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to a fractional-in-space version. Fourier spectral methods provide efficient solvers

since they yield a fully diagonal scheme. Furthermore, their application to three
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the total variation inpainting approach and its fourth-order variant.
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1. Introduction

Three-dimensional visualizations of medical images help the professionals to make
more accurate diagnoses. Parts of the human body are given in form of a sequence of
slices. Often, the distance between these slices is significantly larger than the image
pixel size. Hence, it is necessary to interpolate additional slices in order to obtain an
accurate three-dimensional description. This can be achieved by the image inpainting
process [37, 7, 24].
Inpainting is the art of modifying parts of an image such that the resulting changes

are not easily detectable by an ordinary observer. Applications include the restoration
of damaged paintings and photographs [2], the replacement of selected objects or the
reduction of artifacts in medical images [25]. Due to the large number of applications
much effort has gone into the development of digital inpainting techniques — starting
with classical integer-order models through to generalized fractional-order approaches.
This section presents a brief survey of such methods.

1.1. Classical inpainting models

Bertalmı́o et al. [4] introduced the image inpainting technique into digital image pro-
cessing. Their third-order nonlinear PDE propagates the image information along the
lines of equal gray values into the areas to be modified. Consecutively, a number
of variational- and PDE-based approaches have been considered, among others the
total variation (TV) inpainting model [14, 12], inpainting based on curvature-driven
diffusions [13], Euler’s elastica inpainting model [41], the Mumford–Shah inpainting
model [43, 14] or the Mumford–Shah–Euler inpainting model [20]. We refer the reader
to [15] for an overview of existing inpainting methods. In summary, Schönlieb et al.
[40] pointed out that higher order inpainting methods have certain advantages over
second order ones. These include, for example, the preservation of curvatures or the
connection of contours across very large distances.

1.2. Fractional inpainting models

In recent years, fractional-order PDEs have been studied in image processing [48, 3].
Fractional differential equations replace a standard differential operator by a corre-
sponding fractional differential operator. Generalizations to integrals and derivatives
of arbitrary order have a long history in mathematics [36]. They are used to describe
many real world phenomena, e.g. the anomalous diffusion process [34] or dispersion
in heterogeneous aquifers [1]. In general, fractional differential equations characterize
nonlocal and spatial heterogeneous properties where classical models provide rather
inadequate results. For inpainting problems, they improve the image quality and peak
signal-to-noise ratio (PSNR) [3, 50, 31, 49]. The new fractional schemes can be treated
as regularizations of the classical inpainting models and overcome the well-known ef-
fect of oversmoothing. Similar effects have been studied in regularization methods for
ill-posed problems [30, 27], which are applied among other things in denoising.
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1.3. Basic model

Bertozzi et al. [6, 5] introduced the fourth-order Cahn–Hilliard inpainting approach
for binary images. They take benefit from the use of the fast Fourier transform (FFT)
to achieve fast inpainting. Compared to previous classical models, their approach is
based on a simplified PDE and reduces the computational time.
To our knowledge, two generalizations to gray value images have been studied:

Schönlieb et al’s [40] bitwise binary inpainting and Burger et al’s [10] TV-H−1 inpaint-
ing. First, the bitwise binary inpainting method splits the image bitwise into channels.
The Cahn–Hilliard inpainting approach applies then to each binary channel separately.
Secondly, the TV-H−1 inpainting model adds subgradients of the TV functional. This
fourth-order variant of the TV inpainting model is shown to be superior to the original
second-order TV model.
In this paper, we present a vector-valued Cahn–Hilliard inpainting model for gray

value images. In contrast to bitwise binary inpainting, the gray values interact with
each other. Hence, the reconstructed images stay in the gray value range of the origi-
nal image. As a further improvement, we generalize our model to a fractional-in-space
version, called fractional Cahn–Hilliard inpainting. Numerical examples emphasize the
superiority of the fractional approach over the classical one. This generalized approach
shows a sharpness effect and improves the image quality. In particular, we observe an
increase of the PSNR and the structural similarity (SSIM) values. Likewise, com-
parisons to previous models including TV and TV-H−1 inpainting as well as bitwise
binary inpainting support our model. The paper is organized as follows. Section
2 briefly summarizes Bertozzi et al’s [6, 5] binary Cahn–Hilliard inpainting model.
It motivates the use of the Cahn–Hilliard equation by describing its main features.
A vector-valued formulation based on the multicomponent Cahn–Hilliard equation is
presented in Section 3. In particular, we highlight the differences to the scalar version.
A common feature is that both models do not follow a variational principle. However,
Schönlieb at al. [40] pointed out that the idea of convexity splitting [19, 22] can be
applied to evolution equations that do not follow a variational principle. Hence, we
apply this technique to the vector-valued formulation in Section 4. As a result, we
get an unconditionally gradient stable time-discrete scheme. Before deriving the fully
discrete system, we generalize it to a fractional-in-space version. Now in Section 5,
we exploit the spectral decomposition of the occurring (fractional) Laplace operator
as proposed by Bueno-Orovio et al. [9]. Hence, we can take advantage of the FFT
similar to the binary inpainting approach [6]. Simulation results are shown in Section
6. The test images include, besides simple sharp stripe images, a fingerprint and a
landscape. Moreover, we show the performance of Cahn–Hilliard inpainting for the
metal artifact reduction in computed tomography (CT) images. Finally, we perform
three-dimensional visualizations of magnetic resonance imaging (MRI) images that
comprise a scan of a human cranium. Section 7 summarizes our findings. At last, we
derive the convexity conditions for the application of the convexity splitting method
in Appendix A. Finally, in Appendix B we prove the unconditional stability of our
time-discrete scheme.
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2. Binary Cahn–Hilliard inpainting

We start with reflecting on Bertozzi et al’s [6, 5] black-and-white Cahn–Hilliard in-
painting model. Let f be the given binary image which is defined on the image domain
Ω ⊂ R

d (d = 2, 3). The parts of f that are going to be modified are denoted by the
inpainting domain D ⊂ Ω. The target is to reconstruct the image in this region D in
an undetectable way. The inpainted version u : Ω× (0, T ) → R of f is constructed by
following the evolution of

∂tu = −∆

(

ε∆u− 1

ε
ψ′(u)

)

+ ω(f − u), (1)

∇u · n = ∇(∆u) · n = 0 on ∂Ω, (2)

where

ω = ω(x) =

{
0 if x ∈ D,

ω0 if x ∈ Ω \D. (3)

Here, T > 0 is a fixed time. The choice ω ≡ 0 leads to the original Cahn–Hilliard
equation, which is a well-known model for coarsening and phase separation processes
[26, 11]. In this case, the variable u describes the evolution of two phases, e.g. two
components of an alloy. Let us denote these two phases by A and B. If u(x, t) = 0
then only phase A is present at point x at time t. The case u(x, t) = 1 means only
phase B exists at (x, t). Values of u between zero and one represent mixed regions.
These areas form the interface which acts as a diffuse phase transition. We can control
its thickness via the model parameter ε > 0. Usually, the aim is to keep it as small as
possible. For proper modeling, ε has to be chosen proportional to the mesh size of the
space discretization. The evolution of the interface is driven by an interfacial energy
whose minimization penalizes interfaces with high curvatures. The term ε∆u in (1)
describes the part coming from the interfacial energy.
The potential function ψ in (1) gives rise to phase separation. It has two minima at

zero and one. Since ψ is a function of u it becomes minimal at those points where ei-
ther only phase A or only phase B is present. Hence, its minimization penalizes mixed
regions. Typical examples of potential functions are given in the following paragraph.
Equation (2) imposes the natural zero Neumann boundary condition as well as the
mass conserving boundary condition. Here, n is the unit normal vector to ∂Ω pointing
outwards from Ω. Next, we want to use the Cahn–Hilliard model’s characteristics for
the inpainting problem.

Regarding image processing, the two phases A and B represent the colors black and
white. Their interface consists of gray values and forms a smooth transition. Now, let
us consider the case ω 6≡ 0. Bertozzi et al. [6, 5] introduced (1)-(2) as the modified
Cahn–Hilliard equation. As can be seen from (3), the added fidelity term ω(f − u)
only acts in the regions outside the inpainting domain. Hence, it keeps the solution
u close to the given image f in the undamaged parts. Based on this known image
information, the damaged areas are filled in. The different gray level lines ending at
the boundaries of the damaged parts smoothly continue inward. Inside these regions,
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the original Cahn–Hilliard equation acts. It maximizes the occurrence of black and
white while minimizing the curvature of their interface at the same time. Finally, the
inpainted image is constructed by following this evolution to steady state. Well-
known potential functions are the smooth double-well potential [6]

ψ(u) = u2(u− 1)2, (4)

and the nonsmooth double obstacle potential [8]

ψ(u) =

{
1
2u(1− u) if 0 ≤ u ≤ 1,

∞ otherwise.
(5)

Recently, logarithmic potentials have been considered [17]. The effective application
of the modified Cahn–Hilliard equation to binary images motivates us to study its
natural generalization based on the vector-valued Cahn–Hilliard equation.

3. Gray value Cahn–Hilliard inpainting

We now formulate the gray value inpainting model based on the vector-valued Cahn–
Hilliard equation [21, 18]. Let f be a given gray value image defined on Ω, N the
number of desired gray values and g = (g1, . . . , gN)

⊤ the vector of desired gray values.
Note that 2 ≤ N ≤ 256. A vector-valued phase variable u = (u1, . . . , uN)

⊤ : Ω× (0, T )
is introduced. The component ui describes the evolution of gray value gi for i =
1, . . . , N . This means, if ui(x, t) = 0 then gray value gi is absent in x and if ui(x, t) = 1
only gray value gi is present in there. Hence

N∑

i=1

ui = 1 (6)

and ui ≥ 0, i = 1, . . . , N, is required, so that admissible states belong to the Gibbs
simplex

GN :=

{

v ∈ R
N

∣
∣
∣
∣
∣

N∑

i=1

vi = 1, vi ≥ 0 for i = 1, . . . , N

}

. (7)

As the Cahn–Hilliard equation is a phase field model, the evolution of u develops
a smooth gray value transition. That means, the region between gray values has a
certain width, the interface, as already mentioned above in the binary Cahn–Hilliard
model. We propose the following generalization of (1)–(2) for gray value images

∂tui = −∆

(

ε∆ui −
1

ε

∂ψ

∂ui
(u)− 1

ε
β(u)

)

+ ω(fi − ui), (8)

∇ui · n = ∇(∆ui) · n = 0 on ∂Ω, (9)

for i = 1, . . . , N . Here, f = (f1, . . . , fN)
⊤ ∈ GN is the vector of given gray value

distributions from the original image f . That means, fi ∈ {0, 1} describes the intensity
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of gray value gi in f for i = 1, . . . , N . Comparing (8)–(9) with (1)–(2), it can be seen
that the generalization from the scalar to the vector-valued model is more than just a
straightforward extension. In fact, the presence of the term β(u), which is defined as

β(u) := − 1

N

N∑

i=1

∂ψ

∂ui
(u),

is needed to ensure (6) in the inpainting domain D.

Remark Note that (8)–(9) is still a simplified vector-valued model. In fact, for many
applications with a focus on phase separation and coarsening processes, a concen-
tration dependent mobility matrix L = L(u) = (Lij(u))i,j=1,...,N is required in the
corresponding model. This is for example the case, if the mobility in the interface is
larger than in the pure phases. Nevertheless, Lee et al. [32] show reasonable results
with the simplified choice L = I, where I is the identity matrix. For this reason, and
because the task of inpainting is to get a final result as fast as possible (and not to
accurately develop the evolution of the phases), we omit the mobility matrix in our
model.

This works concentrates on a smooth potential function and the well-known potential
function (4) generalizes to

ψ(u) =
1

4

N∑

i=1

u2i (1 − ui)
2. (10)

4. Convexity splitting

In the case of black-and-white Cahn–Hilliard inpainting, Bertozzi et al. [6] proposed a
semi-implicit scheme, the convexity splitting scheme. The authors conjectured uncon-
ditionally stability in the sense that solutions of the numerical scheme are bounded
within a finite time interval, independent of the time step size. Indeed, Schönlieb et al.
[40] proved consistency, unconditional stability and convergence of this scheme. The
convexity splitting method was originally introduced by Elliott and Stuart [19] and is
often attributed to Eyre [22]. Actually, it was designed to solve gradient systems. But
it can also be applied in a modified form to evolution equations that do not follow a
variational principle. In particular, such equations include the Cahn–Hilliard inpaint-
ing models (1)–(2) and (8)–(9), as described further on.
In the following, we extend the numerical analysis of the convexity splitting scheme

for the scalar inpainting model (1)–(2) studied in [40] to the vector-valued inpainting
model (8)–(9). As mentioned above, the modified Cahn–Hilliard equation is not given
by a gradient flow. The original multicomponent Cahn–Hilliard equation, i.e. (8)–(9)
with ω ≡ 0, is the H−1-gradient flow for the Ginzburg–Landau energy

E1(u) =
∫

Ω

{

ε

2

N∑

i=1

|∇ui|2 +
1

ε
ψ(u)

}

dx, (11)
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while the fidelity term is derived from the L2-gradient flow for the energy

E2(u) =
∫

Ω

{

ω

2

N∑

i=1

(fi − ui)
2

}

dx. (12)

The original idea of convexity splitting applied to gradient systems is to write the
considered energy functional as sum of a convex plus a concave energy functional.
The convex part is then treated implicitly whilst the concave part is treated explicitly.
Under the right conditions, this approach leads to an unconditionally gradient stable
time-discretization scheme.
Regarding the evolution we deal with, i.e. a sum of two gradients of two different

energies E1 and E2, convexity splitting is applied to each of these energies. To be more
precise, we split E1 as E1 = E1c − E1e, where

E1c(u) =
∫

Ω

{

ε

2

N∑

i=1

|∇ui|2 +
C1

2

N∑

i=1

u2i

}

dx,

E1e(u) =
∫

Ω

{

−1

ε
ψ(u) +

C1

2

N∑

i=1

u2i

}

dx,

as well as E2 = E2c − E2e, where

E2c(u) =
∫

Ω

{

C2

2

N∑

i=1

u2i

}

dx,

E2e(u) =
∫

Ω

{

−ω
2

N∑

i=1

(fi − ui)
2 +

C2

2

N∑

i=1

u2i

}

dx.

The constants C1 and C2 are positive and need to be chosen large enough such that the
energies E1c, E1e, E2c and E2e are strictly convex. That means, C1 has to be comparable
to 1

ε
and C2 has to be comparable to ω0. These convexity requirements are the same

as for the black-and-white inpainting model. Even, the proof is similar and we refer
the reader to Appendix A.
The resulting discrete time-stepping scheme is given by

u(n) − u(n−1)

τ
= −∇H−1

(

E1c(u(n))− E1e(u(n−1))
)

−∇L2

(

E2c(u(n))− E2e(u(n−1))
)

,

where ∇H−1 and ∇L2 represent the gradient descents with respect to the H−1- and
L2-inner product, respectively. Here, τ > 0 denotes the time step size and n ∈ N the
time step. This translates to a numerical scheme of the form

u
(n)
i − u

(n−1)
i

τ
+ ε∆2u

(n)
i − C1∆u

(n)
i + C2u

(n)
i

=
1

ε
∆

(
∂ψ

∂ui
(u(n−1))

)

− 1

εN
∆





N∑

j=1

∂ψ

∂uj
(u(n−1))



+ω(fi−u(n−1)
i )−C1∆u

(n−1)
i +C2u

(n−1)
i ,

(13)
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for i = 1, . . . , N . For the proof of the unconditional stability of the scheme (13), we
refer the reader to Appendix B.

5. Fourier spectral methods

Bertozzi et al. [6] took benefit from the use of the FFT to achieve fast inpainting based
on the scalar Cahn–Hilliard equation. They proposed a two-dimensional FFT method
to compute the finite differences for the derivatives. We adopt a slightly different
approach and exploit the spectral decomposition of the occurring Laplace operator.
That means we will not make use of the finite differences but still of the FFT. The
idea comes from the work of Bueno-Orovio et al. [9] who introduced Fourier spectral
methods for fractional-in-space reaction-diffusion equations. Thus, we will present
this approach for a fractional version of the Cahn–Hilliard inpainting model in the
following. In doing so, we reformulate (13) to a more general form by replacing the
standard Laplace operator by its fractional counterpart

u
(n)
i − u

(n−1)
i

τ
+ ε∆ζu

(n)
i + C1(−∆)

ζ
2 u

(n)
i + C2u

(n)
i

= −1

ε
(−∆)

ζ
2

(
∂ψ

∂ui
(u(n−1))

)

+
1

εN
(−∆)

ζ
2





N∑

j=1

∂ψ

∂uj
(u(n−1))





+ ω(fi − u
(n−1)
i ) + C1(−∆)

ζ
2 u

(n−1)
i + C2u

(n−1)
i . (14)

Here, ζ denotes the fractional power which represents super-diffusion for 0 < ζ < 2
(fractional Laplacian), and pure diffusion for ζ = 2 (standard Laplacian).
As pointed out in [35, 47], there is no unique way to define the fractional Laplacian

in a bounded domain. One possibility is based on the Fourier transform on an infinite
domain [39]. It has a natural extension to include finite domains when the function
is subject to homogeneous Dirichlet boundary conditions. Another definition uses the
eigenfunction expansion on a finite domain [28]. As already mentioned above, this is
the interpretation we adopt. Let us now summarize the main elements of the spectral
approach according to [9] for the two-dimensional case. Three spatial dimensions can
be constructed straightforward.
It is known that the Laplacian (−∆) has a complete set of orthonormal eigenfunc-

tions {ϕα,β} satisfying the Neumann boundary conditions on a bounded region Ω ⊂ R
d

with corresponding eigenvalues λα,β , see also [38, Theorem 8.6]. More precisely, we
consider the following eigenvalue problem in Ω = [0, a]× [0, b]

(−∆)ϕα,β = λα,βϕα,β ,

∇ϕα,β · n = 0 on ∂Ω,
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α, β = 1, 2, . . . Then, we have

λα,β = π2

(
(α− 1)2

a2
+

(β − 1)2

b2

)

,

ϕα,β =
2√
ab

cos

(
(α− 1)πx

a

)

cos

(
(β − 1)πy

b

)

.

Following [9], we define

Uζ :=






u =

∞∑

α=1

∞∑

β=1

û(α, β)ϕα,β ∈ L2(Ω), û(α, β) = (u, ϕα,β),

∞∑

α=1

∞∑

β=1

|û(α, β)|2|λα,β |
ζ
2 <∞, 0 < ζ ≤ 2






, (15)

where (·, ·) stands for the L2(Ω)-inner product. Then, for any u ∈ Uζ , the fractional
Laplace operator can be defined via

(−∆)
ζ
2 u =

∞∑

α=1

∞∑

β=1

û(α, β)λ
ζ
2

α,βϕα,β , (16)

where û(α, β) denote the Fourier coefficients of u. The basic idea of Fourier spectral
methods is that smooth functions have a rapidly decaying transform. Fourier spectral
methods represent the truncated series expansion when a finite number of orthonormal
eigenfunction {ϕα,β} is considered.
We now present the mesh discretization. We denote by mx and my the number

of internal equispaced mesh points in the x- and y-direction, hence not including
boundary nodes. The mesh points are given by

xk,l =

(

(l − 1)hx +
hx

2
, (k − 1)hy +

hy

2

)

, l = 1, . . . ,mx, k = 1, . . . ,my,

where hx = 1
mx

and hy = 1
my

denote the mesh sizes in both dimensions. The discrete

versions of the unknown functions u
(n)
i , i = 1, . . .N, in (13) are written in matrix form

as

U
(n)
i =







U
(n)
i (1, 1) · · · U

(n)
i (1,mx)

...
. . .

...

U
(n)
i (my, 1) · · · U

(n)
i (my,mx)






,

where U
(n)
i (k, l) is the approximation of the function u

(n)
i at the mesh point xk,l for

k = 1, . . . ,my, l = 1, . . . ,mx. We denote by Û
(n)
i the two-dimensional DCT of U

(n)
i

Û
(n)
i =







Û
(n)
i (1, 1) · · · Û

(n)
i (1,mx)

...
. . .

...

Û
(n)
i (my, 1) · · · Û

(n)
i (my,mx)






,
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for i = 1, . . . , N . In the same manner of capital letters, we define the discrete versions
of fi. Applying the Fourier transform to both sides of (13) and using the spectral
decomposition of the Laplacian (16), one gets

Û
(n)
i (α, β) =

λ
ζ
2

α,β

[(

− 1
ε
∂ψ
∂ui

(U(n−1)) + 1
εN

∑N

j=1
∂ψ
∂uj

(U(n−1))
)

(̂α, β) + C1Û
(n−1)
i (α, β)

]

1
τ
+ ελ

ζ
α,β + C1λ

ζ
2

α,β + C2

+

[

ωFi + (C2 − ω)U
(n−1)
i

]

(̂α, β) + 1
τ
Û

(n−1)
i (α, β)

1
τ
+ ελ

ζ
α,β + C1λ

ζ
2

α,β + C2

, (17)

for i = 1, . . . , N and α = 1, . . . ,my, β = 1, . . . ,mx. The system (17) is fully diagonal

and the two-dimensional DCT matrices Û
(n)
i , i = 1, . . . , N, can be computed rapidly

and effectively. All that remains is to compute the inverse two-dimensional DCT on

each Û
(n)
i in order to get the discrete solutions U

(n)
i . Note, that the computational

costs are the same for the standard and fractional Cahn–Hilliard inpainting model.

6. Numerical results

In this section, we present numerical results for the standard and fractional vector-
valued Cahn–Hilliard inpainting model. For all simulations we use Bertozzi et al’s [6] ε-
two-step approach. This procedure successfully connects edges across large inpainting
regions. In the first step, we run the Cahn–Hilliard inpainting approach close to steady
state with a rather large value of ε. In the second step, the approximate solution from
the first step serves as initial state for a second run of Cahn–Hilliard inpainting. But
this time, we set ε to a small value. In summary, the first step smooths the image
information. Hence, level lines can merge over large damaged regions. The second
step sharpens the image contours. In both rounds, the stopping criterion is

‖U(n) −U(n−1)‖2
‖U(n−1)‖2

≤ ǫ, (18)

if not mentioned otherwise. We choose ǫ = 2 · 10−4 for the first step and ǫ = 2 · 10−5

for the second one.
We set the convexity parameters to C1 = 3

ε
, C2 = 3ω0 and the time step size to

τ = 1. Remember, ω0 defined in (3) is the fidelity parameter that keeps the inpainted
image close enough to the original picture. The initialization of the N phase variables
is done in two preprocessing steps. First, we segment N clusters using the standard
k-means clustering method. Each phase variable represents one cluster. Secondly, we
set every phase variable in the damaged regions to the value 1

N
. This assignment

fulfills the conditions of the Gibbs simplex (7).
We use the PSNR

PSNR = 20 log10




1

√
1

mxmy

∑my

i=1

∑mx

j=1 (uorig(i, j)− uinpaint(i, j))
2
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as well as the SSIM [46] to measure the quality of reconstruction1. Here, uorig
denotes the original image without damaged regions and uinpaint the inpainted image.
Traditional quality measures like the PSNR are not very well matched to perceived
visual quality. In contrast, the SSIM takes advantage of known characteristics of the
human visual system.
All computations are executed in MATLAB R© R2012b on a 64-bit server with CPU

type Intel R© Xeon R© X5650 @2.67 GHz, with 2 CPUs, 12 Cores (6 Cores per CPU) and
48 GB main memory available.
We provide the test results in high quality as well as the MATLAB R© code to

reproduce them as supplementary material with this paper.2

6.1. Comparison to previous inpainting methods

In this section, we show the performance of various inpainting methods. Besides the
proposed vector-valued Cahn–Hilliard (vector CH) inpainting model we test the bit-
wise binary inpainting approach (bitwise CH) as well as the MATLAB R© function
called inpaintn3 [23, 44]. Note, the results obtained with bitwise binary inpainting
do not lie in the image range [0, 255] anymore. Therefore, we cannot (reasonably)
measure the PSNR and SSIM value of the obtained results.
Schönlieb provides three inpainting codes4. These are inpainting methods using the

heat equation (heat), TV inpainting and TV-H−1 inpainting. We fix the time step
and mesh sizes to τ = 0.1, hx = hy = 1 in the heat equation based model and to
τ = 1, hx = hy = 1 in both TV inpainting approaches. Finally, we test Zhou et al’s
[51] non-parametric Bayesian method, which they term the beta process factor analy-
sis (BPFA)5. In all examples below, we run BPFA with the default values.
In contrast to our proposed vector-valued model, the methods we compare with

represent scalar systems. Hence, we do not need to segment the image for their ini-
tialization. By experience from those models, we set the pixel values in the damaged
regions to zero, instead of 1

N
.

The first test example is a simple 50× 100 binary image containing a black stripe,
see Figure 1(a). Figure 1(b) shows the damaged version. Figure 2 illustrates the
inpainted images using the different approaches mentioned above. The middle column
of Table 1 contains the total number of iterations, the total computational times (in
seconds) as well as the PSNR and SSIM values. In all Cahn–Hilliard approaches, we
set ω0 = 105, hx = hy = 1

100 and apply the ε-two-step procedure with a switch after
100 iterations from ε = 1 to ε = hx. The fractional Cahn–Hilliard model is applied
with a fractional power of ζ = 1.6. We run the heat equation based approach with

1A code for calculating the SSIM index is available at http://www.mathworks.com/matlabcentral/fileexc
hange/42238-an-edge-adaptive-directional-total-variation-model .

2http://epubs.siam.org/doi/...
3http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-

d--2-d--3-d--n-d-arrays
4http://www.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-variation-in

painting
5http://people.duke.edu/~mz31/Results/BPFAImage/
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ω0 = 10 and both TV models with ω0 = 10, ε = 1
100 . Except for the BPFA, we stop

all methods at time step 105.

(a) Original image. (b) Damaged image. (c) Original
image.

(d) Damaged
image.

Figure 1: Two simple test examples: A black-and-white stripe image and a gray value
stripe image.

(a) MATLABR© func-
tion inpaintn.

(b) Non-parametric
Bayesian method
(BPFA).

(c) Heat equation
inpainting.

(d) TV inpainting.

(e) TV-H−1 inpainting. (f) Standard Cahn–
Hilliard inpainting.

(g) Fractional Cahn–
Hilliard inpainting
(ζ = 1.6).

(h) Bitwise Cahn–
Hilliard inpainting.

Figure 2: Inpainted black-and-white stripe image using different inpainting models.

black-and-white stripe image gray value stripe image

inpainting method iter CPU (s) PSNR SSIM iter CPU (s) PSNR SSIM

inpaintn 100000 169.31 27.37 0.9480 100000 234.17 22.39 0.7839
BPFA 1072 246.91 26.67 0.9247 1072 143.48 12.16 0.6618
heat 1000000 110.91 23.65 0.9010 7248 6.42 18.89 0.7010
TV 100000 158.93 59.76 0.9975 27041 50.90 16.51 0.6427

TV-H−1 100000 162.43 69.92 0.9999 85547 163.55 26.97 0.8268
vector CH (ζ = 2.0) 100000 743.16 18.30 0.6220 1404 28.23 21.30 0.6846
vector CH (ζ = 1.6) 100000 830.96 25.54 0.9499 1402 28.23 27.24 0.9192

bitwise CH 100000 3127.05 – – 1112 34.81 – –

Table 1: Results for the black-and-white and gray value stripe inpainting: The to-
tal number of iterations (iter), computational times in seconds (CPU) and
PSNR/SSIM values using different inpainting models.
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The best results are obtained by both TV models. However, the fractional Cahn–
Hilliard inpainting approach can compete with them in terms of image quality. We
observe a significant improvement, when we reduce the fractional power from 2 to
1.6. The image contours are sharpened and the PSNR/SSIM values are enhanced by
a factor of about 1.5. However, regarding the computational time, the vector-valued
approach is at a disadvantage. The CPU time increases by a factor of five. Bitwise
binary inpainting further increases the computational time since this approach is in
terms of costs comparable to the 8-component Cahn–Hilliard inpainting method. Note,
since we only deal with a black-white-image here, a vector-valued or bitwise approach
is not the method of choice. But this experiment shows that the results of these models
are in accordance with the corresponding scalar models.

(a) MATLABR© function
inpaintn.

(b) Heat equation
inpainting.

(c) TV inpainting. (d) TV-H−1 inpainting.

(e) Non-parametric
Bayesian method
(BPFA).

(f) Cahn–Hilliard in-
painting.

(g) Fractional Cahn–
Hilliard inpainting
(ζ = 1.6).

(h) Bitwise binary Cahn–
Hilliard inpainting.

Figure 3: Inpainted gray value stripe image using different inpainting models.

The second test example consists of six stripes spanning different widths and is of
size 64 × 64, see Figure 1(c). It is composed of five gray values. Figure 1(d) shows
the damaged version. Figure 3 illustrates the inpainted images using the different
approaches mentioned above. The right column of Table 1 lists the total number of
iterations, the total computational times (in seconds) as well as the PSNR and SSIM
values. In all Cahn–Hilliard approaches, we set ω0 = 105, hx = hy = 1

64 and apply the
ε-two-step procedure with a switch from ε = 1 to ε = hx. The fractional Cahn–Hilliard
model is performed with a fractional power of ζ = 1.6. We run the heat equation based
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approach with ω0 = 10 and both TV models with ω0 = 10, ε = 1
64 . We apply to these

three methods the stopping criterion (18) with ǫ = 2 · 10−5. We stop the MATLAB R©

function inpaintn after 105 iterations.
Compared to the previous example in Figure 1(b), we have increased the inpaint-

ing gap. The second-order TV inpainting approach is no longer able to connect the
stripes. Also BPFA fails using the standard parameter set. TV-H−1 inpainting results
in a partly complete connection. The two rightmost stripes have successfully joined.
We observe the same after bitwise binary Cahn–Hilliard inpainting. In both cases,
the stopping criterion (18) might not be the optimal choice. In general, the discussion
about the stopping criterion for the proposed Cahn–Hilliard approach should be a task
for future work. Both, the standard and fractional Cahn–Hilliard inpainting model,
provide a complete connection of the stripes over the inpainting domain. Again, the
fractional approach beats the classical one. The PSNR/SSIM values are improved by
a factor of 1.3.

The third test example is a 512×512 fingerprint image6, see Figure 4(a). Figure 4(b)
displays an extract of the image after k-means clustering with 10 gray values. It zooms
in the middle part of the fingerprint. This extract is taken for visual comparisons of the
different inpainting methods. The damaged version of the whole image is illustrated
in Figure 4(c). We have removed 80% of the pixels at random.

(a) Original image. (b) Clustered extract of the
original image using 10
gray values.

(c) Damaged image.

Figure 4: Fingerprint image.

Figure 5 illustrates the inpainted (extracted) images using the different approaches
mentioned above. The middle column of Table 2 lists the total number of iterations,
the total computational times (in seconds) as well as the PSNR and SSIM values. In all
Cahn–Hilliard approaches, we set ω0 = 5 ·108, hx = hy = 1

512 and apply the ε-two-step
procedure with a switch from ε = 1 to ε = hx. The fractional Cahn–Hilliard model is
performed with a fractional power of ζ = 1.8. We run the heat equation based model

6The image is taken from http://people.duke.edu/~mz31/Results/BPFAImage/ .
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with ω0 = 10, TV inpainting with ω0 = 102, ε = 1
512 and TV-H−1 inpainting with

ω0 = 103, ε = 1
512 . We apply to these three methods the stopping criterion (18) with

ǫ = 2 · 10−5. We stop the MATLAB R© function inpaintn after 104 iterations.
Note, that TV and TV-H−1 did not converge to the tolerance ǫ = 2 · 10−5 within

104 iterations. Due to that, the inpainted fingerprints in Figure 5(c) and 5(d) look
unsatisfactory. If we would have continued the inpainting process the results would be
of better quality, but at the expense of computational costs.

(a) MATLABR© function
inpaintn.

(b) Heat equation
inpainting.

(c) TV inpainting. (d) TV-H−1 inpainting.

(e) Non-parametric
Bayesian method
(BPFA).

(f) Cahn–Hilliard in-
painting.

(g) Fractional Cahn–
Hilliard inpainting
(ζ = 1.8).

(h) Bitwise binary Cahn–
Hilliard inpainting.

Figure 5: Inpainted fingerprint image using different inpainting models.

The last test example is a 512 × 512 hill image7, see Figure 6(a). Figure 6(b)
displays an extract of the image after k-means clustering with 15 gray values. It
zooms in the chimney of third white house from the left. This extract is taken for
visual comparisons of the different inpainting methods. The damaged version of the
whole image is illustrated in Figure 6(c). Figure 7 illustrates the inpainted (extracted)
images using the different approaches mentioned above. The right column of Table
2 lists the total number of iterations, the total computational times (in seconds) as
well as the PSNR and SSIM values. In all Cahn–Hilliard approaches, we set ω0 =
109, hx = hy = 1

512 and apply the ε-two-step procedure with a switch from ε = 1 to
ε = hx. The fractional Cahn–Hilliard model is performed with a fractional power of
ζ = 1.8. We run the heat equation based approach with ω0 = 10 and both TV models

7The image is taken from http://people.duke.edu/~mz31/Results/BPFAImage/ .
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with ω0 = 103, ε = 1
512 . We apply to these three methods the stopping criterion (18)

with ǫ = 2 · 10−5. We stop the MATLAB R© function inpaintn after 6 · 104 iterations.
Again, TV and TV-H−1 did not converge to the tolerance ǫ = 2 · 10−5 within 6 · 104
iterations.

fingerprint image hill image

inpainting method iter CPU (s) PSNR SSIM iter CPU (s) PSNR SSIM

inpaintn 10000 483.63 26.30 0.8993 60000 2721.47 32.64 0.9583
BPFA 1072 9379.18 25.97 0.8850 1072 15941.66 21.75 0.9076
heat 787 121.00 21.82 0.7535 4300 644.65 32.35 0.9459
TV 10000∗ 2077.88 18.15 0.5720 60000∗ 12196.37 30.74 0.9473

TV-H−1 10000∗ 2103.79 25.22 0.8783 60000∗ 12400.40 25.46 0.9344
vector CH (ζ = 2.0) 503 1997.56 23.62 0.8162 2131 12402.95 29.94 0.8697
vector CH (ζ = 1.8) 1438 5768.40 24.65 0.8615 2175 12057.60 31.18 0.9097

bitwise CH 314 956.80 – – 702 1982.41 – –

Table 2: Results for the fingerprint and hill inpainting: The total number of iterations
(iter), computational times in seconds (CPU) and PSNR/SSIM values using
different inpainting models. The labeling ∗ marks that the corresponding
method did not converge to the tolerance ǫ = 2·10−5 within the given number
of iterations using the stopping criterion (18).

(a) Original image. (b) Clustered extract of
the original image
using 15 gray values.

(c) Damaged image.

Figure 6: Hill image.

In summary, all examples confirm that the vector-valued Cahn–Hilliard inpainting
model competes with existing inpainting methods. Moreover, the fractional approach
turns out to be superior over the classical one. It sharpens the image contours and
improves the PSNR and SSIM values. In the next section, we study the influence of
the fractional power.
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(a) MATLABR© function
inpaintn.

(b) Heat equation
inpainting.

(c) TV inpainting. (d) TV-H−1 inpainting.

(e) Non-parametric
Bayesian method
(BPFA).

(f) Cahn–Hilliard in-
painting.

(g) Fractional Cahn–
Hilliard inpainting
(ζ = 1.8).

(h) Bitwise binary Cahn–
Hilliard inpainting.

Figure 7: Inpainted hill image using different inpainting models.

6.2. Influence of the fractional power

In this section, we explore the effect of the fractional power with respect to the PSNR
and SSIM value as well as the computational time. We experiment with the gray value
stripe image from the last section, see Figure 1(c) and 1(d). We vary the fractional
power and keep all the other model parameters fixed. We fix τ = 1, ω0 = 106, hx =
hy = 1

64 and apply the ε-two-step procedure with a switch from ε = 10 to ε =
hx. We consider the fractional powers 2.0, 1.9, 1.7, 1.5, 1.3, 1.1. Figure 8 shows the
inpainted images obtained by Cahn–Hilliard inpainting with the different fractional
powers. Table 3 contains the total number of iterations, the total computational times
(in seconds) as well as the PSNR and SSIM values.
Decreasing the fractional power increases the sharpness of the image. This effect
improves the inpainting result to a certain degree. Starting from the standard power
2.0 we reach the optimum at the fractional power 1.5. The PSNR and SSIM value as
well as the visual image are at their highest level. A further decrease of the fractional
power in turn worsens the results. One possible reason might be the stopping criterion
(18), as already pointed out in the previous section. It seems that it aborts the iteration
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too early for small values of the fractional power. Another explanation might be a too
strong influence of the regularization regarding the fractional power ζ. Hence, it could
prevent the successful connection of the stripes across the large gap. A resulting topic
for future discussion might be a varying fractional power throughout the simulation
similar to the ε-two-step approach.

(a) ζ = 2.0. (b) ζ = 1.9. (c) ζ = 1.7.

(d) ζ = 1.5. (e) ζ = 1.3. (f) ζ = 1.1.

Figure 8: Inpainted gray value stripe image using different fractional powers ζ.

ζ iter CPU (s) PSNR SSIM

2.0 2144 44.21 22.92 0.7975
1.9 2576 52.71 24.05 0.8336
1.7 3942 80.42 26.70 0.8791
1.5 6287 128.46 28.95 0.8999
1.3 9476 192.86 21.21 0.8174
1.1 6186 126.51 15.43 0.7069

Table 3: Cahn–Hilliard inpainting results for the gray value stripe inpainting: To-
tal number of iterations (iter), computational times in seconds (CPU) and
PSNR/SSIM values using different fractional powers ζ.

17



6.3. Metal artifact reduction

One major challenge in X-ray CT is the metal artifact reduction, see e.g. [29]. Metallic
objects implanted in the human body cause severe streak artifacts in CT images. These
in turn significantly deteriorate the image quality. Projection interpolation methods
[33, 16] correct metal artifacts directly in sinogram space. The main steps of those
algorithms are:

1. Given is the original projection data (sinogram).

2. Reconstruct the CT image using the filtered back projection (FBP).

3. Segment the metal regions.

4. Reproject the metal regions to determine the missing data in the sinogram.

5. Correct the missing projection data.

6. Reconstruct the image from the inpainted sinogram using the FBP.

7. Insert the previously segmented metallic objects.

Our aim is to apply Cahn–Hilliard inpainting in Step 5. The following experiment
uses a variant of the Shepp-Logan (S-L) phantom. Five metal regions with much
higher attenuation were added into the S-L phantom (256 × 256), see Figure 9(a).
The parameters for the modified phantom are taken from [49, p. 5]. Figure 9(b)
shows the sinogram of the phantom. The reconstructed phantom image using the
FBP suffers from streak artifacts caused by the metal objects, see Figure 9(c). Using
a simple thresholding method we can extract the metal regions. Note, because this
paper focuses on the inpainting problem we do not study this segmentation problem.
Next, we locate the metal regions in the projection data set (sinogram). These parts
form the missing data. We employ Cahn–Hilliard inpainting to create an inpainted
sinogram. Figure 9(d), 9(e) and 9(f) illustrate the inpainted sinograms for the standard
and two fractional Cahn–Hilliard inpainting approaches. Finally, we reconstruct the
phantom image from the inpainted sinogram using the FBP, see Figure 9(g), 9(h) and
9(i).
Compared with the reconstructed image in Figure 9(c), the metal artifacts were

significantly reduced after inpainting. Further, the passage from standard to fractional
inpainting improves the image quality. The PSNR value is 28.187 after standard Cahn–
Hilliard inpainting, 28.199 after fractional Cahn–Hilliard inpainting with a fractional
power of ζ = 1.8 and 28.203 after fractional Cahn–Hilliard inpainting with a fractional
power of ζ = 1.6. The used model parameters are ω0 = 108, hx = hy = 1

367 . For the
initialization, we have segmented the sinogram (367 × 180) into 40 gray values using
k-means clustering. The ε-two-step procedure was applied with a switch from ε = 1000
to ε = 10 hx. Using the stopping criterion (18), the standard model converged after 869
iterations and a CPU time of 3280.47s, the fractional model with ζ = 1.8 after 2008
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iterations and 7445.06s and the fractional model with ζ = 1.6 after 3295 iterations
and 12124.30s.

(a) Original phantom with five
metal regions.

 

 

(b) Sinogram of the original
phantom.

(c) Filtered back projection
(FBP) of the sinogram.

 

 

(d) Inpainted sinogram using
Cahn–Hilliard inpainting
with ζ = 2.0.

 

 

(e) Inpainted sinogram using
Cahn–Hilliard inpainting
with ζ = 1.8.

 

 

(f) Inpainted sinogram using
Cahn–Hilliard inpainting
with ζ = 1.6.

(g) FBP after Cahn–Hilliard
inpainting with ζ = 2.0.

(h) FBP after Cahn–Hilliard
inpainting with ζ = 1.8.

(i) FBP after Cahn–Hilliard
inpainting with ζ = 1.6.

Figure 9: Metal artifact reduction using Cahn–Hilliard inpainting.
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6.4. Three-dimensional visualization of medical images

The use of Fourier spectral methods allows a straightforward extension to higher spatial
dimensions. As an example, we consider the three-dimensional visualization of MRI
images, see also [37, 45, 24, 7]. Parts of the human body are given in form of a sequence
of slices. Often, the distance between these slices is significantly larger than the image
pixel size. Hence, it is necessary to interpolate additional slices in order to obtain an
accurate three-dimensional description. This in turn helps the professionals to make
more accurate diagnoses.
The following example uses the MRI data set that comes with MATLAB R©. It

comprises a scan of a human cranium (128× 128× 27) in form of 27 horizontal slices
of size 128 × 128 each. For this experiment, we work with the first ten slices, which
are illustrated in Figure 10.

Figure 10: Ten magnetic resonance imaging slices of a human cranium.

Our aim is to create four virtual slices between each two slices. This results in a total
number of 46 horizontal slices. The inpainting method acts now in a three-dimensional
cube. Ten horizontal planes provide us with image information. The remaining 26
horizontal planes form the damaged region. We work with 20 gray values such that
the resulting problem size is 20 × 128 × 128 × 46. Figure 11(a) and 11(b) show two
consecutive slices from the original MRI data set. Between them, four virtual slices
were reconstructed using fractional Cahn–Hilliard inpainting, see Figure 11(c)–11(f).
We set ω0 = 109, hx = hy = 1

128 , hz = 2.5hx

4 , ζ = 1.8 and apply the ε-two-step
procedure with a switch from ε = 1000 to ε = hx.
Using the stopping criterion (18), Cahn–Hilliard inpainting converged after 1100

iterations and a CPU time of 16840.13s. The PSNR and SSIM value regarding the
first slice are 36.98 and 0.9971.
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(a) Original slice 1. (b) Original slice 2.

(c) Virtual slice 1.2. (d) Virtual slice 1.4. (e) Virtual slice 1.6. (f) Virtual slice 1.8.

Figure 11: Construction of virtual magnetic resonance imaging slices using Cahn–
Hilliard inpainting.

7. Conclusions

In this paper, we have developed an inpainting model based on the vector-valued Cahn–
Hilliard equation. This approach generalizes Bertozzi et al’s [6] binary Cahn–Hilliard
inpainting model to gray value images. Add to this, we have further generalized our
approach to a fractional-in-space version. This is done by replacing the standard
differential operator by its fractional counterpart. We have adopted the definition of
the fractional Laplace operator via the spectral decomposition of the Neumann Laplace
operator, as motivated in [9]. Fourier spectral methods provide efficient solvers since
they yield a fully diagonal scheme. Furthermore, their application to three spatial
dimensions is straightforward.
The numerical results have shown the superiority of the fractional approach over the

classical one. This generalized version can be treated as a regularization of the standard
model. It is characterized by a sharpness effect and improves the image quality. In
particular, we observe an increase of the peak signal-to-noise ratio and structural
similarity index. Likewise, the experiments confirm that the proposed model competes
with previous inpainting methods, such as the total variation inpainting approach and
its fourth-order variant.
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A. Convexity splitting

We wish to prove here the requirements for the constants C1 and C2 to make sure
that E1c, E1e, E2c and E2e are strictly convex. It is easy to see, that E1c and E2c are
already strictly convex for C1 > 0 and C2 > 0. The crucial points are the energy
functionals that contain the non-convex potential function ψ(u) as well as the fidelity
terms ω(fi − ui), i = 1, . . . , N .

Lemma A.1 Under the additional assumption that

K = max
w∈RN

∣
∣
∣
∣

∂2ψ

∂wi2
(w)

∣
∣
∣
∣

(19)

we have that E1e and E2e are strictly convex if C1 is comparable to 1
ε
and C2 is

comparable to ω0.

Proof Based on [42, p. 54], we have to show

Eje(u+ v)− Eje(u) ≥ lim
δ→0

Eje(u+ δv) − Eje(u)
δ

for j = 1, 2. We have

E1e(u+ v) − E1e(u) =
∫

Ω

{

−1

ε
(ψ(u+ v) − ψ(u)) +

C1

2

N∑

i=1

(

(ui + vi)
2 − u2i

)
}

dx

=

∫

Ω

{

−1

ε
(ψ(u+ v) − ψ(u)) +

C1

2

N∑

i=1

(
v2i + 2uivi

)

}

dx. (20)

As ψ(u) is a smooth function, we can consider its Taylor expansion

ψ(u+ v) = ψ(u) +
N∑

i=1

(

vi
∂ψ

∂ui
(u) +

1

2
v2i
∂2ψ

∂wi2
(w)

)

,

where w lies between u+ v and u. Therefore, we obtain in (20)

E1e(u+v)−E1e(u) =
∫

Ω

{

−1

ε

N∑

i=1

(

vi
∂ψ

∂ui
(u) +

1

2
v2i
∂2ψ

∂wi2
(w)

)

+
C1

2

N∑

i=1

(
v2i + 2uivi

)

}

dx.
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Similarly, one can show

lim
δ→0

E1e(u+ δv)− E1e(u)
δ

=

∫

Ω

{

−1

ε

N∑

i=1

vi
∂ψ

∂ui
(u) +

C1

2

N∑

i=1

2uivi

}

dx,

which leads to

E1e(u+ v) − E1e(u)− lim
δ→0

E1e(u+ δv) − E1e(u)
δ

=

∫

Ω

{

− 1

2ε

N∑

i=1

v2i
∂2ψ

∂wi2
(w) +

C1

2

N∑

i=1

v2i

}

dx

(19)
≥
∫

Ω

{(
C1

2
− K

2ε

) N∑

i=1

v2i

}

dx.

Therefore, E1e is strictly convex if C1 is comparable to 1
ε
. Proceeding the same way

with the second energy functional E2e gives

E2e(u+ v) − E2e(u)− lim
δ→0

E2e(u+ δv) − E2e(u)
δ

=

∫

Ω

{(
C2

2
− ω

2

) N∑

i=1

v2i

}

dx

ω≤ω0

≥
∫

Ω

{(
C2

2
− ω0

2

) N∑

i=1

v2i

}

dx.

Therefore, E2e is strictly convex if C2 > ω0.

Remark Note, a similar assumption to (19) is made in the numerical analysis for the
black-and-white Cahn–Hilliard inpainting model, see [40, Theorem 3.1]. In fact, the
authors assume that the second derivative of the smooth potential in the previous time
step is bounded.

B. Unconditional stability

We wish to prove here the unconditional stability of the scheme (13). In doing so, we
follow [40] and extend the proof from the scalar to the vector-valued case. Throughout
the following, we will make use of the L2(Ω)-inner product (·, ·) and of the scalar
product

(u,v) =

∫

Ω

u · v dx =

N∑

i=1

(ui, vi)

in L2(Ω)N . Additionally, we will write ‖ ·‖ for the norm in L2(Ω) as well as in L2(Ω)N

and use the notation ∇u = (∇u1, . . . ,∇uN)⊤ and ∆u = (∆u1, . . . ,∆uN)
⊤.

Lemma B.1 Let u(n) be the n-th (n ∈ N) iterate at time nτ for a time step τ > 0 of
(13) with constants C1 >

1
ε
and C2 > ω0. Additionally, we assume that

∂2ψ

∂ui2
(u(n−1)) ≤ K (21)
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for a nonnegative constant K. Then the solution sequence u(n) is bounded on a finite
time interval [0, T ], for all τ > 0. In particular for nτ ≤ T, T > 0 fixed, we have for
every τ > 0

‖∇u(n)‖2 + τK1‖∆u(n)‖2 ≤ eK2T
(

‖∇u(0)‖2 + τK1‖∆u(0)‖2 + τC(Ω, D, ω0, f)
)

,

(22)
for suitable constants K1 and K2, and constant C depending on Ω, D, ω0, f only.

Proof By multiplying row i of the discrete model (13) with −∆u
(n)
i and integrate

over Ω, we obtain

1

τ

(

‖∇u(n)i ‖2 − (∇u(n)i ,∇u(n−1)
i )

)

+ ε‖∇∆u
(n)
i ‖2 + C1‖∆u(n)i ‖2 + C2‖∇u(n)i ‖2

=
1

ε

(
∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i ,∇∆u
(n)
i

)

− 1

εN

N∑

j=1

(

∂2ψ

∂u2j
(u(n−1))∇u(n−1)

j ,∇∆u
(n)
i

)

+ C1

(

∆u
(n−1)
i ,∆u

(n)
i

)

+ C2

(

∇u(n−1)
i ,∇u(n)i

)

+ (∇ω(fi − u
(n−1)
i ),∇u(n)i ).

Above, we have used Gauss’s theorem together with the Neumann boundary condi-
tions that are imposed in (9). In particular, Gauss’s theorem applied to the integral
containing the derivative of the potential function yields

∫

Ω

∆

(
∂ψ

∂ui
(u(n−1))

)

∆u
(n)
i dx

=

∫

∂Ω

∆u
(n)
i ∇

(
∂ψ

∂ui
(u(n−1))

)

· n ds −
∫

Ω

∇
(
∂ψ

∂ui
(u(n−1))

)

· ∇∆u
(n)
i dx

=

∫

∂Ω

∆u
(n)
i

∂2ψ

∂ui2
(u(n−1))∇u(n−1)

i · n
︸ ︷︷ ︸

=0

ds−
∫

Ω

∂2ψ

∂ui2
(u(n−1))∇u(n−1)

i · ∇∆u
(n)
i dx

= −
(
∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i ,∇∆u
(n)
i

)

.

Using Young’s inequality

(∇u(n)i ,∇u(n−1)
i ) ≤ 1

2
‖∇u(n)i ‖2 + 1

2
‖∇u(n−1)

i ‖2,
(
∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i ,∇∆u
(n)
i

)

≤ 1

2δ1

∥
∥
∥
∥

∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i

∥
∥
∥
∥

2

+
δ1

2

∥
∥
∥∇∆u

(n)
i

∥
∥
∥

2

,

(

∆u
(n−1)
i ,∆u

(n)
i

)

≤ 1

2
‖∆u(n−1)

i ‖2 + 1

2
‖∆u(n−1)

i ‖2,

(∇ω(fi − u
(n−1)
i ),∇u(n)i ) ≤ 1

2
‖∇ω(fi − u

(n−1)
i )‖2 + 1

2
‖∇u(n)i ‖2,
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we obtain
(

1

2τ
+
C2

2
− 1

2

)

‖∇u(n)i ‖2 + C1

2
‖∆u(n)i ‖2 +

(

ε− δ1

2ε
− δ2

2ε

)

‖∇∆u
(n)
i ‖2

≤
(

1

2τ
+
C2

2

)

‖∇u(n−1)
i ‖2 + 1

2δ1ε

∥
∥
∥
∥

∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i

∥
∥
∥
∥

2

+
1

2δ2Nε

N∑

j=1

∥
∥
∥
∥
∥

∂2ψ

∂u2j
(u(n−1))∇u(n−1)

j

∥
∥
∥
∥
∥

2

+
C1

2
‖∆u(n−1)

i ‖2 + 1

2
‖∇ω(fi − u

(n−1)
i )‖2,

where δ1, δ2 > 0. Using the estimate

‖∇ω(fi − u
(n−1)
i )‖2 ≤ 2ω2

0‖∇u
(n−1)
i ‖2 + C(Ω, D, ω0, fi)

(see [40]) as well as δ1 = δ2 = ε2, we obtain
(

1

2τ
+
C2

2
− 1

2

)

‖∇u(n)i ‖2 + C1

2
‖∆u(n)i ‖2

≤
(

1

2τ
+
C2

2
+ ω2

0

)

‖∇u(n−1)
i ‖2 + 1

2ε3

∥
∥
∥
∥

∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i

∥
∥
∥
∥

2

+
1

2Nε3

N∑

j=1

∥
∥
∥
∥
∥

∂2ψ

∂u2j
(u(n−1))∇u(n−1)

j

∥
∥
∥
∥
∥

2

+
C1

2
‖∆u(n−1)

i ‖2 + C(Ω, D, ω0, fi).

Summing up these equations, we have
(

1

2τ
+
C2

2
− 1

2

)

‖∇u(n)‖2 + C1

2
‖∆u(n)‖2

≤
(

1

2τ
+
C2

2
+ ω2

0

)

‖∇u(n−1)‖2 + 1

ε3

N∑

i=1

∥
∥
∥
∥

∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i

∥
∥
∥
∥

2

+
C1

2
‖∆u(n−1)‖2 + C(Ω, D, ω0, f).

Because of Assumption (21) we can estimate
∥
∥
∥
∥

∂2ψ

∂u2i
(u(n−1))∇u(n−1)

i

∥
∥
∥
∥

2

≤ K2
∥
∥
∥∇u(n−1)

i

∥
∥
∥

2

(see [40]) and we have
(

1

2τ
+
C2

2
− 1

2

)

‖∇u(n)‖2 + C1

2
‖∆u(n)‖2

≤
(

1

2τ
+
C2

2
+ ω2

0 +
K2

ε3

)

‖∇u(n−1)‖2 + C1

2
‖∆u(n−1)‖2 + C(Ω, D, ω0, f).

This is (almost) the same estimation as the last inequality in [40, p. 427]. Therefore,
the rest of the proof follows the proof of [40, Theorem 3.1(ii)]. This results in the
desired estimation (22).
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[35] R. H. Nochetto, E. Otárola, and A. J. Salgado, A PDE approach to
fractional diffusion in general domains: A priori error analysis, Found. Comput.
Math., (2014), pp. 1–59.

[36] K. B. Oldham and J. Spanier, The fractional calculus; Theory and applications
of differentiation and integration to arbitrary order, Mathematics in science and
engineering : A series in monographs and textbooks 111, Elsevier, Burlington,
MA, 1974.

[37] S. R. Pires, E. L. Flores, C. A. Z. Barcelos, and M. A. Batista, In-
terpolation of computerized tomography slices using 3D digital inpainting, in 19th
Brazilian Symposium on Computer Graphics and Image Processing, Manaus, AM,
2006, IEEE, pp. 129–138.

[38] S. Salsa, Partial differential equations in action: From modelling to theory,
Universitext, Springer, Mailand, 2009.

[39] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and
Derivatives : Theory and Applications, Gordon and Breach, Yverdon, 1993.

[40] C.-B. Schönlieb and A. Bertozzi, Unconditionally stable schemes for higher
order inpainting, Commun. Math. Sci., 9 (2011), pp. 413–457.

[41] J. Shen, S. H. Kang, and T. F. Chan, Euler’s elastica and curvature-based
inpainting, SIAM J. Appl. Math., 63 (2003), pp. 564–592.

[42] J. L. Troutman, Variational calculus and optimal control. Optimization with
elementary convexity, Undergrad. Texts Math., Springer, New York, NY, 2nd ed.,
1996.

28



[43] A. Tsai, A. Yezzi, Jr., and A. S. Willsky, Curve evolution implementation
of the Mumford–Shah functional for image segmentation, denoising, interpolation,
and magnification, IEEE Trans. Image Process., 10 (2001), pp. 1169–1186.

[44] G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. J. Dolman, A three-
dimensional gap filling method for large geophysical datasets: Application to global
satellite soil moisture observations, Environ. Model. Softw., 30 (2012), pp. 139–
142.

[45] Y. Wang, Z. Zhang, and B. Guo, 3D image interpolation based on directional
coherence, in IEEE Workshop on Mathematical Methods in Biomedical Image
Analysis, Kauai, HI, 2001, IEEE, pp. 195–202.

[46] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality
assessment: From error visibility to structural similarity, IEEE Trans. Image
Process., 13 (2004), pp. 600–612.

[47] Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial
differential equations with Riesz space fractional derivatives, Appl. Math. Model.,
34 (2010), pp. 200–218.

[48] P. Yi-Fei, Application of fractional differential approach to digital image process-
ing, J. Sichuan Univ. Eng. Sci. Ed., 3 (2007), p. 022.

[49] Y. Zhang, Y.-F. Pu, J.-R. Hu, Y. Liu, Q.-L. Chen, and J.-L. Zhou, Ef-
ficient CT metal artifact reduction based on fractional-order curvature diffusion,
Comput. Math. Methods Med., 2011 (2011). Article ID 173748.

[50] Y. Zhang, Y.-F. Pu, J.-R. Hu, and J.-L. Zhou, A class of fractional-order
variational image inpainting models, Appl. Math. Inf. Sci, 6 (2012), pp. 299–306.

[51] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson,

G. Sapiro, and L. Carin, Nonparametric Bayesian dictionary learning for
analysis of noisy and incomplete images, IEEE Trans. Image Process., 21 (2012),
pp. 130–144.

29



Max Planck Institute Magdeburg Preprints


	Introduction
	Classical inpainting models
	Fractional inpainting models
	Basic model

	Binary Cahn–Hilliard inpainting
	Gray value Cahn–Hilliard inpainting
	Convexity splitting
	Fourier spectral methods
	Numerical results
	Comparison to previous inpainting methods
	Influence of the fractional power
	Metal artifact reduction
	Three-dimensional visualization of medical images

	Conclusions
	Convexity splitting
	Unconditional stability

