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Abstract

In this work we present an efficient a posteriori output error bound for model
order reduction of parametrized evolution equations. With the help of the dual
system and a simple representation of the relationship between the field variable
error and the residual of the primal system, the output error bound can be esti-
mated sharply. Such an error bound successfully avoids the accumulation of the
residual over time, which is a common drawback in the existing error estimation
for time-stepping schemes. The proposed error bound is applied to three kinds
of problems. The first one is the unsteady viscous Burgers’ equation, an aca-
demic benchmark of nonlinear evolution equations in fluid dynamics often used
as first test case to validate nonlinear model order reduction methods. The other
two problems arise from chromatographic separation processes. They are batch
chromatography with (nonlinear) bi-Langmuir isotherm equations, and continu-
ous simulated moving bed chromatography with linear isotherm equations, where
periodic switching is involved. Numerical experiments demonstrate the perfor-
mance and efficiency of the proposed error bound. Optimization based on the
resulting reduced-order models is successful in term of accuracy and the runtime
for getting the optimal solution.

Keywords: model order reduction, output error bound, empirical interpolation,
dual system, evolution equations, optimization, chromatography

1 Introduction
Numerical simulation of large-scale systems is challenging, especially when this task
needs to be repeated many times under parameter variations, e.g., in the context of
optimization, control, and parameter estimation etc. Model order reduction (MOR) is
a useful technique for constructing a low-cost, simulation efficient surrogate reduced-
order model (ROM), which can reproduce the dominant dynamics or the input-output
response of the original large-scale system, at a compromise with the accuracy to
an acceptable extent. To generate a ROM, an efficient a posteriori error estimation is
crucial because it enables the generation to be reliable and automatic. Rigorous, sharp,
and cheaply computable are the desired properties of an efficient error estimation.

In the past years, many efforts have been devoted to the study of a posteriori error
estimation for either the field variable (the solution to the underlying system) or the
output of interest, which is usually expressed as a functional of the field variable.
For example, research on the a posteriori error estimation for the reduced basis (RB)
method started from [20], and has been followed by many others [10, 11, 12, 18, 19,
21, 23]. Notably, these error estimations are all derived in the functional space in
the framework of the finite element (FE) discretization except for [11]. In the FE
discretization framework, the weak form of the partial differential equation (PDE)
is used to derive the error bound, while the error bound in [11] is derived in the
framework of the finite volume (FV) discretization and it is for error estimation of the
field variables.
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In this paper, we propose an efficient output error estimation for projection based
MOR methods applied to parametrized nonlinear evolution problems. For (nonlinear)
evolution problems, time-stepping schemes are often used to solve them [16], and error
estimations for projection based MOR methods have been studied in recent years, see
e.g. [10, 11, 24]. The error estimator, however, may loose sharpness when a large
number of time steps are needed, because the error estimator is actually a summation
of the error over the previous time steps. To circumvent this problem, we introduce
a suitable dual system at each time instance in the evolution process associated with
the primal system, the original system. The output error for the primal system can
be estimated sharply and efficiently with the help of the dual system and a simple
representation of the relationship between the residual and the error of the field variable
resulting from certain assumptions. These assumptions can be reasonably fulfilled,
which will be shown in the numerical experiments. The proposed error bound for the
output is independent of the choice of the projection matrix or projection subspace,
so it is independent of the chosen MOR method.

The idea for the proposed error bound originates from the recent study in [7, 8],
where some error bounds are derived for linear time-invariant systems. The main
difference of the proposed error estimation from that in [7, 8] is that the new error
estimation is derived directly in the time domain, and is exactly designed for the output
in the time domain. It is particularly useful for snapshot based MOR methods, e.g.
the reduced basis method [11, 19, 24], and is valid for nonlinear parametric systems,
whereas, the error bound in [7, 8] is an error estimation for the transfer function of
the reduced model, so that it is used for linear parametric systems. In other words, it
is an error estimation for the output in the frequency domain, which is well suited for
the frequency domain MOR methods, e.g. the Krylov subspace method [1, 3, 9].

The proposed error estimation is applied to three different evolution problems. The
first one is the unsteady viscous Burgers’ equation, which is used to illustrate that the
proposed error estimation is applicable to MOR of a broad class of evolution problems.
The second one is batch chromatography with bi-Langmuir isotherm equations, which
is a nonlinear parametric evolution problem. The last one is continuous chromatog-
raphy with linear isotherm equations, which is a linear parametric periodic switching
system. Note that the latter two problems arise from chromatographic separation pro-
cesses in chemical engineering. The resulting reduced models are employed to solve
the underlying optimization problems.

The paper is organized as follows. Section 2 shows the projection based model
order reduction for parametrized nonlinear evolution problems. Existing related error
estimations are reviewed in Section 3, and an output error estimation is derived in
Section 4. Section 5 discusses the POD-greedy algorithm [11] used in reduced basis
methods, where the proposed error estimation will be used to generate the reduced
basis (projection matrix). Numerical examples are given in Section 6. Conclusions are
drawn in Section 7.
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2 Model order reduction of parametrized evolution
equations

In this paper, we consider a parametrized evolution problem defined over the spatial
domain Ω ⊂ Rd (d = 1, 2, 3) and the parameter domain P ⊂ Rp,

∂tu(t, x;µ) + L[u(t, x;µ)] = 0, t ∈ [0, T ], x ∈ Ω, µ ∈ P, (1)

where L[·] is a spatial differential operator. For discretization, let 0 = t0 < t1 < · · · <
tK = T be K + 1 time instants in the time interval [0, T ], and WN ⊂ L2(Ω) be an N -
dimensional discrete space in which an approximate numerical solution to equation (1)
is sought. Given µ ∈ P with suitable initial and boundary conditions, the numerical
solution un(µ) at time t = tn, can be obtained by using suitable numerical methods,
e.g. the finite volume method. Assume that un(µ) ∈ WN satisfies the following form,

A(n)
µ un+1(µ) = B(n)

µ un(µ) + g(un(µ), µ), (2)

where A(n)
µ , B

(n)
µ ∈ RN×N are the coefficient matrices at the time instance tn, and

g(·) is a nonlinear operator w.r.t. un(µ) and/or nonaffine w.r.t. the parameter µ. The
superscript (n) and the subscript µ in A(n)

µ and B(n)
µ indicate the dependency on time

and the parameter, respectively. For model oder reduction, the dimension N is usually
large, which implies that the numerical solution un(µ) is a faithful approximation and
is often called the “true” solution. The resulting large-scale system in (2) is called full
order model (FOM).

Solving such a FOM repeatedly under parameter variations is time consuming or
even prohibitive in a multi-query context, e.g. optimization, real time control. Besides
the improvements of the computing resources, MOR has been developed as a useful
tool to handle this kind of problems and plays an important role in an efficient solution
process for parametric systems. In the following subsections, we address the projection
based MOR method and the simulation of the reduced-order model.

2.1 Projection based MOR
In this paper, we focus on projection based MOR methods. The fundamental as-
sumption is that the solution to the parametrized systems, u(µ), resides in a lower
dimensional subspace VN ⊂ WN , i.e., u(µ) can be well approximated by a properly
chosen basis of the subspace. For all the projection based MOR methods, a right
projection matrix V ∈ RN×N , whose columns span a basis of the subspace where
u(µ) can be well represented, is computed. A left projection matrix W ∈ RN×N is
constructed based on proper approximation principles. The ROM is obtained by using
the approximation un(µ) ≈ V an(µ), and employing Petrov-Galerkin projection with
W ,

Â(n)
µ an+1(µ) = B̂(n)

µ an(µ) +WT g(V an(µ)), (3)

where Â(n)
µ = WTA

(n)
µ V , B̂(n)

µ = WTB
(n)
µ V , and an(µ) ∈ RN is the vector of unknowns

in the ROM.
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Notably, the number of degrees of freedom of the ROM in (3) is usually much less
than that of the FOM in (2), i.e., N � N . The goal of MOR is that the ROM
is much cheaper to solve compared to the FOM. This is not necessarily achieved by
(3); it is required that the evaluation of Â(n)

µ , B̂
(n)
µ and WT g(V an(µ)) is achieved

without resorting to the full order dimension N . For this, additional techniques may
be necessary, as described in the following.

2.2 Simulation of the ROM
The goal of MOR is to provide a fast simulation stage, where for any given parameter
µ the output response can be obtained rapidly based on the ROM. Particularly, in the
reduced basis MOR method, an offline-online decomposition strategy is often employed
to achieve this goal. Similar to related studies, assume that the matrices A(n)

µ and B(n)
µ

in (2) can be written in a separable way, the so-called affine form, i.e.,

A(n)
µ =

na∑
j=1

ξnµAj , B(n)
µ =

nb∑
k=1

ζnµBk,

where Aj , Bk are constant matrices, ξnµ , ζnµ are the corresponding time and parameter
dependent scalar coefficients. Note that the numbers na and nb are desired to be small.
Then

Â(n)
µ = WTA(n)

µ V =
na∑
j=1

ξnµÂj , B̂(n)
µ = WTB(n)

µ V =
nb∑
k=1

ζnµ B̂k,

where Âj = WTAjV and B̂k = WTBkV , j = 1, . . . , na, k = 1, . . . , nb. Notice that
once the projection matrices V and W are obtained, Âj and B̂k can be precomputed,
and in turn the evaluations of Â(n)

µ and B̂
(n)
µ at µ are independent of the full dimen-

sion N when simulating the ROM. However, the computation of the last term of (3),
WT g(V an(µ)), cannot be done analogously because of the nonlinearity or non-affinity
of g. To achieve an efficient offline-online computation, empirical (operator) interpo-
lation [2, 6] or the discrete empirical interpolation method [5] can be employed. For
example, g(ûn(µ)) ≈ ĝn(µ) := IM [g(ûn(µ))] = Sβn(µ), where S ∈ RN×M (M � N )
is the precomputed parameter-independent basis, and βn(µ) ∈ RM is the correspond-
ing vector of coefficients. As a result, a low dimensional ROM is obtained as below,

Â(n)
µ an+1(µ) = B̂(n)

µ an(µ) + Ĝβn(µ), (4)

where Ĝ = WTS is precomputed. With this reduced model (4), the approximation of
the field variable and/or the output can be obtained rapidly.

In what follows, the norm ‖ · ‖ : RN → R for a vector v is defined as

‖v‖ :=
√
vTHv,
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where H is a properly chosen symmetric positive definite matrix. When H is the iden-
tity matrix, it is the standard 2-norm. The matrix norm is defined as the corresponding
induced norm,

‖Z‖ := sup
Z∈RN ,v 6=0

‖Zv‖
‖v‖

= max
‖v‖=1

‖Zv‖.

In the next section, we review an a posteriori output error bound and point out its
limitations.

3 An output error bound based on the residual
A common technique to derive an error estimation for the projection based MOR
method is based on the residual [6, 10, 11, 19, 24]. Motivated by the error estimation
for the field variable in [6], an error estimation for the field variable in the vector space
and a corresponding output error bound were proposed in [24]. In [24], the matrices
A

(n)
µ and B

(n)
µ are independent of the parameter µ, i.e., they are constant matrices

A(n) and B(n). The error estimations, however, can be easily extended to the case
that the coefficient matrices A(n)

µ and B
(n)
µ are parameter dependent. In addition,

the nonlinear term g(·) was tackled by using the empirical interpolation (EI) [2]. By
defining the residual

rn+1(µ) := B(n)
µ ûn(µ) + IM [g(ûn(µ))]−A(n)

µ ûn+1(µ) (5)

for the ROM in (4), the error estimations in [24] are summarized as below.
Proposition 3.1. Assume that the operator g : RN → RN is Lipschitz continuous,
i.e., there exists a positive constant Lg, such that

‖g(u1)− g(u2)‖ ≤ Lg‖u1 − u2‖, u1, u2 ∈ WN ,

and that the interpolation of g is ‘exact’ with a certain dimension of S = [s1, . . . , sM+M ′ ],
i.e.,

IM+M ′ [g(ûn(µ))] =
M+M ′∑
m=1

sm · βnm(µ) = g(ûn(µ)).

Assume further, that for all µ ∈ P, the initial projection error is vanishing: e0(µ) = 0,
and the output of interest y(un(µ)) is given as

y(un(µ)) = Pun(µ), (6)

where P ∈ RNo×N is a constant matrix. Then the error for the field variable en(µ) :=
un(µ)− ûn(µ) and the output error enO(µ) := y(un(µ))− y(ûn(µ)) satisfy, respectively,

‖en(µ)‖ ≤ ηnN,M (µ) := Rn−1 +
n−2∑
k=0

 n−1∏
j=k+1

G(j)
F,µ

Rk, n = 1, . . . ,K, (7)

∥∥en+1
O (µ)

∥∥ ≤ η̃n+1
N,M (µ)

:= G(n)
O,µη

n
N,M (µ) + ‖P (A(n)

µ )−1‖εnEI(µ) + ‖P‖‖(A(n)
µ )−1rn+1(µ)‖, (8)
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where

Rk = ‖(A(k)
µ )−1‖εkEI(µ) + ‖(A(k)

µ )−1rk+1(µ)‖, k = 0, . . . , n− 1,

G(j)
F,µ = ‖(A(j)

µ )−1B(j)
µ ‖+ Lg‖(A(j)

µ )−1‖, j = k + 1, . . . , n− 1,

G(n)
O,µ = ‖P (A(n)

µ )−1B(n)
µ ‖+ Lg‖P (A(n)

µ )−1‖,

and

εnEI(µ) =
M+M ′∑
m=M+1

‖smβnm(µ)‖ , (9)

is the error due to the EI, n = 0, . . . ,K − 1.

Notice that the error bound for the field variable ηnN,M (µ) is involved in the output
error bound η̃n+1

N,M (µ). Moreover, the former is a summation of the residual and the
error caused by the interpolation over all the previous time steps. This implies that
both error bounds are accumulated over time. As a result, they may loose sharpness
when a large number of time steps are needed, e.g. in the simulation of batch chro-
matography [24]. The same phenomenon also exists in the error estimation in [6].
Similar observations are also reported in [17]. To circumvent the problem, we propose
a new output error bound for the reduced model in the next section.

4 An a posteriori output error bound using dual systems
In this section, we derive a new bound for the output in the time domain by defining
and using the dual systems. Assume that the FOM from the spatial and temporal
discretization of the PDEs can be written as

A(n)
µ un+1(µ) = b(un(µ), µ), (10)

where A(n)
µ is assumed to be nonsingular for all µ ∈ P, un(µ) ∈ RN is the numerical

solution at time t = tn, b : RN → RN can be linear or nonlinear, e.g. the right hand
side of the equation in (2). The output of interest is expressed as in (6). Here, we
temporally assume No = 1 for simplicity. The extension to the multiple output case
is possible, see Remark 4.7.

To derive an efficient output error estimation, at each time step, we denote the
original system as the primal system,{

A(n)
µ un+1(µ) = b(un(µ), µ),
yn+1(µ) = Pun+1(µ),

(11)

and introduce a corresponding dual system as follows:{
(A(n)

µ )Tun+1
du (µ) = −PT ,
yn+1

du (µ) = Pduu
n+1
du (µ).

(12)
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Here, Pdu ∈ RNo×N can be freely defined, as the output of the dual system does not
contribute to the derivation of the error bound. Assume that (Vpr,Wpr) and (Vdu,Wdu)
are the projection matrix pairs for MOR of the primal and dual system, respectively.
Using Petrov-Galerkin projection, we have the reduced models for the primal and dual
systems, {

Â(n)
µ,pra

n+1
pr (µ) = WT

prb(ûn(µ), µ),
ŷn+1(µ) = Pûn+1(µ),

(13)

{
Â

(n)
µ,dua

n+1
du (µ) = −WT

duP
T ,

ŷn+1
du (µ) = Pduû

n+1
du (µ),

(14)

where Â(n)
µ,pr = WT

prA
(n)
µ Vpr, Â

(n)
µ,du = WT

du(A(n)
µ )TVdu, and ûn(µ) = Vpra

n
pr(µ), ûndu(µ) =

Vdua
n
du(µ) are the approximations to un(µ) and undu(µ), respectively. The vectors

anpr(µ) and andu(µ) are the unknowns in the reduced systems above. The residuals for
both systems read,

rn+1
pr := rn+1

pr (µ) = b(ûn(µ), µ)−A(n)
µ ûn+1(µ), (15)

rn+1
du := rn+1

du (µ) = −PT − (A(n)
µ )T ûn+1

du (µ), (16)

respectively. Define an auxiliary vector

r̃n+1
pr := b(un(µ), µ)−A(n)

µ ûn+1(µ) = A(n)
µ un+1(µ)−A(n)

µ ûn+1(µ). (17)

Notice that the only difference of r̃n+1
pr from rn+1

pr is that b(ûn(µ), µ) in (15) is replaced
by b(un(µ), µ) in (17), so that we have a direct relation between r̃n+1

pr and un+1(µ)−
ûn+1(µ), the error of the approximate solution. This relation will aid the derivation
of the error bound in Theorem 4.1.

Theorem 4.1. For the systems (11) and (13), assume that A(n)
µ is invertible for any

µ ∈ P, and the residual rn+1
pr is “close” to r̃n+1

pr in the sense that for each well chosen
Vpr ∈ RN×N , there exists a constant ε̃ := ε̃(N) > 0, such that

‖rn+1
pr − r̃n+1

pr ‖ ≤ ε̃. (18)

Then the output error en+1
O (µ) = yn+1(µ)− ŷn+1(µ) at the time instance tn+1 satisfies

‖en+1
O (µ)‖ ≤ ‖(A(n)

µ )−T ‖‖rn+1
du ‖‖r

n+1
pr ‖+ ‖ûn+1

du (µ)‖‖rn+1
pr ‖+ ε, (19)

where ε =
(
‖(A(n)

µ )−T ‖‖rn+1
du ‖+ ‖ûn+1

du (µ)‖
)
ε̃.

Proof. By the dual system (12), we have(
un+1(µ)− ûn+1(µ)

)T (A(n)
µ )Tun+1

du (µ) = −
(
un+1(µ)− ûn+1(µ)

)T
PT .

Transposing this equation, we obtain(
un+1

du (µ)
)T
A(n)
µ

(
un+1(µ)− ûn+1(µ)

)
= −P

(
(un+1(µ)− ûn+1(µ)

)
. (20)
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By the definition of r̃n+1
pr , we have

r̃n+1
pr = A(n)

µ

(
un+1(µ)− ûn+1(µ)

)
. (21)

Left-multiplying both sides of (21) by
(
un+1

du (µ)
)T yields(

un+1
du (µ)

)T
r̃n+1

pr =
(
un+1

du (µ)
)T
A(n)
µ

(
un+1(µ)− ûn+1(µ)

)
. (22)

Combining (20) and (22), we obtain

−P
(
(un+1(µ)− ûn+1(µ)

)
=
(
un+1

du (µ)
)T
r̃n+1

pr .

Introducing a vector ỹn+1(µ) = Pûn+1(µ)−
(
ûn+1

du (µ)
)T
r̃n+1

pr , we have

|yn+1(µ)− ỹn+1(µ)| = |Pun+1(µ)− Pûn+1(µ) +
(
ûn+1

du (µ)
)T
r̃n+1

pr |

= | −
(
un+1

du (µ)
)T
r̃n+1

pr +
(
ûn+1

du (µ)
)T
r̃n+1

pr |

= | −
(
un+1

du (µ)− ûn+1
du (µ)

)T
r̃n+1

pr |
≤ ‖un+1

du (µ)− ûn+1
du (µ)‖‖r̃n+1

pr ‖.

(23)

By the definition of the residual in (16) and the dual system in (12), we have

rn+1
du = −PT − (A(n)

µ )T ûn+1
du (µ)

= (A(n)
µ )Tun+1

du (µ)− (A(n)
µ )T ûn+1

du (µ)
= (A(n)

µ )T (un+1
du (µ)− ûn+1

du (µ)).

(24)

Since A(n)
µ is invertible, we have

un+1
du (µ)− ûn+1

du (µ) = (A(n)
µ )−T rn+1

du . (25)

Combining (23) and (25), we obtain

|yn+1(µ)− ỹn+1(µ)| ≤ ‖(A(n)
µ )−T rn+1

du ‖‖r̃
n+1
pr ‖ ≤ ‖(A(n)

µ )−T ‖‖rn+1
du ‖‖r̃

n+1
pr ‖.

Thus

|yn+1(µ)− ŷn+1(µ)| = |yn+1(µ)− ỹn+1(µ)−
(
ûn+1

du (µ)
)T
r̃n+1

pr |

≤ |yn+1(µ)− ỹn+1(µ)|+ |
(
ûn+1

du (µ)
)T
r̃n+1

pr |

≤ ‖(A(n)
µ )−T ‖‖rn+1

du ‖‖r̃
n+1
pr ‖+ ‖

(
ûn+1

du (µ)
)T ‖‖r̃n+1

pr ‖.

(26)

Due to the assumption (18), we have

‖r̃n+1
pr ‖ ≤ ‖rn+1

pr ‖+ ε̃. (27)

Substituting (27) into (26) yields the proposed error bound (19).
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With suitable assumptions, we have the following corollary, where a ratio between
‖r̃n+1

pr ‖ and ‖rn+1
pr ‖ is given, so that the quantity ε is removed from the error bound

in (19).

Corollary 4.2. Under the assumptions of Theorem 4.1, for {‖r̃n+1
pr ‖} and {‖rn+1

pr ‖},
assume that there exist positive constants α, ᾱ, β, β̄, such that

α ≤
‖r̃n+1

pr ‖
‖r̃npr‖

≤ ᾱ, (28a)

β ≤
‖rn+1

pr ‖
‖rnpr‖

≤ β̄, (28b)

for n = 1, . . . ,K−1. Assume the operator b(·) is Lipschitz continuous, i.e., there exist
a positive constant Lb, such that

‖b(u1)− b(u2)‖ ≤ Lb‖u1 − u2‖, u1, u2 ∈ WN , (29)

and Lb satisfies the inequality Lb‖(A(n)
µ )−1‖ < α, for all µ ∈ P. Then

‖r̃n+1
pr ‖ ≤ ρ‖rn+1

pr ‖, (30)

and the error bound in (19) can be given as

‖en+1
O (µ)‖ ≤ ∆n+1(µ) := ρ

(
‖(A(n)

µ )−T ‖‖rn+1
du ‖+ ‖ûn+1

du (µ)‖
)
‖rn+1

pr ‖, (31)

where ρ = β̄/(α− Lb‖(A(n)
µ )−1‖).

Proof. By the first inequality in (28a) and the definition of r̃n+1
pr in (17), we have

α‖r̃npr‖ − ‖rn+1
pr ‖ ≤ ‖r̃n+1

pr ‖ − ‖rn+1
pr ‖

≤ ‖rn+1
pr − r̃n+1

pr ‖ = ‖b(ûn(µ))− b(un(µ))‖
≤ Lb‖ûn(µ)− un(µ)‖ = Lb‖(A(n)

µ )−1r̃npr‖

≤ Lb‖(A(n)
µ )−1‖‖r̃npr‖.

Taking the left hand side and the last term in the right hand side of the inequalities
above, and using the inequality (28b), we obtain(

α− Lb‖(A(n)
µ )−1‖

)
‖r̃npr‖ ≤ ‖rn+1

pr ‖ ≤ β̄‖rnpr‖,

i.e.,

‖r̃npr‖ ≤
β̄

α− Lb‖(A(n)
µ )−1‖

‖rnpr‖ = ρ‖rnpr‖, n = 1, . . . ,K. (32)

Substituting (32) into (26) yields the error estimation in (31).
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Remark 4.3. When the operator b(·) is nonlinear, the empirical interpolation [2] can
be employed. The ROM can be formulated following (4). In such a case, the term
‖rn+1

pr ‖ in (19) or (31) can be further bounded using the EI error bound,

‖rn+1
pr ‖ = ‖B(n)

µ ûn(µ) + g(ûn(µ), µ)−A(n)
µ ûn+1(µ)‖

= ‖B(n)
µ ûn(µ) + IM [g(ûn(µ), µ)]−A(n)

µ ûn+1(µ)
+ g(ûn(µ), µ)− IM [g(ûn(µ), µ)]‖

≤ ‖rn+1(µ)‖+ ‖g(ûn(µ), µ)− IM [g(ûn(µ), µ)]‖
≤ ‖rn+1(µ)‖+ εnEI(µ),

(33)

where rn+1(µ) is defined in (5), and εnEI(µ) is the error due to the EI, as defined in
(9).

Remark 4.4. If the vector norm is taken as the standard 2-norm, e.g. when the
discrete system is obtained by the finite volume or finite difference discretization, the
matrix norm ‖(A(n)

µ )−T ‖ is the spectral norm of (A(n)
µ )−T . Therefore,

‖(A(n)
µ )−T ‖2 = ‖(A(n)

µ )−1‖2 = σmax

(
(A(n)

µ )−1
)

= 1
σmin(A(n)

µ )
, (34)

the reciprocal of the smallest singular value of A(n)
µ . For many problems, the matrix

A
(n)
µ is a constant matrix. Consequently, the smallest singular value of A is computed

once and can be used repeatedly.
For the general vector norm ‖ · ‖H , induced by the inner product 〈v1, v2〉 := vT1 Hv2,

v1, v2 ∈ WN , where H is a symmetric positive definite matrix, e.g. the mass matrix
in the finite element discretization, the induced matrix norm can be defined as

‖Z‖H := max
‖x‖=1

‖Zx‖H = max
‖x‖=1

√
xTZTHZx = ‖ZTHZ‖2. (35)

In fact, the matrix ZTHZ is symmetric positive semidefinite because H is symmetric
positive definite. This implies that the following equalities hold:

‖ZTHZ‖2 =
√
λmax

(
(ZTHZ)T ZTHZ

)
= λmax(ZTHZ)
= λmax

(
ZTLTLZ

)
= σ2

max(LZ).

Here L is a lower triangular matrix of the Cholesky factorization of H, i.e. LTL = H;
λmax(·) refers to the largest eigenvalue of the matrix. Thus, ‖(A(n)

µ )−T ‖H can be
obtained as,

‖(A(n)
µ )−T ‖H = σ2

max

(
L(A(n)

µ )−T
)

= 1
σ2

min((A(n)
µ )TL−1)

. (36)
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Remark 4.5. The assumptions (28a) and (28b) in Corollary 4.2 require that the
approximation error in the time trajectory are of the same magnitude. This can be
achieved if the time step of the detailed simulation is well chosen. In fact, the well
chosen time step results in an even distribution of the error of the solution to the FOM
over the time interval, and this property can be inherited by the solution of the ROM,
see e.g. [13].

Remark 4.6. As for the constant ρ in the error bound (31) in Corollary 4.2, it is
usually not easy to get an estimation of it directly from the property of the operator b(·)
and the assumptions there. However, one may heuristically estimate it by observing
the average ratio over all the time steps ( 1

K

∑K
k=1 ‖r̃kpr(µ?)‖)/( 1

K

∑K
k=1 ‖rkpr(µ?)‖), or

the maximal ratio among all the time steps max
k∈{1,...,K}

‖r̃kpr(µ?)‖/‖rkpr(µ?)‖. Here, µ?

is the parameter selected by the greedy algorithm. To compute the residual r̃kpr(µ?), the
detailed solutions uk(µ?), k = 1, . . . ,K, at µ? are required, which causes no additional
cost for snapshot based MOR methods because the detailed solutions at this parameter
µ? are already available after the RB extension.

Remark 4.7. For the case of multiple outputs, i.e., No > 1, an error bound for each
component of the output vector can be obtained from Theorem 4.1. The final error
bound for the whole vector of outputs can be taken as the maximum of all the error
bounds.

Notice that the error bound is independent of the projection matrix pairs (Vpr,Wpr)
and (Vdu,Wdu). It is applicable to any projection based MOR method. In addition, if
one takes Wpr = Vpr, then the ROM can be obtained by using Galerkin projection, as
is usually implemented by reduced basis MOR methods.

5 Construction of the projection matrix
In this section, we focus on the construction of the projection matrix using the reduced
basis method [19]. Usually, Galerkin projection is employed to construct the ROM for
the reduced basis method, i.e. W = V . For parametrized systems, the projection
matrix V is usually generated iteratively through a greedy algorithm, by which the
dimension of the reduced space can be kept as small as possible while the accuracy
of the ROM is guaranteed. More precisely, a training set Ptrain with a finite number
of parameter samples is typically chosen a priori in an admissible parameter domain.
At each extension step, a parameter µ?, which causes the largest error measured by a
proper error estimator ψ(·), is chosen from Ptrain to enrich the projection matrix. The
iteration continues until the error estimator ψ(µ?) goes below the required accuracy
εROM. For time dependent problems, the POD-Greedy algorithm [11] is often used
to construct the reduced basis. Algorithm 1 shows the basic step of the POD-Greedy
algorithm.

Remark 5.1. For many problems, like the batch chromatographic model and the SMB
model under consideration in this paper, the total number of time steps in the FOM

11



Algorithm 1 RB generation using POD-Greedy
Input: Ptrain, µ0, εROM(< 1).
Output: RB V = [V1, . . . , VN ].

1: Initialization: N = 0, µ? = µ0, ηN (µ?) = 1, V = [ ].
2: while ψN (µ?) > εROM do
3: Compute the trajectory Smax := {un(µ?)}Kn=0.
4: Enrich the RB, e.g. V := [V, VN+1], where VN+1 is the first POD mode of

the matrix Ū := [ū0, . . . , ūK ] with ūn := un(µ?) − ΠWN [un(µ?)], n = 0, . . . ,K.
ΠWN [u] is the projection of u onto the current space WN := span{V1, . . . , VN}.

5: N = N + 1.
6: Find µ? := arg max

µ∈Ptrain
ψN (µ).

7: end while

simulation is very large. This implies that the number of snapshots K in Step 3 in
Algorithm 1 is large if no appropriate pretreatment for the snapshots is applied. The
large number of snapshots will result in expensive computations in Step 4. To tackle
this problem, the technique of adaptive snapshot selection [4, 24] can be employed to
discard the redundant (linearly dependent) information from the trajectory, so that the
runtime for the RB construction can be largely reduced.

6 Numerical experiments
In this section, three models will be presented to show the performance of the pro-
posed error estimation. The first model is the viscous Burgers’ equation, which is used
to demonstrate that our method is applicable to a large class of nonlinear evolution
equations. The other two models arise from chromatographic separation processes,
which are a batch chromatographic model and a linear continuous SMB model. Algo-
rithm 1 is used to generate the projection matrix V , and the ROMs are constructed by
using the Galerkin projection. For particular applications in chemical engineering, the
resulting reduced models are employed to solve the underlying optimization problems.
All the computations were done on a PC with Intel(R) Core(TM)2 Quad CPU Q9550
2.83GHz RAM 4.00GB unless stated otherwise.

6.1 Burgers’ equation
The Burgers’ equation describes the fundamental nonlinear phenomena in fluid dy-
namics, and is often considered as the starting point to test a new algorithm for
nonlinear problems. We now use the unsteady viscous Burgers’ equation to show that
the proposed error estimation is applicable for MOR of general nonlinear evolution
equations.

12



6.1.1 Reduced-order modeling of Burgers’ equation

In this work, we consider the unsteady viscous Burgers’ equation as follows,

ut + (u
2

2 )x = νuxx + s(u, x), x ∈ [0, 1], t ∈ (0, T ], (37)

where ν ∈ P is the viscosity coefficient, and s(u, x) is the source term.
In this model, the viscosity coefficient ν is considered as the parameter, i.e., µ := ν,

and we chose P = [0.001, 1] as the parameter domain. Note that the computation
becomes more challenging when ν is smaller, e.g., ν ≈ O(10−3), because the instability
grows exponentially with the evolution time [17]. We take T = 2, and s(u, x) ≡ 1
in the following computations. For discretization, we use the finite volume method
to construct the full order model, in the general form of (2). The reduced basis is
constructed by using Algorithm 1. Two output error bounds are used as the indicator
for the greedy sampling process. The results are detailed in the next subsection.

An a posteriori error estimation for the reduced basis method applied to this equa-
tion is proposed in [17], where the successive constraint method was used to estimate
the lower bound of the stability constant. The error estimation is actually a summation
over time of the dual norm of the residual. As pointed out in [17], this error estima-
tion is no longer useful, when the viscosity ν is small and the final time T is large. In
comparison with the early work in [17], we additionally use the EIM [2, 6] to treat the
nonlinear flux for an efficient offline-online computation. Therefore, the derived error
estimation in this paper is applicable to MOR of general nonlinear evolution equations.

6.1.2 Results

The following results are obtained by using the following initial and boundary condi-
tions:

u(0, x) = 0, x ∈ [0, 1]; u(t, 0) = 0, ux(t, x)|x=1 = 0. (38)

We use a uniform spatial grid with N = 500 cells for the FOM, and ∆t = 2/K,K =
1000 for both the FOM and ROM simulations.

Figure 1 shows the solutions to the FOM as a function of x and tk. Each line
represents the solution u(x, tk) at the time instance t = tk, k = 10j, j = 0, . . . ,K/10.
The evolution process tends to be steady at final time. For the ROM construction, we
chose a training set with 70 sample points log-uniformly distributed in the parameter
domain P, to built the RB and the CRB, respectively. We present the output error
bound for the average error of the outputs during the whole evolution process, i.e.,
ψ(µ) = 1

K

∑K
k=0 |Puk(µ)−Pûk(µ)|. Here, PT = [0, . . . , 0, 1]T ∈ RN , and uk(µ), ûk(µ)

are the solutions at the time instance tk to the FOM and the ROM, respectively.
The behavior of the error bounds and the corresponding true error are illustrated in

Figure 2. It is seen that the new error bound, which is derived from Theorem 4.1 and
denoted as ErrorBound-2, works much better than ErrorBound-1, which is based on
Proposition 3.1. Moreover, the new error bound is fairly sharp in comparison with the
true error. Since this is just an academic numerical example, there is not much time
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reduction in this model. For runtime comparison, we will report the computational
times for the more challenging problems in the following subsections.

As mentioned in Remark 4.6, the constant ρ in (30) can be estimated based on the
observation of the average ratio over all the time steps at the selected parameter µ?
at each iteration step of the greedy algorithm, i.e., ρ ≈

1
K

∑K−1
n=0

‖r̃n+1
pr (µ?)‖

1
K

∑K−1
n=0

‖rn+1
pr (µ?)‖

. Notice

that ρ is changing with the dimension of the reduced basis and with the parameter
µ? selected at each iteration step. The behavior of the ratio during the RB extension
process is illustrated in Figure 3. It is seen that the ratio decreases as the reduced basis
is extended, which implies that the difference between r̃n+1

pr and rn+1
pr becomes small

as the accuracy of the ROM is increased. The value of the ratio is of the magnitude
O(1), when the accuracy of the ROM achieves a certain degree, which will be further
demonstrated in the next example, see Figure 5.
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Figure 1: Solution of the Burgers’ equation as a function of x and tk with different
viscosity coefficients ν. Each line represents the solution u(x, tk) at the time
instance t = tk, k = 10j, j = 0, . . . ,K/10.
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Figure 2: Illustration of the decay of the error bound and the corresponding true error
during the reduced basis construction for Burgers’ equation.

6.2 Batch chromatographic model
Batch chromatography is an important chemical process and is widely used for sep-
aration and purification in industry. In this subsection, we show the performance of
the new error bound, named as ErrorBound-2. For comparison, the performance of
the error bound in Proposition 3.1, named as ErrorBound-1, is also presented.

6.2.1 Model description and optimization

The governing equations of batch chromatography are as follows:
∂cz
∂t

+ 1− ε
ε

∂qz
∂t

= −∂cz
∂x

+ 1
Pe

∂2cz
∂x2 , 0 < x < 1,

∂qz
∂t

= L

Q/(εAc)
κz(qEq

z − qz), 0 ≤ x ≤ 1,
(39)

where cz, qz are the concentrations of the component z (z = a, b) in the liquid and solid
phase, respectively, Q the volumetric feed flow-rate, Ac the cross-sectional area of the
column with the length L, ε the column porosity, κz the mass-transfer coefficient, and
Pe the Péclet number. The adsorption equilibrium qEq

z is described by the isotherm
equations of bi-Langmuir type,

qEq
z = fz(ca, cb) := Hz1cz

1 +Ka1cf
aca +Kb1cf

bcb
+ Hz2cz

1 +Ka2cf
aca +Kb2cf

bcb
, (40)
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Figure 3: Illustration of the behavior of the ratio
1
K

∑K−1
n=0

‖r̃n+1
pr (µ?)‖

1
K

∑K−1
n=0

‖rn+1
pr (µ?)‖

, where µ? is the

parameter selected by the greedy algorithm during the RB extension for
MOR of the Burgers’ equation.

where cf
z is the feed concentration of component z. The initial and boundary conditions

are given as follows:
cz(0, x) = 0, qz(0, x) = 0, 0 ≤ x ≤ 1,
∂cz
∂x
|x=0 = Pe

(
cz(t, 0)− χ[0,tin](t)

)
,

∂cz
∂x
|x=1 = 0,

(41)

where tin is the injection period, and χ[0,tin] is the characteristic function,

χ[0,tin](t) =
{

1, if t ∈ [0, tin],
0, otherwise.

In this paper, we consider the flow feed rate Q and the injection period tin as the
operating parameters, i.e., µ := (Q, tin).

The optimization of batch chromatography considered here aims to maximize the
production rate Pr while respecting the requirement of the recovery yield Rec, i.e.,

min
µ∈P
{−Pr(µ)},

s.t. Recmin −Rec(µ) ≤ 0, µ ∈ P,
cz(µ), qz(µ) are the solutions to the system (39), z = a, b,

(42)

where Pr(µ) = Qp(µ)
t4−t1 , Rec(µ) = p(µ)

tin(cf
a+cf

b
) , p(µ) =

∫ t4
t3
ca,O(t, µ) dt +

∫ t2
t1
cb,O(t, µ) dt,

cz,O(t, µ) = cz(t, 1;µ) is the concentration of component z at the outlet of the column,
and Recmin is the minimal requirement of the recover yield. The cutting points t1, t4
are determined by a minimum concentration threshold that the detector can resolve,
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and t2, t3 are determined by the requirement of the product purity. More details can
be found in [24].

6.2.2 Reduced-order modeling of the batch chromatographic model

We use the finite volume discretization to construct the FOM in the formulation of
(10). The ROM is in the form of (13). The coefficient matrix A(n)

µ in (10) is a constant
matrix at all time instances tn, n = 0, . . . ,K − 1, and is independent of the parameter
µ. This implies that the first equation in the dual system (12) is independent of the
parameter and time. Consequently, the related quantities from the dual system for
the error estimation are computed only once for all the sample points in the training
set at the current iteration step of the greedy algorithm. They are updated only at
the next greedy iteration step.

6.2.3 Results

To compare the sharpness of two error bounds mentioned above, i.e., ErrorBound-1
and ErrorBound-2, we perform the POD-Greedy algorithm using the two error bounds,
respectively. Let Ψ̄cz (µ) := 1

K

∑K
n=1 Ψn

cz
(µ) be the average of the error bound for the

output of cz over the whole evolution process at a given parameter µ ∈ P, where
Ψn
cz

(µ) = η̃nN,M,cz
(µ) or ∆n

cz
(µ), indicating that they are computed by using Propo-

sition 3.1 or Corollary 4.2, respectively. ErrorBound-1 and ErrorBound-2 are defined
as ηN (µ?) := max

µ∈Ptrain
max
z∈{a,b}

¯̃ηN,M,cz
(µ) and ∆N (µ?) := max

µ∈Ptrain
max
z∈{a,b}

∆̄cz
(µ), respec-

tively. Here, a and b represent two components to be separated. In accordance,
the reference true output error is defined as emax

N := max
µ∈Ptrain

max
z∈{a,b}

ēN,cz
(µ), where

ēN,cz
(µ) := 1

K

∑K
n=1 ‖cnz,O(µ)− ĉnz,O(µ)||, and cnz,O(µ), ĉnz,O(µ) are the output response

computed by using the FOM and ROM, respectively.
Figure 4 shows the error bound decay as the reduced basis is enriched. It is seen

that the new output error bound (ErrorBound-2) works much better than the old
one (ErrorBound-1). Since ErrorBound-1 decreases very slowly after certain extension
steps, we use the early-stop criterion proposed in [24] to reasonably stop the itera-
tion, although it does not go below the pre-specified tolerance. In contrast, the new
error bound goes below the pre-specified tolerance as the number of the reduced basis
increases to 45.

To show the efficiency of the new error bound, we compare the runtime for the
generation of the reduced basis using the two error bounds. From Table 1, we see that
using ErrorBound-2 takes slightly more time than using ErrorBound-1. This is because
the residual of the additional dual system needs to be computed for ErrorBound-2.
However, since ErrorBound-2 is much more accurate than ErrorBound-1, it deserves
spending a bit more computational time for getting a more reliable ROM.

In addition, like we did for the Burgers’ equation, we estimate the constant ρ in
(30) by computing the average ratio over all the time steps at the chosen parameter µ?
at each iteration step of the greedy algorithm, i.e., ρ ≈

1
K

∑K−1
n=0

‖r̃n+1
pr (µ?)‖

1
K

∑K−1
n=0

‖rn+1
pr (µ?)‖

. Figure 5
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Figure 4: Illustration of the decay of the error bound and the corresponding true error
during the reduced basis construction for batch chromatography.

Table 1: Comparison of runtime for the generation of the RB using two error bounds.
Model Runtime [h] 1

ROM using ErrorBound-1 6.8
ROM using ErrorBound-2 7.6
1 Due to memory limitations of the PC, these computations were done on a Work-

station with 4 Intel Xeon E7-8837 CPUs (8 cores per CPU) 2.67 GHz RAM 1TB.

shows the behavior of the ratio during the RB extension process. We have the same
conclusion as above, i.e., the difference between r̃n+1

pr and rn+1
pr becomes small as the

accuracy of the ROM is increased. The ratio stays in the scale of O(1) when the
number of basis vectors is larger than 20. These numerical results confirm that our
assumption (18) in Theorem 4.1 is reasonable.

Before addressing the ROM based optimization, we assess the validation of the
ROM. To this end, we perform the detailed and reduced simulation over a test set
with 500 random samples of the parameter in the feasible domain. Table 2 shows
the results. It is seen that the average runtime is reduced by 98% using the ROM,
and the maximal true output error is 8.16 × 10−7, which is below the pre-specified
tolerance. The optimization results are summarized in Table 3. The optimal solution
of the ROM based optimization converges to that of the FOM based one, and the
runtime is significantly reduced. The speedup factor (SpF) is 58.

6.3 Continuous SMB chromatographic model
Simulated moving bed (SMB) chromatography is a continuous multi-column process
and has been widely used as an efficient separation technique in chemical industries.

18



5 15 25 35 45
0

5

10

15

20

25

30

35

40

45

Size of RB: N

R
a
ti
o

Figure 5: Illustration of the behavior of the ratio
1
K

∑K−1
n=0

‖r̃n+1
pr (µ?)‖

1
K

∑K−1
n=0

‖rn+1
pr (µ?)‖

, where µ? is the

parameter selected by the greedy algorithm during the RB extension for
MOR of batch chromatography.

Table 2: Comparison of runtime for the detailed and reduced simulation over a valida-
tion set Pval with 500 random sample points. εROM = 1× 10−4.

Model Maximal error Average runtime [s]/SpF
FOM (N = 1500) – 339.02(-)
ROM (N = 45) 8.16× 10−7 5.95/ 57

Recent studies on model order reduction of the SMB model can be found in [14] and
the references therein. In [14] the reduced-order model is generated by a POD based
MOR method and the ROM needs to be updated during the trust-region optimization
process. Here, we use the reduced basis method to build a ROM, which is qualified
in the whole parameter domain. Notably, for problems like the SMB model under
consideration, the evolution process is extraordinarily complicated due to the periodic
switching procedure. This makes the existing error estimators, e.g. in [6, 24], hard
to compute, because extra errors are introduced due to the switching. In contrast,
the new error estimator only considers the residual at the current time instance, i.e.
relatively independent of the previous steps.

Table 3: Optimization based on the FOM N = 1500 and the ROM N = 45.
Simulations Obj. (Pr) Opt. solution (µ) #Iterations Runtime [h]/SpF
FOM-Opt. 0.020264 (0.07964, 1.05445) 202 33.88 / -
ROM-Opt. 0.020266 (0.07964, 1.05445) 202 0.58 / 58
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6.3.1 Model description and optimization

A classical SMB process with 4 zones is schematically shown in Figure 6. The SMB
model consists of several single column models which are assembled with balance
equations at the inlets and outlets. It is assumed that the flow behavior of each
column is described as a plug-flow with a limited mass-transfer rate characterized by
a linear driving force approximation. The governing equations for each column model
are given by

∂cz
∂t

+ 1− ε
ε

∂qz
∂t

= − Qts
εAcL

(∂cz
∂x
− 1
Pe

∂2cz
∂x2 ), 0 < x < 1,

∂qz
∂t

= tsκz(qEq
z − qz), 0 ≤ x ≤ 1,

(43)

where cz and qz are the concentrations of the solute z (z = a, b) in the liquid and
solid phases, and other quantities like Q, Ac, ε, L, and Pe have the same meanings as
those in the batch chromatographic model above, t and x are the dimensionless time
and spatial coordinate, and ts is the switching period. The adsorption equilibrium
is qEq

z := Hzcz with Hz being the Henry constant, which implies that the system of
equations (43) is linear. It is assumed that Ha > Hb. The boundary conditions are

∂cz
∂x
|x=0 = Pe(cz(t, 0)− cin

z ),

∂cz
∂x
|x=1 = 0,

(44)

where cin
z is the concentration of component z at the column inlet. More details about

the description of the SMB model, e.g. the balanced equations around the inlet and
outlet nodes, can be found in [14, 22]. The model parameters are summarized in
Table 4.

Table 4: Model parameters and operating conditions for the SMB model.

Column dimensions [cm] 2.6 × 11
Column porosity ε [-] 0.4
Péclet number Pe [-] 500
Mass-transfer coefficients κz, z = a, b [1/s] 0.1
Feed concentrations cf

z, z = a, b [g/l] 2.9
Henry constants Ha, Hb [-] 3.86, 2.72

As a case study, we use an SMB model with 4 zones and 8 columns, as is shown
in Figure 6. In this model, the flow rate in each zone Qi, i = I, . . . , IV, and the
switching period ts are the operating parameters. Alternatively, four corresponding
dimensionless quantities mi, i = I, . . . , IV, and the feed flow rate Qf can also be chosen
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Figure 6: Schematic illustration of a simulated moving bed (SMB) chromatographic
process with 4 zones and 8 columns.

as the operating parameters. The four dimensionless quantities introduced by the
triangle theory [15] are defined as

mi = Qits − εV
V(1− ε) , i = I, . . . , IV, (45)

where V is the volume of the column. Given a set of parameters µ := (mI, . . . ,mIV, Qf),
the SMB process reaches a cyclic steady state (CSS) with a periodic switching along
the circularly arranged columns. The CSS condition is defined by

max {‖cz(0, ·)− Ps[cz(1, ·)]‖, ‖qz(0, ·)− Ps[qz(1, ·)]‖} < εCSS, (46)

where εCSS is the specified CSS tolerance. The switching procedure is expressed as

cz,T+1(0, x) = Ps[cz,T (1, x)], qz,T+1(0, x) = Ps[qz,T (1, x)], T = 1, 2, . . . ,

where Ps[·] is a column-wise switching operator, and T refers to the T -th period.
In this work, we consider an optimization problem of the SMB model as follows:

min
µ∈P

f(µ), f(µ) = −Qf,

s.t. Pua,min − Pua(µ) ≤ 0,
Pub,min − Pub(µ) ≤ 0,

QI −Qmax ≤ 0,

(47)

where Pua(µ) :=
∫ 1

0
cE

a,CSS(t)dt∫ 1

0
cE

a,CSS(t)dt+
∫ 1

0
cE

b,CSS(t)dt
, Pub(µ) :=

∫ 1

0
cR

b,CSS(t)dt∫ 1

0
cR

a,CSS(t)dt+
∫ 1

0
cR

b,CSS(t)dt
are

the product purities at the extract and the raffinate outlets, and cE
z,CSS(t), cR

z,CSS(t)
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are the CSS concentrations of cz at the extract and the raffinate outlets, respectively.
Solving such an optimization problem is time-consuming because it takes many itera-
tions to converge and each iteration needs to simulate the original FOM till the CSS.
We now use model order reduction to tackle this problem.

6.3.2 Reduced-order modeling of the SMB model

We use the FV discretization to construct the FOM as follows,{
Aµ,zc

n+1
z = Bµ,zc

n
z + rnz + tsκzq

n
z ,

qn+1
z = (1− tsκz∆t)qnz + tsκzHz∆tcnz .

(48)

Note that the coefficient matrices Aµ,z and Bµ,z are time independent compared to
the general form in (2), rnz comes from the feed conditions and it does not dependent
on the field variables. Let Vcz

∈ RN×Ncz , Vqz
∈ RN×Nqz be the reduced basis matrices

for the field variables cz, qz, respectively, and ĉnz := Vcz
ancz

, q̂nz := Vqz
anqz

be the
reduced approximations of cnz and qnz , accordingly. Here, N is the number of degrees
of freedom of the FOM for every field variable, and Ncz , Nqz are the column numbers of
the projection matrices for cz, qz, respectively, z = a, b. By using Galerkin projection,
the ROM is formulated as{

Âµ,za
n+1
cz

= B̂µ,za
n
cz

+ r̂z + tsκzD̂za
n
qz
,

an+1
qz

= (1− tsκz∆t)anqz
+ tsκzHz∆tD̂T

z a
n
cz
,

(49)

where Âµ,z = V Tcz
Aµ,zVcz

, B̂µ,z = V Tcz
Bµ,zVcz

, r̂z = V Tcz
rnz and D̂z = V Tcz

Vqz
are the

reduced matrices, and ancz
, anqz

are the unknowns of the ROM.

6.3.3 Results

The projection matrices Vcz and Vqz are constructed by using the POD-Greedy algo-
rithm, Algorithm 1 in Section 5. Specifically, the snapshots are taken from one CSS
period rather than the transient process, since only the products in the CSS period are
of interest. The number of time steps in one period is still large (O(1000)), which is
larger than the dimension of the spatial discretization. To efficiently construct the re-
duced basis, the technique of adaptive snapshot selection [24] is employed. The column
number of the projection matrices are 81, 82, 82, 82, respectively, when the tolerance
εROM is taken 5.0 × 10−4. Since the purities Pua and Pub in (47) are determined
by the concentrations of ca and cb at the extract and the raffinate outlets in the CSS
period, we defined the error bound as the maximal error bound for the output at the
extract and the raffinate outlets, i.e., ψ(µ?) := max

µ∈Ptrain
max
z={a,b}

{∆̄E
cz

(µ), ∆̄R
cz

(µ)}, where

∆̄O
cz

(µ) := 1
K

∑K
k=1 ∆O,n

cz
(µ),O = E,R indicating the average of the error bound over

all time steps in the CSS period at the extract and the raffinate outlets, respectively. In
accordance, the true output error is defined as e(µ?) := max

µ∈Ptrain
max
z={a,b}

{ēE
cz

(µ), ēR
cz

(µ)},

where ēO
cz

(µ) := 1
K

∑K
k=1 ‖cO,n

z (µ)− ĉO,n
z (µ)‖,O = E,R. Here, ĉE,n

z (µ), ĉR,n
z (µ) are the

approximate concentrations at the extract and the raffinate outlets, respectively.
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Figure 7 shows the error decay during the extension of the reduced basis. In this
model, we simply estimate the constant ρ = 3. Note that the error bound is not
rigorous in the first several steps. This is not surprising, because the RB approximation
is not good enough when N is small and the constant ρ is taken aggressively. However,
as the reduced basis is enriched, the new error bound is rigorous and fairly sharp in
comparison with the true error. The error bound goes below the pre-specified tolerance
when the maximal number of the reduced basis reaches 82.
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Figure 7: Error decay during the RB extension.

Before the ROM is used to solve the underlying optimization problem, we validate
its accuracy by performing the full and reduced simulation over a test set with 200
random samples of parameters in the parameter domain. The maximal error and
average runtime are shown in Table 5. It is seen that the maximal true error is
1.1 × 10−4, and is smaller than the pre-specified tolerance. The average runtime is
largely reduced and the speedup factor is 8.

Table 5: Comparison of runtime for the full and reduced simulations over a validation
set Pval with 200 random sample points. εROM = 5.0× 10−4.

Model Maximal error Average runtime [s]/SpF
FOM (N = 800) – 349.5 / -
ROM 1.1× 10−4 45.2 / 8

Finally, we study the performance of the ROM based optimization. Table 6 shows
the results using the constants Pua,min = 99%, Pub,min = 99%, Qmax = 0.50 ml/s. It
is seen that the ROM based optimization is very successful. The runtime of solving
the optimization problem is largely reduced while the optimal solutions are almost the
same as those of the FOM based optimization. The speedup factor is 9.
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Table 6: Comparison of the results for the FOM based and the ROM based optimiza-
tion.

Initial guess FOM-Opt. ROM-Opt.
Objective Qf [ml/s] 0.07 0.0745 0.0744

Opt. solut.

m1 4.50 4.3269 4.3218
m2 2.90 2.8599 2.8600
m3 3.50 3.6036 3.6025
m4 2.30 2.3468 2.3086
Qf [ml/s] 0.07 0.0745 0.0744

Constraints
Pua 98.9% 99.0% 99.0%
Pub 99.5% 99.0% 99.0%
Q1 [ml/s] 0.4161 0.4997 0.4991

#Iterations 71 58
Runtime [h] / SpF 5.13 / - 0.59 / 9

7 Conclusions
We have presented an efficient a posteriori output error estimation for model order
reduction of parametrized nonlinear evolution equations. The new error estimation is
suitable for projection based MOR methods. Certainly, it can be applied to the linear
evolution problem as well, as is shown in Section 6.3.

The proposed output error bound is sharp and computationally efficient, and can
be applied to a broad class of evolution equations. In particular, it is applicable to
problems with a long time evolution process. In contrast, the existing error bound often
fails due to its continuous accumulation over time. Numerical results have illustrated
the behaviors of the error estimations, and have shown the efficiency of the newly
proposed error bound.
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