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Abstract

Dynamical systems of large order appear in many applications. For an efficient
simulation it can become necessary to reduce the system dimension using a reli-
able model order reduction method, in particular in a many-query context when
the system is to be solved for varying parameters and input signals. Nowadays, it
is often required that the models include physical parameters to allow more flex-
ibility in simulation. These parameters should be preserved in the reduced-order
system; a task that motivates the development of new approaches to model order
reduction referred to collectively as parametric model order reduction. In this
work, we compare several methods for parametric model order reduction using
common benchmark problems from the literature.
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simulation, input-output map.
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1 Introduction

In this work, parameterized dynamical systems of order n

E(p) ẋ(t; p) = A(p)x(t; p) +B(p)u(t),
y(t; p) = C(p)x(t; p)

(1)

with a parameter (vector) p ∈ Rd and parameter-dependent system matrices E(p),
A(p) ∈ Rn×n, B(p) ∈ Rn×m, C(p) ∈ R`×n are considered.

It is assumed that, for all considered parameter values, E(p) is invertible and the
system is stable, i.e., the eigenvalues of E−1(p)A(p) lie in the open left half of the
complex plane. In the following, the parameter dependency of the state x and of the
output y is omitted in notation for a simplified presentation. In many research fields,
like signal processing or control theory, the system is analyzed in the frequency domain.
The system’s response in the frequency domain is described by a linear mapping,
called transfer function which maps the Laplace transform of the inputs to the Laplace
transform of the outputs. The parameterized transfer function corresponding to (1)
for s ∈ C+ := {s ∈ C | Re(s) ≥ 0} is defined by

G(s, p) = C(p)(sE(p)−A(p))−1B(p). (2)

Parametric model order reduction (PMOR) based on projection seeks (full column
rank) matrices V , W ∈ Rn×r with r � n such that the output error between the
original and the reduced-order system

WTE(p)V ˙̂x(t) = WTA(p)V x̂(t) +WTB(p)u(t),
ŷ(t) = C(p)V x̂(t),

(3)

or, analogously, in the frequency domain

Ĝ(s, p) = C(p)V (sWTE(p)V −WTA(p)V )−1WTB(p), (4)

is small and the computational time for the simulation of (1) and (2) is decreased
significantly by using (3) or (4) instead. The simulation time of a system will be called
the online complexity since this computation has to be done for every new value of p
and input u. The time which is required to compute a reduced-order, parameterized
model will be called the offline complexity of the PMOR method.

The reduction is especially of value (with respect to reduced computational com-
plexity) if the parameter dependency in (1) is affine in the system matrices [24, 3], i.e.,
we have the following matrix representation

E(p) = E0 + e1(p)E1 + . . .+ ePE
(p)EPE

,
A(p) = A0 + f1(p)A1 + . . .+ fPA

(p)APA
,

B(p) = B0 + g1(p)B1 + . . .+ gPB
(p)BPB

,
C(p) = C0 + h1(p)C1 + . . .+ hPC

(p)CPC
,
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leading to reduced-order matrices

Ê(p) := WTE(p)V = WTE0V +
∑PE

i=1 ei(p)W
TEiV,

Â(p) := WTA(p)V = WTA0V +
∑PA

i=1 fi(p)W
TAiV,

B̂(p) := WTB(p) = WTB0 +
∑PB

i=1 gi(p)W
TBi,

Ĉ(p) := C(p)V = C0V +
∑PC

i=1 hi(p)CiV.

(5)

It is assumed that the number of summands PE , PA, PB , PC is moderate. The
reduced parameter-independent matrices WTEiV , WTAiV ∈ Rr×r, WTBi ∈ Rr×m
and CiV ∈ R`×r can be pre-computed. The computation of these constant reduced
matrices is part of the offline phase of the method (and will not be carried out for
every new value of p).

It is also assumed that the initial state is zero, although the methods in principle
can also be used in case of varying or parameter-dependent initial state. Some of the
methods can easily be modified for the case of singular E while others are still under
investigation. Also, not all approaches require stability. The comparison is restricted
to the preassigned assumptions in order to make it applicable to a wide range of
different methods.

In the following, several methods for PMOR are compared. All approaches are
briefly introduced in Section 2 with error measures described in Section 3. Each
method is applied to three benchmarks selected from the MOR Wiki benchmark col-
lection [1], see Section 5 for details. The results and a discussion of the comparison
can be found in Section 6.

This work complements a recent survey on model reduction methods for parametric
systems [7] where several approaches and aspects for PMOR are discussed in detail
but no numerical experiments are included. For a comparison of MOR methods for
systems without parameter dependency, see, for instance, [18].

The comparisons described here should be thought of as a first attempt to look at
the advantages and disadvantages of various state-of-the-art strategies in PMOR. For
a simplified presentation of the results and a better comparability of the approaches,
we limit the comparison to single-input single-output (SISO) systems which depend
affinely on one parameter (d = 1). This will be extended to multi-input multi-output
systems (MIMO) with more than one parameter (d > 1) in future work.

2 Methods for parametric model order reduction

The computation of the projection matrices V and W is of main interest in PMOR
and differs very much along the presented approaches. We will shortly describe the
methods which will be compared in the following.

2.1 POD and POD-Greedy

First, two approaches are applied for computing matrices V and W that are based
on Proper Orthogonal Decomposition (POD). POD is a state-space approximation
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method providing optimal approximation spaces in the mean-squared error sense [35,
8, 36]. To be more precise, the POD assumes a set of points x1, . . . , xN ∈ Rn, com-
pactly written as a matrix X = [x1, . . . , xN ] and computes for arbitrarily chosen
r ∈ {1, . . . , N}:

PODr(X) := arg min
V

1

N

N∑
i=1

∥∥xi − V V Txi∥∥2

over all matrices V ∈ Rn×r that satisfy V TV = I. This can be directly computed by a

singular value decomposition (SVD) V1SV
T
2

SVD
= X and taking the r leftmost columns

of V1 as matrix V . These columns then are also denoted as POD-modes.
In the following methods I) and II) we only address the construction of a matrix V

with orthogonal columns in the setting of parametric systems on a finite time-interval
[0, T ] with a fixed input u(·). After construction of V , we simply choose W = V .

I) Global POD: We assume to have a set of training parameter samples {p1, . . . , pK}
and time discretization by choosing J ∈ N and setting ∆t := T/J and ti := i∆t, i =
0, . . . , J . These define the set {x1 . . . , xN} := {x(t0; p1), . . . , x(tJ ; pK)} by computing
K · (J + 1) solution snapshots of the full model. The POD of this (potentially huge)
set of snapshots yields a matrix V = PODr(X) that can be used for system projection
and promises good average approximation over the time and parameter range, if J , K
and r are chosen sufficiently large.

II) POD-Greedy: The size of the SVD problem of the global POD can be prohibitive,
which is circumvented by the following greedy procedure that incrementally constructs
a basis V by several small POD computations: Starting with an initial basis V and
the corresponding reduced system, one can detect that single parameter pj among
the parameter samples, which currently is worst resolved by the reduced model (e.g.,
measured by error norms as specified in the next section). For this “worst” sample pj ,
the high dimensional trajectory x(·; pj) is computed and the new information of this
trajectory is extracted by computing r′ ≥ 1 POD-modes of the orthogonal projection
error trajectory to the current V . This means, we first orthogonalize all trajectory
elements and collect them into a matrix, i.e. X ′ is chosen as the matrix with columns
{x(ti; pj) − V V Tx(ti; pj)}Ji=0 in arbitrary order. Then, we extract the new POD-
mode(s) V ′ := POD′r(X

′). This matrix V ′ is orthonormal to V by construction and we
extend the basis V := [V, V ′]. This extension loop is repeated until a desired accuracy
is obtained on the training set of parameters or a desired basis size r is reached. The
choice r′ = 1, i.e., adding a single POD-mode in each iteration, promises to result in
the most compact basis, while r′ > 1 could result in an accelerated basis generation
time. This POD-Greedy algorithm [23, 37] meanwhile is standard in Reduced Basis
Methods [24, 10, 26] and has provable quasi-optimal convergence rates [20]. Adaptive
techniques of selecting parameters or snapshots for reducing the complexity of the
reduced basis generation have been proposed for example in [22, 40].

In the above procedures I) and II) also variation of the input u can be allowed via
a parametrization of the input. First, if a finite number nu of input signals ui is to
be expected, one can extend the parameter vector by p̄ = (p, i) and hence directly
include the input variation into the POD or POD-Greedy procedure by varying p̄ over
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Rd × {1, ..., nu}.
Second, if a parametric model of the prospective input signals is available, e.g.,

u(t) = u(t; p′) with p′ ∈ Rd′ this can also be directly be included in a parametric
sampling of the input signal manifold by extending the parameter vector by p̄ := (p, p′)
and varying p̄ over Rd × Rd′ .

2.2 Interpolatory methods for PMOR

Next, interpolatory methods for PMOR are considered which are based on well-known
techniques for model order reduction (MOR) of deterministic (non-parametric) systems
such as moment-matching, the iterative rational Krylov algorithm (IRKA) [19] and
balanced truncation (BT). These (deterministic) MOR methods are used to reduce
the order of the system (1) at a certain number of fixed parameter values p1, . . . , pK ,
i.e., we apply MOR K-times on the systems with transfer functions:

Gj(s) := G(s, pj) = C(pj)(sE(pj)−A(pj))
−1B(pj), j = 1, . . . ,K.

The following (local) quantities are computed and stored after reduction for further
use in interpolation-based PMOR:

1. the projection matrices Vj , Wj ∈ Rn×r′ , for j = 1, . . .K,

2. reduced system matrices, for j = 1, . . .K,

Êj = WT
j E(pj)Vj ∈ Rr′×r′ , Âj = WT

j A(pj)Vj ∈ Rr′×r′ ,
B̂j = WT

j B(pj) ∈ Rr′×m, Ĉj = C(pj)Vj ∈ R`×r′ .
(6)

The PMOR approaches considered here use different interpolation strategies which
employ some of these quantities to derive a reduced-order system (3) which approxi-
mates (1) over the whole parameter interval.

A short description of the methods follows.
I) The first method is called PMOR by matrix interpolation (MatrInt) [33]. A

parameterized reduced-order system (3) of order r′ is obtained by interpolation of the
locally reduced system matrices (6), where

Ê(p) =
∑K
j=1 ωj(p)MjÊjT

−1
j , Â(p) =

∑K
j=1 ωj(p)MjÂjT

−1
j ,

B̂(p) =
∑K
j=1 ωj(p)MjB̂j , Ĉ(p) =

∑K
j=1 ωj(p)ĈjT

−1
j ,

with properly chosen transformation matrices Mj , Tj ∈ Rr′×r′ and weights ωj . The
transformation matrices are chosen in order to give a common physical meaning to all
reduced state vectors:
Mj = (WT

j R)−1, Tj = RTVj with R ∈ Rn×r′ obtained from a thin SVD of
[ω1(p)V1, ω2(p)V2, . . . , ωK(p)VK ]. Note that a single R is used to compute the trans-
formation matrices Mj , Tj for j = 1, . . . ,K and that the computation is part of the
online phase since the weights depend on p. Modifications of the approach which avoid
this online step are proposed in [2, 33].
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Stability of the parameterized reduced-order system can be achieved by a further
offline step which includes the solution of K low-dimensional Lyapunov equations [17].
Transformations based on these solutions make the locally reduced systems contractive.

II) The next approach for PMOR is called transfer function interpolation (TransFncInt).
This is based on interpolation of locally reduced-order models in the frequency do-
main [4]. Here, reduced-order transfer functions

Ĝj(s) = Ĉj(sÊj − Âj)−1B̂j , (7)

with Êj , Âj , B̂j , Ĉj computed by (6), are taken as ‘data points’ for the construction
of a (parameter-dependent) interpolant. Using polynomial interpolation, the reduced-
order transfer function looks as follows,

Ĝ(s, p) =

K∑
j=1

Lj(p)Ĝj(s),

where Lj(p) are the Lagrange basis polynomials. A possible realization of order K · r′,
here exemplarily described for a system with p ∈ R, is

Ĝ(s, p) = Ĉ(sÊ − Â)−1B̂(p),

with

Ĉ :=
[
Ĉ1, . . . , ĈK

]
, B̂j(p) :=

 K∏
i=1,i6=j

p− pi
pj − pi

 B̂j ,

sÊ − Â :=

 sÊ1 − Â1

. . .

sÊK − ÂK

 , B̂(p) :=

 B̂1(p)
...

B̂K(p)

 .
Note that this realization does not allow a reconstruction of the state in the required
form x ≈ V x̂.

TransFncInt also does not provide a reduced-order model in parameterized state-
space form for more than one parameter (and for other interpolation techniques than
polynomial interpolation). For higher dimensional parameter spaces, piecewise polyno-
mial interpolation on sparse grids provides an efficient implementation of this method [4].
Other interpolation techniques, such as rational interpolation, can also be used to con-
struct Ĝ(s, p), see [5].

Note that the preservation of stability can be guaranteed in the parameterized
reduced-order system if BT is taken for the local reduction. BT preserves the sta-
bility of the local transfer functions Ĝj in (7) and this guarantees that the eigenvalues

of the interpolated transfer function Ĝ(s, p) also lie in C−.
III) We further consider an approach called piecewise H2 tangential interpolation

(with H2 optimal frequency points) (PWH2TanInt) [3]. The local projection matrices
are computed by IRKA (with local reduced order r′) and concatenated

V = [V1, V2, . . . , VK ], W = [W1, W2, . . . ,WK ]
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to obtain (4). Thus, the dimension of the reduced-order system is K ·r′. Note that the
number of columns K · r′ of V and W can further be reduced by an SVD or a rank-
revealing QR factorization to ensure that V and W have full rank. IRKA computes
optimal (frequency) shifts si and corresponding tangential directions bij and cij such
that (4) matches the p-gradient and p-Hessian of the original system response (2) with
respect to the parameters:

∇pcTijG(si, pj)bij = ∇pcTijĜ(si, pj)bij , ∇2
p c
T
ijG(si, pj)bij = ∇2

p c
T
ijĜ(si, pj)bij ,

for i = 1, . . . , r′, j = 1, . . . ,K. Additionally, the usual tangential interpolation prop-
erties hold:

G(si, pj)bij = Ĝ(si, pj)bij , cTijG(si, pj) = cTijĜ(si, pj).

IV) The generalization of moment matching MOR called multi- (parameter) moment
matching (MultiPMomMtch) or multivariate Padé approximation was first considered
in [9, 38]. Improvements which avoid explicitly moment matching can be found in [12,
13, 30, 11]. This method is based on a multivariate Taylor expansion with expansion
points in frequency and parameter space. We denote the frequency expansion points
by s1, . . . , sL in the following. It ensures the following moment matching,

∂k

∂sk
∂l

∂pl
G(si, pj) =

∂k

∂sk
∂l

∂pl
Ĝ(si, pj),

for i = 1, . . . , L, j = 1, . . . ,K, k = 0, . . . , q, l = 0, . . . , q and in all directions (in
contrast to tangential interpolation). The dimension of the reduced-order system is
K · L · q2 · (1 + q) (for single-input single-output systems). This dimension might
get reduced by truncating linearly dependent columns during the (repeated modified
Gram-Schmidt) orthogonalization process [13].

2.3 Empirical cross Gramian

The empirical cross Gramian (emWX) is a snapshot-based method to compute the
cross Gramian, which is applicable to square systems1. This method requires an
invertible matrix E, thus it can be described in terms of linear control systems (1)
with E−1A→ A, E → I and E−1B → B. The cross Gramian [14] is defined as:

WX :=

∫ ∞
0

eAtBCeAtdt. (8)

For a system with a symmetric transfer function, which includes SISO systems, the
absolute values of the cross Gramian’s eigenvalues equal the Hankel singular values on
which BT is based. Instead of computing the cross Gramian by solving a Sylvester
matrix equation or through the empirical cross Gramian from [25], a controllability-
based approach is chosen here. To compute the cross Gramian, the underlying linear

1Systems with the same number of inputs and outputs.
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control system’s (1) vector field is augmented by the negative adjoint vector field and
the output functional is augmented by the adjoint output functional:(

ẋ
˙̄x

)
=

(
A 0
0 AT

)(
x
x̄

)
+

(
B
CT

)(
u
ū

)
,(

y
ȳ

)
=
(
C BT

)(x
x̄

)
,

with x̄0 and ū chosen appropriately; a simple choice would be x̄0 = x0 , ū = u. The
controllability Gramian of this augmented system ŴC has the form [15]:

ŴC =

(
WC WX

WT
X WO

)
, (9)

which contains the cross Gramian WX as upper right block.
To compute this version of the cross Gramian, the empirical controllability Gramian

is employed. Empirical Gramians are computed using impulse-response snapshots.
Hence, in order to compute the empirical cross Gramian using the relation from (9)
amounts to computing an empirical controllability Gramian from [28, 29]. Since only
the upper right block of the augmented system’s controllability Gramian is required
to obtain the empirical cross Gramian, it is sufficient to compute WX using snapshots
X := [x(t0), . . . , x(tJ)] ∈ Rn×J and adjoint snapshots X̄ := [x̄(t0), . . . , x̄(tJ)] ∈ Rn×J ,
given by:

x(t) =

∫ t

0

eAτBu(τ)dτ, x̄(t) =

∫ t

0

eA
T τCTu(τ)dτ.

Then, the empirical cross Gramian is computed by:

WX ≈ ∆t XX̄T ,

which corresponds to a discrete evaluation of (8). The snapshots can be obtained by
solving x(t) and x̄(t) at discrete times t0, . . . , tJ , for instance using a Runge-Kutta
method. This method is closely related to POD as described in Section 2.1 and to
balanced POD from [39], see also [6, 21].

For a parameterized system (1), the parameter space is discretized and the mean
empirical cross Gramian WX is computed over all points pj , j = 1, . . . ,K, in the
discretized parameter space, using the snapshots X(pj) := [x(t0; pj), . . . , x(tJ ; pj)] and
adjoint snapshots X̄(pj) := [x̄(t0; pj), . . . , x̄(tJ ; pj)], with discrete times t0, . . . , tJ and
∆t = |ti − tj |, i 6= j:

WX =
1

K

K∑
j=1

WX(pj) ≈
1

K

K∑
j=1

∆t X(pj)X̄(pj)
T =: W̃X .

An SVD of the empirical cross Gramian provides an approximate balancing projec-
tion V1:

W̃X
SVD
= V1SV2.
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With the Galerkin projection V1, the reduced order model is constructed similar to
the POD method. The columns of V1 which correspond to the lowest entries of the
diagonal matrix S are truncated. Then, the reduced system is given by (5) with
V = V1( : , 1 : r) and W = V .

3 Performance measures

PMOR seeks for a reduced-order, parameterized representation of the original system
such that the output error between the original and the reduced-order system, i.e., ‖y−
ŷ‖, is small in some norm. This demand can be satisfied by a good approximation of (2)
by a reduced-order, parameterized transfer function (4), i.e., forcing Ĝ(s, p) ≈ G(s, p)
over a wide frequency range for s and a wide parameter range for p. Alternatively, a
good approximation of x(t) by V x̂(t) also will ensure a small output error.

The choice of an appropriate error measure depends on the application. In this work,
we consider many different error norms in order to get good insights in the qualities
of the presented methods.

All error measures have in common that they require a discretization of the param-
eter space as a first step. To this end, we introduce the parameter test grid p1, . . . , pK̄
with K̄ > K and compute the errors for every parameter grid point pj , j = 1, . . . , K̄.

We denote the corresponding quantities by Gj := G( · , pj), Ĝj := Ĝ( · , pj), yj :=
y( · ; pj), xj := x( · ; pj).

The state and the output errors are computed in the time domain for a finite time
interval [0, T ]. We drive the original and the reduced-order system with the same
input u(·). The time interval is discretized by J + 1 time points t0, . . . , tJ .

The error in state space is estimated by the L2-norm for square-integrable functions,

‖xj − V x̂j‖2L2([0, T ]) =

∫ T

0

‖xj(t)− V x̂j(t)‖22 dt ≈ ∆t

J∑
i=0

‖(xj(ti)− V x̂j(ti))‖22.

The output error is computed in two different norms,

‖yj − ŷj‖2L2([0, T ]) =

∫ T

0

‖yj(t)− ŷj(t)‖22 dt ≈ ∆t

J∑
i=0

‖(yj(ti)− ŷj(ti))‖22,

and the L∞-norm

‖yj − ŷj‖L∞([0, T ]) ≈ max
i=0,...,J

‖yj(ti)− ŷj(ti)‖2.

These errors are computed as relative errors with denominator ‖xj‖L2
, ‖yj‖L2

, or
‖yj‖L∞ , respectively.

The frequency response error can be computed by the Hardy H2- and the H∞-norm
which provide good error measures for many classes of input signals.

The computation of the H∞-norm additionally requires a fine grid of frequency
points ω1, . . . , ωL̄ ∈ R (L̄ > L) for computing an estimate of

‖Gj − Ĝj‖H∞ = sup
ω∈R

σ̄(Gj(ıω)− Ĝj(ıω)) ≈ max
1≤i≤L̄

σ̄(Gj(ıωi)− Ĝj(ıωi)),
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with ı =
√
−1 and σ̄(Gj(ıω)) as largest singular value of the ` × m matrix Gj(ıω).

The error in the H∞-norm is computed as scaled error, where the maximum of all
‖Gj(ıωi)− Ĝj(ıωi)‖2 divided by max1≤l≤L̄ ‖Gj(ıωl)‖2 for i = 1, . . . , L̄ is taken.

The error in the H2-norm is computed without sampling of the frequency space by

‖Gj − Ĝj‖2H2
= 1

2π

∞∫
−∞

trace
[
(Gj(ıω)− Ĝj(ıω))∗(Gj(ıω)− Ĝj(ıω))

]
dω

= trace
[
[Cj , Ĉj ]P [Cj , Ĉj ]

T
]
.

P is the controllability Gramian of the error system and is obtained as solution of a
Lyapunov equation associated to the error system [41, Section 4.6]. In Section 6, the
H2-error is computed as relative error with denominator ‖Gj‖2H2

.
For u ∈ L2([0,∞)→ Rm), the useful estimates

‖yj − ŷj‖L2([0,∞)) ≤ ‖Gj − Ĝj‖H∞‖u‖L2([0,∞))

and
‖yj − ŷj‖L∞([0,∞)) ≤ ‖Gj − Ĝj‖H2

‖u‖L2([0,∞)),

connect the time domain errors with the error measures in the frequency domain.
The complexity of methods for PMOR can be divided into two parts, operations in

the offline phase, where the original system size is reduced, and the online complexity
which describes the costs for computing simulations for a new parameter using the
reduced-order, parameterized model. The online complexity can be considered for the
transient and for the frequency response.

The number of simulation runs M in an application times the online costs of the
reduced system plus the offline costs should be smaller compared to M times the online
costs of the full-order system to justify the use of PMOR.

4 Expectations

Before showing the numerical results, we provide some formal comparison and discus-
sion of the methods.

The POD method is based solely on state-space simulation. Thus, it is expected to
perform well for time-domain error measures, especially with respect to the state error.
The POD-Greedy method is a variant of the POD method, which not only requires
fewer large dense matrix operations, but also can give more accurate results. Note
that by construction, POD minimizes the mean error over the training parameter set,
whereas the POD-Greedy minimizes the maximal error. A good approximation of the
state leads to an equally good approximation of the output, so that we expect also
the output errors to be quite small. In contrast, we cannot guess anything about the
quality of the frequency space approximation. Regarding the computational effort in
the offline phase, the POD-Greedy algorithm is expected to be more expensive than a
global POD, as it requires many iterations of solving small PODs. However, the online
computational times should not show much of a difference, because the reduced orders
are equal.
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Interpolatory methods based on a combination of local reduction at a set of parame-
ter sampling points and interpolation, i.e., transfer-function interpolation (TransFncInt)
and matrix interpolation (MatrInt), are expected to produce smaller errors at the se-
lected parameter values. The error between the parameter points depends on the
interpolation technique whereas the error at the parameter sampling points depends
on the applied MOR method. A good approximation of the transfer function with
respect to the H∞-norm and of the output with respect to the L2-norm is expected by
combining TransFncInt with BT. PWH2TanInt is an approach for rational interpola-
tion that computes a reduced-order model which matches the gradient (with respect
to the parameters) of the original transfer function at the parameter sampling points.
The reduced-order model is locallyH2-optimal if IRKA is applied for computing the lo-
cal projection matrices Vj and Wj by determining optimal frequency expansion points
(and tangent directions). Thus, this method is anticipated to produce small H2-errors.
The offline costs of these interpolatory methods depend heavily on the costs for the
underlying MOR approach (times the number of parameter sampling points).

The quality of the reduced-order system obtained by MultiPMomMtch depends on
the initial choice of frequency and parameter expansion points and on the chosen order
of matched moments. The selection of all of these quantities is largely ad-hoc and not
automated in this work. The accuracy in all error measures cannot be predicted a
priori.

Since state-space simulations of the system and the adjoint system are employed, the
empirical cross Gramian should perform similarly to the POD methods with respect
to the state-space norms. Yet due to the incorporation of both controllability and
observability information, better accuracy in the frequency-space norms is expected.

The online complexity of all methods, except of MatrInt, is comparable since the
computed reduced-order systems are of the same dimension. MatrInt and TransFncInt
have an additional online step: the computation of transformation matrices and the
interpolation of the system matrices in MatrInt; and the construction of a state-space
realization in the implementation considered of TransFncInt. Note also that MatrInt
computes a system which is much smaller than all other considered approaches and is
therefore less expensive during the simulation.

5 Benchmarks

We consider three examples from the benchmark collection [1] and apply the methods
which were introduced in Section 2. All systems are SISO systems with an (affine)
parameter dependency on a single parameter.
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5.1 Synthetic system2

A synthetic parameterized system of order n can be constructed as

G(s, p) =

n∑
i=1

ri
s− σi

= C(sI −A0 − pA1)−1B,

where ri and σi are the residues and poles of the transfer function G. The parameter
p scales the real part of the system poles σi = p ai + ıbi. The smaller p, the closer the
poles are to the imaginary axis and the amplitude of the frequency response changes,
see Figures 1 and 2. Also the decay of the Hankel singular values is influenced by p.
In our particular setting, we took the following entries in the system matrices

A0 =


0 b1 0
−b1 0

. . .

0 bk
0 −bk 0

 , A1 =


a1 0

a1

. . .

ak
0 ak

 ,

B = [2, 0, 2, 0, . . .]
T
, C = [1, 0, 1, 0, . . .]

with bi ∈ [10, 103], ai ∈ [−103, −10] for i = 1, . . . , k, k = 500 and an original system
size n = 1000. The parameter range is chosen as p ∈ [0.1, 1]. The frequency response
of the system over the whole parameter interval is shown in Figure 1.

The motivation for this benchmark comes from the simple construction which allows
a flexible choice of n and of the system poles and residues. For further details, see the
MOR Wiki page of the benchmark [1].

5.2 Microthruster unit3

The second benchmark is a real-world example from microsystems technology. This
parametric model was originally presented in the Oberwolfach Model Reduction Bench-
mark Collection [27] under the name “Boundary Condition Independent Thermal
Model” [34] and is also listed in the MOR Wiki [1]. The model describes the ther-
mal conduction in a semiconductor chip where a flexibility in specifying the boundary
conditions allows the simulation of temperature changes in the environment. This al-
lows independent designers to observe how the surrounding influences the temperature
distribution in the chip. The thermal problem is modeled as homogenous heat diffu-
sion with heat exchange occurring at three device interfaces modeled with convection
boundary conditions. These conditions introduce film coefficients describing the heat
exchange on the three device interfaces. We assume two film coefficients as being fixed
at 104, to stay within our specified setting, and one parameter (the film coefficient at
the top) as variable within the range [1, 104].

2http : //www.modelreduction.org/index.php/Synthetic parametric model
3http : //www.modelreduction.org/index.php/Microthruster Unit
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Figure 1: Frequency response of the synthetic system.

10
0

10
1

10
2

10
3

0.5

1

1.5

2

2.5

frequency ω

m
ag

ni
tu

de

 

 

p = 0.1

p = 0.2

p = 0.4

p = 0.8

p = 1.0

Figure 2: Frequency response of the synthetic system for some parameter values.
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Discretization leads to a system of ordinary differential equations

Eẋ(t) = (A0 + pA1)x(t) +Bu(t), y(t) = Cx(t),

where E ∈ R4257×4257 and A0 ∈ R4257×4257 are system matrices, A1 ∈ R4257×4257 is a
diagonal matrix arising from the discretization of the convection boundary condition
on the top interface, and B ∈ R4257 is a constant load vector. Originally, the system
had seven outputs. We take a sum over all rows for obtaining a single output with
C ∈ R1×4257. The frequency response of the system is shown in Figure 3 for p varying
in [1, 104] and for five selected values of p in Figure 4.
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Figure 3: Frequency response of the microthruster.

5.3 Anemometer4

An anemometer is a flow sensing device that consists of a heater and temperature
sensors placed both before and after the heater, either directly in the flow or in its
vicinity. With no flow, the heat dissipates symmetrically into the fluid. This symmetry
is disturbed if a flow is applied to the fluid, which leads to convection of the temperature
field and therefore to a difference between the temperature sensors (Figure 5) from
which the fluid velocity can be determined.

The physical model can be expressed by the convection-diffusion partial differential
equation [31]:

ρc
∂T

∂t
= ∇ · (κ∇T )− ρcv∇T + q̇, (10)

where ρ denotes the mass density, c is the specific heat, κ is the thermal conductivity,
v is the fluid velocity, T is the temperature and q̇ the heat flow into the system caused
by the heater.

4http : //www.modelreduction.org/index.php/Anemometer
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Figure 4: Frequency response of the microthruster for some parameter values.
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Figure 5: 2D model of an anemometer by courtesy of [32]. Left: schematics. Right:
calculated temperature profile.
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The model (10) is discretized in space using the finite element method (FEM) with
triangular elements. The order of the discretized system is n = 29, 008 after applying
(zero) Dirichlet boundary conditions. The n dimensional ODE system has the following
transfer function

G(s, p) = C(sE −A0 − pA1)−1B

with the fluid velocity p(= v) as scalar parameter. Here, E is the heat capacitance
matrix, A0 describes the thermal conduction and A1 contains the convection terms
which are given by a cascaded flow profile. B is the load vector which characterizes the
spatial heat distribution into the fluid introduced by the heater. The initial conditions
are set to zero. The dependency of the frequency response on the parameter p ∈ [0, 1],
i.e., σ̄(G(ıω, p)), can be seen in Figure 6 and in Figure 7 for some parameter points in
[0, 1]. For more informations about the system see [32].
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Figure 6: Frequency response of the anemometer.

6 Numerical results

All methods use the same initial sampling of the parameter space, i.e., the same choice
of {p1, . . . , pK}, for computing either snapshots (POD, emWX) or local reduced quan-
tities (in interpolatory approaches). Furthermore, the reduced order in the parame-
terized, reduced-order system is either fixed by r (in POD, emWX) or determined by
K · r′, where r′ is the local reduced order in the interpolatory approaches. In order
to maintain comparability, we set r = K · r′ for POD and emWX. The final reduced
order in MatrInt is r′ which leads then to smaller online costs.

All methods, except of TransFncInt and MatrInt, are computed with one-sided
(Galerkin) projections in order to preserve the stability in the reduced-order system.
Note that there is a loss in fidelity from using one-sided projections. TransFncInt
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Figure 7: Frequency response of the anemometer for some parameter values.

used in combination with balanced truncation (i.e., with two-sided projections for
computing the local reduced-order systems) guarantees the preservation of stability
of the resulting parameterized reduced-order system [4]. Thus, this approach still
uses two-sided (Petrov-Galerkin) projections. MatrInt uses a two-sided IRKA method
followed by solving a low-order Lyapunov equation for each parameter sampling point
in order to preserve stability [16, 17].

All error measures as described in Section 3 are computed and compared in the
following, using an error grid with K̄ = 100 (with K < K̄) parameter points. The
pointwise (in p) errors are plotted in the corresponding figures in the following subsec-
tions. The maximum values of these errors (on the error grid) are listed in the Tables 1,
2 and 3. The time domain grid for all time domain errors equals the time discretization
ti = i∆t, i = 0, . . . , J , in the snapshot-based PMOR approaches. A unit impulse is
applied to all systems for computing the snapshots as well as the time domain error
measures. For the computation of the frequency response, L̄ = 100 frequency points
are taken.

6.1 Synthetic system

All PMOR approaches introduced in Section 2 are applied to the synthetic system with
n = 1000 from Section 5.1 in order to compute parameterized, reduced-order systems.
To this end, an initial discretization of the parameter interval [0.1, 1] is required. We
choose an equidistant grid with 4 sampling points for the computation of snapshots
as well as for the computation of local reduced quantities for interpolation. In the
interpolatory approaches, the local reduced order is r′ = 25. This leads to a reduced
order of r = 100 in all approaches except of MatrInt where a summation over the
reduced system matrices leads to an overall reduced dimension of r = 25. The reduced
order in all approaches based on snapshots is also set to 100.
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The state is computed by using the MATLAB R© solver ode45 (an explicit Runge-
Kutta method) with a chosen relative error tolerance of 1.e-6 (and absolute tolerance
1.e-8) on the time interval [0, 1]. The frequency-domain error measures are computed
on [ı 1, ı 103.1), the domain where the frequency responses differ along the param-
eter interval, see Figure 2. In MultiPMomMtch also an initial discretization of the
considered frequency range is required. We took 16 logarithmically scaled frequency
expansion points s1, . . . , sL. The highest number of moments, included in the projec-
tion matrix V , is chosen as q = 2.

The results can be found in Table 1 and in Figures 8-13. A discussion of all results
can be found in Section 6.4.

method r L2-state L2-output H∞ H2

POD 100 3.2e-7 3.3e-7 1.1e-1 1.1e-2
POD-Greedy 100 3.2e-7 3.5e-7 1.2e-1 1.1e-2

MatrInt 25 1.0e+0 4.1e-1 ∞ ∞
TransFncInt 100 - 3.7e-7 3.0e-2 5.6e-4

PWH2TanInt 100 3.0e-3 4.2e-5 1.1e-2 6.5e-3
MultiPMomMtch 100 2.4e+0 1.5e+0 3.2e-2 2.1e-2

emWX 100 3.4e-7 3.5e-7 1.1e-1 1.0e-2

Table 1: Synthetic results for all PMOR methods considered (relative errors).
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Figure 8: Relative L2-state error for the synthetic system.
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Figure 9: Relative L2-output error for the synthetic system.
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Figure 10: Relative L∞-output error for the synthetic system.
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Figure 11: Scaled H∞-error for the synthetic system.
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Figure 12: Relative H2-error for the synthetic system.
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Figure 13: Offline times for the synthetic system.

6.2 Microthruster unit

The film coefficient p at the top interface is in the interval [1, 10000]. This param-
eter interval is discretized with 10 parameter sampling points for computing either
snapshots, locally reduced-order systems for interpolation or Krylov subspaces for
projection. The local reduced order is set to r′ = 10. This gives a reduced order of
r = 100 (MatrInt r = 10) in the parameterized reduced-order system. We consider
a frequency range of [ı 0.001, ı 106] and select 4 points in the interval as expansion
points in MultiPMomMtch. The highest order of matched moments is prescribed by
q = 2.

Trajectories and time-domain errors are computed in the time horizon [0, 20] with
constant time steps of size ∆t = 0.1 (200 time points) by use of the backward Euler
method.

See Table 2 and Figures 14-19 for the results achieved.

method r L2-state L2-output H∞ H2

POD 100 1.4e-19 1.5e-19 2.9e-3 9.2e-2
POD-Greedy 100 2.6e-19 2.3e-19 1.3e-3 9.0e-2

MatrInt 10 7.3e-1 2.9e-3 1.1e-1 5.0e-2
TransFncInt 100 - 8.7e-6 9.2e-3 4.1e-2

PWH2TanInt 100 2.0e-8 1.2e-12 3.3e-6 2.3e-2
MultiPMomMtch 100 3.2e-4 7.5e-5 2.9e-2 3.5e-2

emWX 100 3.8e-7 6.6e-9 1.5e-2 3.4e-1

Table 2: Microthruster results for all PMOR methods considered (relative errors).
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Figure 14: Relative L2-state error for the microthruster.
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Figure 15: Relative L2-output error for the microthruster.
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Figure 16: Relative L∞-output error for the microthruster.
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Figure 17: Scaled H∞-error for the microthruster.
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Figure 18: Relative H2-error for the microthruster.
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Figure 19: Offline time for the microthruster.
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6.3 Anemometer

We consider the discretized convection-diffusion equation (10) from Section 5.3, i.e., a
sparse ODE system of order n = 29, 008 with one parameter p ∈ [0, 1] that influences
the convection. 16 parameter sampling points are taken from this interval. The local
reduced order is set to r′ = 10 which leads to r = 160 for all approaches except of
MatrInt (with r = 10). The state and output errors are computed for the time horizon
[0, 0.05] with 50 time points. Like in the microthruster example, the trajectories are
computed by the backward Euler method with constant step size of 0.001.

The errors in frequency domain are computed in the interval [ı 0.01, ı 105]. A choice
of 10 frequency expansion points and q = 2 is taken for MultiPMomMtch. This gives
a dimension of 480 in the projection matrix V which is truncated to r = 160 in order
to get a comparable online time.

method r L2-state L2-output H∞ H2

POD 160 1.6e-14 3.0e-11 9.3e-2 3.0e+0
POD-Greedy 160 1.4e-14 9.0e-11 3.5e-2 5.8e-1

MatrInt 10 6.9e+1 6.4e-3 1.1e-1 8.3e-2
TransFncInt 160 - 8.2e-3 2.3e-1 3.5e-1

PWH2TanInt 160 2.5e-6 2.9e-10 6.0e-5 2.5e-3
MultiPMomMtch 160 2.3e-7 2.9e-6 3.8e-1 1.3e+1

emWX 160 2.3e-7 1.3e-3 1.5e-1 1.3e+0

Table 3: Anemometer results for all PMOR methods considered (relative errors).
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Figure 20: Relative L2-state error for the anemometer.
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Figure 21: Relative L2-output error for the anemometer.
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Figure 22: Relative L∞-output error for the anemometer.
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Figure 23: Scaled H∞-error for the anemometer.
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Figure 24: Relative H2-error for the anemometer.
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Figure 25: Offline times for the anemometer.

6.4 Discussion of the results

The error measures from Section 3 are computed for all the PMOR methods considered
here as applied to the benchmarks described in Section 5.

6.4.1 Time domain errors

Figures 8, 14 and 20 show the pointwise L2-errors in state space. Note that state-
space errors for TransFncInt cannot be computed because of of the absence of a lifting
map that maps the reduced state back to the original (full order) state space for the
realization considered. It can be seen that the results for POD and POD-Greedy
are consistent with expectations. The errors appear to be uniform and very small
throughout the parameter interval. The size of the error evidently depends on the
accuracy of the chosen integrator, i.e., it is smaller than machine precision when an
implicit solver is used (anemometer and microthruster) and is about 1.e-7 (6.e-7 for
POD-Greedy) by restricting the absolute tolerance to 1.e-8 in the explicit MATLAB R©

solver ode45 (for the synthetic system).
It can be seen in Figure 8 that emWX and PWH2TanInt perform comparably well

to POD for the synthetic system. MatrInt and MultiPMomMtch fail to reproduce the
state.

The errors in state space are smaller for the microthruster in Figure 14. The errors
of MultiPMomMtch, PWH2TanInt and emWX are very uniform over p with average
size of 2.e-8 (PWH2TanInt), 6.e-5 (MultiPMomMtch) and 9.e-8 (emWX). For MatrInt,
the errors are of moderate size (about 1.e-5) at the parameter sampling points but very
much worse (close to 1) between them.

PWH2TanInt and emWX approximate the state uniformly well with a small average
error size of 5.e-7 in PWH2TanInt and 5.e-8 in emWX for the anemometer example,
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see Figure 20. Here, the state-space error is smaller (about 8.e-16) in MultiPMomMtch
for p ∈ [0, 0.4] and is increasing to 2.e-7 in [0.4, 1].

Regarding the output errors, POD, POD-Greedy, PWH2TanInt and emWX per-
form comparably well for the synthetic system in Figures 9, 10. MatrInt and MultiP-
MomMtch perform worst for the synthetic system as could be expected by the bad
approximation of the state in Figure 8.

In the other two benchmarks, the POD methods yield better approximations than all
other approaches, see Figures 15, 16, 21, 22. The L2-output errors for PWH2TanInt,
MultiPMomMtch and emWX are uniformly distributed over the interval for the mi-
crothruster benchmark in Figure 15 but of different size on average: 4.e-13 (PWH2TanInt),
6.e-6 (MultiPMomMtch) and 1.e-8 (emWX). The errors obtained by TransFncInt are
of medium size. The error curve is wavelike with minima at the parameter sampling
points and with average size of 5.e-7.

MultiPMomMtch approximates the output in the anemometer benchmark much
better than MatrInt and of similar quality like PWH2TanInt. The errors obtained by
TransFncInt are of medium size. The errors for emWX are larger for the anemometer
example. In most of the cases, we observe that the approximation quality for the states
and the outputs are related. An exception are the PWH2TanInt and emWX methods
for the anemometer. Although the L2-state errors of the two methods are comparable,
the output errors are several orders of magnitude lower for the PWH2TanInt, see
Figure 22.

6.4.2 Frequency domain errors

PWH2TanInt computes the smallestH∞-errors for all benchmarks considered. The er-
ror is about 3.e-6 for the microthruster example and 2.e-5 on average for the anemome-
ter and uniform over the parameter interval, see Figures 17 and 23. It is nearly ex-
ponentially decreasing for the synthetic benchmark with an error of 1.e-2 for p = 0.1
in Figure 11. This can be explained by the shape of the frequency response in Fig-
ures 1 and 2. The frequency response slightly oscillates for p = 0.1 which makes the
approximation at the beginning of the parameter interval much more difficult.

The frequency domain errors of MatrInt and TransFncInt show the expected behav-
ior for all examples. The error curves have minima at the parameter sampling points,
showing waves between them. The errors are smaller in TransFncInt, especially in
the anemometer and microthruster examples. Both interpolatory approaches produce
larger errors between the sampling points for the synthetic system. These results also
can be explained by the frequency response of the system, given in Figure 1. Note that
the reduced synthetic system obtained by applying MatrInt is unstable at p = 1 (indi-
cated by ∞ in Table 1). The preservation of stability fails because of approximation
errors in the numerical solution of the Lyapunov equation. A reduction to a smaller
local dimension, say r′ = 18, would result in a stable reduced-order system. However,
individual variations in r′ are beyond the scope of this comparison.

The H∞-errors in POD, POD-Greedy and emWX appear to be uniform in p and
lie, on average, between 1.e-2 and 8.e-4 for all examples. The frequency domain error
curves of POD and emWX nearly coincide for the synthetic benchmark.
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The errors in MultiPMomMtch are uniformly distributed for the microthruster and
the anemometer. With an average size of 9.e-3 it is of similar approximation quality
like emWX for the microthruster benchmark. For the anemometer example, MultiP-
MomMtch produces a uniformly distributed larger error of about 3.e-2, the average
error size in emWX is 1.e-2. The H∞-error in MultiPMomMtch is much smaller
and exponentially decreasing in the synthetic benchmark. This is due to a reduced
frequency range (up to 103 instead of 105 and 106 in the anemometer and in the mi-
crothruster benchmark, respectively). MultiPMomMtch is the only approach which
requires an initial discretization of the frequency range. Thus, a smaller domain re-
sults in smaller errors and more frequency expansion points are recommended if larger
frequency domains are considered.

The H2-errors are plotted in Figures 12, 18 and 24. The error curves in Figure 12
show a very similar behavior compared to the H∞-errors for the synthetic system
(even with smaller maximum values, see Table 1) in Figure 11. The errors for the mi-
crothruster in Figure 18 are of comparable size between 2.e-2 and 3.e-1 in all approaches
and again of similar shape compared to theH∞-error curves for the anemometer. Here,
MultiPMomMtch and POD produce errors larger than 1.

6.4.3 Computational time

The offline computational costs for the (small) synthetic system in Figure 13 are low
for all methods except of POD-Greedy. Since we considered only 4 training parameters
for the synthetic system, the number of iterations (and so the offline time) in the POD-
Greedy approach could be reduced drastically by choosing more POD modes in each
iteration.

For the medium-size benchmark microthruster in Figure 19, POD, MultiPMomMtch
and emWX are efficient with respect to the offline time. MatrInt, TransFncInt,
PWH2TanInt and POD-Greedy have higher offline costs. The main complexity of
the offline phase in the interpolatory approaches comes from applying K-times a de-
terministic MOR method on G(s, pj). The times are comparable for MatrInt and
PWH2TanInt since both approaches use IRKA. TransFncInt uses BT which is (on
average) faster than IRKA for the benchmarks considered here.

It can be seen in Figure 25 that for the anemometer, an example with larger origi-
nal system size, again POD and MultiPMomMtch have the lowest offline times. The
snapshot-based methods benefit here (and in the microthruster example) from an effi-
cient implementation of the backward Euler method. A single LU decomposition per
parameter value can be used to solve the linear systems because of the choice of a con-
stant time step size. MultiPMomMtch has very low offline costs since it only requires
a few factorizations of (sparse) matrices followed by a number of forward/backward
solves. The anemometer offline times for POD-Greedy, MatrInt and TransFncInt are
higher but nearly the half of the times for PWH2TanInt and emWX. The computa-
tional cost for emWX arises from three sources. First, the computation of snapshots;
second, the Gramian matrix assembly and lastly, the SVD of the cross Gramian which
is also the dominant component of the computational time for large-scale systems. In
PWH2TanInt, the computation of an SVD of V ∈ Rn×Kr′ leads to the highest offline
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time.
The averaged (over the parameter interval) online times for the computation of the

transient and of the frequency response with corresponding break-even quantities are
shown in Tables 4-6 for the three benchmarks. The break-even quantity of a PMOR
approach is the number of online simulations (in frequency or in time) such that offline
plus online time is smaller than the simulation time (again in frequency or in time) of
the original system.

The simulation (online) time in frequency domain is not computed for the small
synthetic benchmark in Table 4. Here, it requires more time to compute the frequency
response of the reduced system than to simulate the full (but sparse) original system
in frequency domain. This is different for the larger benchmarks where the online
complexity in frequency domain and the corresponding break-even quantities can be
found in Tables 5-6.

The online times of all PMOR approaches, i.e., the simulation times of the com-
puted reduced-order systems, are comparable when the reduced dimensions are equal.
This is the case for all approaches considered except of MatrInt. The reduced order
of the system computed by MatrInt is much smaller. This results in a smaller online
simulation time for systems of smaller dimension. For larger systems, the additional
online steps in MatrInt (and TransFncInt) are visible in the (transient) online times,
see Section 4 for details. Note that the transient online costs for the microthruster and
the anemometer benefit also from the constant time step in the ODE solver. Here, the
application of PMOR only pays off for simulations in time domain when the transient
response has to be computed many times. This would be different (smaller break-even
quantities) when the time steps vary and also when simulations are computed in the
frequency domain. This can be seen by small frequency-domain break-even quantities
which are in a range from 1 to 33, see Tables 5-6. There are also differences between
the transient online times for reduced systems of the same dimension in Table 4. The
higher costs in MultiPMomMtch and in TransFncInt for the synthetic benchmark can
be explained by a closer look at the number of time steps of the ODE solver. MultiP-
MomMtch needs (in average) about 540 time steps until the solution is accurate to the
given error tolerances. TransFncInt needs 500 steps, the other approaches between 116
and 422. The break-even quantities in time domain show that all approaches except of
POD-Greedy are useful when applied to the small synthetic benchmark. POD-Greedy
in this scenario obviously should be run with r′ > 1 in order to considerably reduce
the offline time.
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transient
method offline online break-even
original - 0.77 -

POD 4.64 0.25 9
POD-Greedy 160.01 0.25 309

MatrInt 5.00 0.06 7
TransFncInt 0.60 0.28 2

PWH2TanInt 2.49 0.25 5
MultiPMomMtch 0.61 0.31 1

emWX 7.14 0.25 14

Table 4: Simulation times in the synthetic benchmark for all PMOR methods consid-
ered.

transient frequency
method offline online break-even online break-even
original - 0.20 - 5.25 -

POD 7.83 0.0078 40 0.16 2
POD-Greedy 45.48 0.0078 231 0.16 9

MatrInt 110.60 0.011 570 0.01 22
TransFncInt 39.06 0.0088 200 0.11 8

PWH2TanInt 120.39 0.0077 611 0.16 24
MultiPMomMtch 4.06 0.0077 21 0.15 1

emWX 11.73 0.0077 60 0.15 3

Table 5: Simulation times in the microthruster benchmark for all PMOR methods
considered.

transient frequency
method offline online break-even online break-even
original - 1.39 - 32.13 -

POD 26.88 0.0058 17 0.16 1
POD-Greedy 494.36 0.0071 311 0.20 16

MatrInt 573.56 0.0393 369 0.04 18
TransFncInt 489.41 0.0125 309 0.18 16

PWH2TanInt 1049.20 0.0073 660 0.21 33
MultiPMomMtch 188.55 0.0074 119 0.22 6

emWX 970.26 0.0096 612 0.24 31

Table 6: Simulation times in the anemometer benchmark for all PMOR methods
considered.
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7 Conclusions

POD seems to give the best results for state-space approximations. However, it may
not be feasible if the number of training parameters or the dimension of the state is
too large. In this case, POD-Greedy should be preferred.

PWH2TanInt computes best approximations in the frequency domain and also pro-
vides good results with respect to the time-domain error measures. However, it requires
larger offline times when applied to large-scale systems like the anemometer. So it will
depend on the application (on the number of computed simulations) if a reduction by
PWH2TanInt pays off for larger systems. TransFncInt performs well for mostly all
error measures and benchmarks considered. The errors in frequency domain are small
for the anemometer and the microthruster as expected. TransFncInt has problems
when applied to transfer functions with peaks as in the synthetic system. Surprisingly,
the output errors for this example are relatively small even between the parameter
sampling points. MultiPMomMtch is very efficient with respect to the offline time.
However, it requires a good tuning and therefore knowledge about sensitive regions
in frequency and parameter space. Much smaller errors could be obtained by a more
sophisticated choice of expansion points. The results obtained by applying MatrInt do
not fit exactly in the framework of this comparison. This is due to a much smaller re-
duced order which, not surprisingly, leads to larger errors. MatrInt is well-adapted to
systems with dominant eigenmodes since mode veering and crossing can be recognized
by the approach. Furthermore, MatrInt can be applied to all kinds of parameter depen-
dency, even if they are not analytically given. This is not the case for the benchmarks
considered such that MatrInt could not prove its strengths in this work.

emWX exhibits a nearly constant behaviour over the tested parameter space for
most of the different error norms and benchmarks. The expected better match in
the frequency space norms in comparison with the POD methods was not achieved,
however. Improvements to the accuracy (especially in the frequency domain errors)
can be achieved in three ways: including more snapshots, using two-sided projections,
and utilizing an enhanced decomposition algorithm to obtain the projection matrices.

An extension of these experiments to MIMO and multi-parameter systems is a nec-
essary step for future work. Future work could also include a more challenging com-
putation of the time domain error measures by using different inputs for snapshot and
error computation in and by extending the time interval.
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truncation for model reduction of nonlinear control systems, Internat. J. Robust
and Nonlinear Cont., 12 (2002), pp. 519–535.

[30] Y. T. Li, Z. Bai, Y. Su, and X. Zeng, Parameterized model order reduction via
a two-directional Arnoldi process, in Proc. of the 2007 IEEE/ACM international
conference on Computer-aided design, IEEE Press Piscataway, NJ, USA, 2007,
pp. 868–873.

[31] C. Moosmann, E. B. Rudnyi, and J. G. K. A. Greiner, Model order reduc-
tion for linear convective thermal flow, in THERMINIC 2004, Sophia Antipolis,
France, 2004, pp. 317–321.

[32] C. Moosmann, E. B. Rudnyi, A. Greiner, J. G. Korvink, and M. Hor-
nung, Parameter preserving model order reduction of a flow meter, in 2005 NSTI
Nanotech, Nanotechnology Conference and Trade Show 2005, 2005, pp. 8–12.

[33] H. Panzer, J. Mohring, R. Eid, and B. Lohmann, Parametric model or-
der reduction by matrix interpolation, at-Automatisierungstechnik, 58 (2010),
pp. 475–484.

[34] E. B. Rudnyi and J. G. Korvink, Boundary condition independent thermal
model, in Dimension Reduction of Large-Scale Systems, P. Benner, D. C. Sorensen,
and V. Mehrmann, eds., vol. 45 of Lecture Notes in Computational Science and
Engineering, Springer Berlin Heidelberg, 2005, pp. 345–348.

[35] L. Sirovich, Turbulence and the dynamics of coherent structures. I. coherent
structures, Quart. Appl. Math., 45 (1987), pp. 561–571.

[36] S. Volkwein, Model reduction using proper orthogonal decomposition, lecture
notes, University of Konstanz, 2013.

[37] S. Waldherr and B. Haasdonk, Efficient parametric analysis of the chemical
master equation through model order reduction, BMC Systems Biology, 6 (2012),
p. 81.

35



[38] D. S. Weile, E. Michielssen, E. Grimme, and K. Gallivan, A method
for generating rational interpolant reduced order models of two-parameter linear
systems, Appl. Math. Lett., 12 (1999), pp. 93–102.

[39] K. Willcox and P. J., Balanced model reduction via the proper orthogonal
decomposition, AIAA J., 40 (2002), pp. 2323–2330.

[40] Y. Zhang, L. Feng, S. Li, and P. Benner, Accelerating PDE constrained
optimization by the reduced basis method: application to batch chromatography,
Preprint MPIMD/14-09, Max Planck Institute Magdeburg, May 2014. Available
from http://www.mpi-magdeburg.mpg.de/preprints/.

[41] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-
Hall, Upper Saddle River, NJ, 1996.

36

http://www.mpi-magdeburg.mpg.de/preprints/


37



Max Planck Institute Magdeburg Preprints


	Introduction
	Methods for parametric model order reduction
	POD and POD-Greedy
	Interpolatory methods for PMOR
	Empirical cross Gramian

	Performance measures
	Expectations
	Benchmarks
	Synthetic systemhttp://www.modelreduction.org/index.php/Synthetic_parametric_model
	Microthruster unithttp://www.modelreduction.org/index.php/Microthruster_Unit
	Anemometerhttp://www.modelreduction.org/index.php/Anemometer

	Numerical results
	Synthetic system
	Microthruster unit
	Anemometer
	Discussion of the results
	Time domain errors
	Frequency domain errors
	Computational time


	Conclusions

