reduced model with the same accuracy can be
obtained. The theory on association of variables can be found in [170].

Recall that if the original nonlinear system is a system of ODEs, the QBDAEs
usually are a system of differential algebraic equations after quadratic-bilinearization.
It is not clear how to determine the index of the QBDAEs which may cause problem
when solving the reduced model.

3.4 Trajectory piecewise-linear method

Another approach to circumvent the difficulties of polynomial approximation is piece-
wise approximation. The trajectory piecewise-linear method proposed in [165] is
more robust than the polynomial approximation methods when dealing with strongly
nonlinear systems. In [166], an error bound for this method is given, and stabil-
ity and passivity preservation properties are discussed. The trajectory piecewise-
linear method first linearizes the nonlinear function f(·) at a number of lineariza-
tion points xi, i = 0, 1, . . . , k, where x0 is the initial value for the nonlinear sys-
tem (29). Then f(·) is approximated by the weighted summation of these linearizations

f(x(t)) ≈
∑k
i=0 w̃i(x(t))(f(xi)+Ai(x(t)−xi)). Here, Ai is the Jacobian matrix of f(·)

at xi and w̃i(x(t)) are the weights for i = 0, 1, . . . , k. Finally, the original nonlinear
system can be approximated by the weighted combination of linear systems,

dx(t)
dt =

k∑
i=0

w̃i(x(t))f(xi) +
k∑
i=0

w̃i(x(t))Ai(x(t)− xi) +Bu(t),

y(t) = LTx(t).
(65)

A transformation matrix V is computed as orthonormal basis of the subspace spanned
by x0 and the Krylov subspace below

range{v1, . . . , vr−1} = span{A−10 B, . . . , A
−(r−1)
0 B}.
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The reduced model is obtained from the piecewise-linear system (65) using the ap-
proximation x(t) ≈ V z(t),

dz(t)
dt =

(
k∑
i=0

V TAiV wi(z(t))

)
z(t) +

k∑
i=0

V T (f(xi)−Aixi)wi(z(t)) + V TBu(t),

y(t) = LTV z(t).

Here, wi, i = 0, 1, . . . , k, denote weights depending on z which can be computed
according to the distances between the projected linearization points V Txi and the
current state vector z of the reduced model.

The linearization points are chosen by selecting a training input u(t) and an initial
state x0

for the nonlinear system and simulating the full nonlinear system piece by piece.
The procedure is briefly as follows: 1) A linearized model around state xi (initially
i = 0) is generated; 2) The linearized model is simulated while ‖x − xi‖ < δ, i.e.,
while the current state x(t) is close enough to the last linearization point; 3) Once
‖x − xi‖ ≥ δ, a new linearization point xi+1 is taken. Then, it will be returned to
step 1). Note that in order to get the trajectory, the full system has to be simulated.
Instead of simulating the full system, a fast algorithm for computing an approximate
trajectory is also proposed in the paper.

The weak point of this method is that a training input has to be chosen to get a
trajectory of the unknown vector x(t). There still exist problems on how to choose the
optimal training inputs so that the trajectory can represent the behavior of the state
vector x(t). If the training inputs are chosen far away from the actual inputs, then
the computed trajectory will depart from the actual behavior of the state vector x(t)
and the reduced model will loose accuracy.

The computation of the weight functions w̃i in the above linear system is also more
or less heuristic. Instead of using the linear approximation for each piece, polyno-
mial approximation can be used piece wisely [63]. More related papers based on
similar ideas of piecewise linearization are [51, 64, 193, 186]. The generation of sta-
ble piecewise-linear reduced models is discussed in [52]. A more detailed review on
piecewise linearization MOR methods can be found in [112].

Finally, hot topics remain open for nonlinear MOR methods. They are summarized
below:

1. One common problem for nonlinear MOR methods based on system-theoretic
approaches is that there is not a practical error bound for the reduced model.

2. The problem of choosing optimal expansion points (interpolation points), solved
for linear systems in [106] and extended to bilinear systems in [28, 82] still remains
in multimoment-matching in quadratic-bilinearization methods.

3. What is a proper choice of the number of multimoments for the multimoment-
matching bilinearization methods? Even for linear systems, there is no optimal
algorithm working satisfactory in all situations.
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4. Still, fast numerical algorithms for solving large-scale generalized Lyapunov and
generalized Sylvester equations as they arise in BT bilinear and in H2-MOR have
to be developed.

5. The index of the QBDAE representation of a smooth nonlinear system is not
known in general. Furthermore, it is unclear how the index is influenced by
reducing the system. Is the reduced-order system stable?

6. A good selection of training inputs and linearization points for the trajectory
piecewise linear method is not known a priori.

4 Conclusions

In this survey, MOR methods for linear and nonlinear systems are reviewed. We have
focused here on methods with system-theoretic background. They mostly employ the
transfer function of the original LTI system or generalizations thereof in the nonlinear
case. As transfer functions are scalar or matrix-valued rational functions of a complex
variable, these MOR methods can also be understood as rational approximation. In
contrast to POD and RB methods, they do not rely on snapshots and are independent
of the chosen input function, i.e., they need no training sets.

We have discussed similarities and differences among various methods. Some numer-
ical comparisons show the advantages and drawbacks of these approaches. A few new
points of view are proposed for both linear and nonlinear MOR. We have also high-
lighted the remarkable progress made for MOR applied to linear systems throughout
the last few years, though various issues remain and further advances in the numeri-
cal algorithms are welcome. A number of open problems for linear and in particular
nonlinear systems are pointed out. Some of them are current work in progress, some
might need further attention in the future.
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