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Abstract

We investigate an a posteriori error analysis of adaptivieefielement approximations
of linearquadratic boundary optimal control problems under bikdtbound constraints,
which act on a Neumann boundary condition. We use a symmigttécior penalty
Galerkin (SIPG) method as discretization method. An efficand reliable residual-type
error estimator is introduced by invoking data oscillasiowe then derive local upper and
lower a posteriori error estimates for the boundary comtroblem. Adaptive mesh refine-
ment indicated by a posteriori error estimates is appliedmbrfical results are presented
to illustrate the performance of the adaptive finite elenagmiroximation.
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1 Introduction

Many real-life applications such as the shape optimizatibtechnological devices [35], the
identification of parameters in environmental processesflaw control problems [11, 14, 37]
lead to optimization problems governed by partial difféi@requations (PDESs). The com-
plexity of such problems requires special care in order taiokefficient numerical approx-
imations for the optimization problem. One particular noeths the adaptive finite element
method, which consists of successive loops of the followmguence:

SOLVE — ESTIMATE — MARK — REFINE. (1)

The SOLVE step stands for the numerical solution of the optimizatioobfem in a finite
dimensional space defined on the given mesh. EEEIMATE step is the key point of the
adaptive finite element method. In this step, local erroiciairs are computed in terms of the
discrete solutions without knowledge of the exact soligionhey are essential in designing
algorithms for mesh adaptation, which equidistribute tomputational effort and optimize
the computation. Based on the information of the indicatiisM ARK step selects a subset
of elements subject to refinement. The refinement is theruésédn the final steREFINE

of the adaptive loop.

Adaptive mesh refinement is particularly attractive forsb&ution of optimal control prob-
lems, which exhibit layers or singularities in certain @t of the mesh. In this case, adap-
tivity allows local mesh refinement around the layers as eégthereby achieving a de-
sired residual bound with as few of degrees of freedom asilgessThe vast majority of
the literature about the a posteriori error analysis ofropticontrol problems is for dis-
tributed optimal control problems. We would like to mentithre residual-type estimators
[19, 21, 24, 30, 41, 42, 44, 45], and the goal oriented duagated approach [5, 16, 18, 40].

However, there exists limited work for the numerical salatiof boundary optimal con-
trol problems. The residual-type error estimators areistlih [15, 22, 28, 33, 34], whereas
the hierarchical-type estimators are studied in [28]. Takyse continuous finite element
discretizations. The results in [29] show that discontimiGalerkin (DG) methods enjoy a
better convergence behaviour for optimal control problertsbiting boundary layers. Opti-
mal convergence orders are obtained if the error is com@wegy from boundary or interior
layers. Discontinuous Galerkin methods have several ddgan over other types of finite
element methods. For example, the state and test spacegrgreasy to construct; they
can naturally handle inhomogeneous boundary conditiodscanved boundaries; and they
have flexibility in handling non-matching grids and in desigg hp-adaptive grid refinement.
Though these methods are known since the 1970s, much attdras been paid only in the
past few years due to the availability of cheap computingueses. We would like to refer
to [3, 17, 23, 27, 25, 38] for details about discontinuouse@ah methods. Discontinuous
Galerkin methods have been studied in [29, 42, 43, 44, 45¢ifributed optimal control
problems. To the best of our knowledge, there exists no warlkbdundary optimal control
problems with discontinuous Galerkin discretization.

In this paper, we derive reliable and efficient a posterimareestimators for the boundary
optimal control problems governed by elliptic equatioriscretized by the symmetric interior
penalty Galerkin (SIPG) method. We choose the SIPG as artdiscous Galerkin method
due to its symmetric property. This implies that discretmaand optimization commute,



see, e.g., [43]. The a posteriori error analysis of the bamndontrol problem includes the
error in state, adjoint, control, and co-control and aldeesadata oscillations into account,
in order to consider the data of the problem (coefficientshef@quations, right-hand side,
boundary conditions) in the most general setting as passilié note that data oscillations are
also taken into consideration in [2, 36] for single stateaguns, and in [22, 24] for optimal
control problems.

The remainder of the paper is organized as follows: In the sestion, we introduce the
Neumann boundary optimal control problem governed by arsooder elliptic PDE with
bilateral constraints on the control. The optimality cdiwatis are given in terms of the state,
the adjoint, the control and the co-control correspondintpé Lagrangian multiplier for the
control. Section 3 describes the SIPG discretization obtiwendary optimal control problem.
A posteriori error estimators are given in Section 4. We usssalual-type error estimator for
the global discretization errors in all variables which sists of edge and element residuals.
The data oscillations are also used in the error analysis fuvtiser derive local upper and
lower a posteriori error estimates for the boundary coqroblem. Finally, in the last section,
the adaptive cycle is described and numerical results asepted to illustrate the performance
of our adaptive mesh refinement strategy.

2 The boundary control problem

We assume to be an open, bounded polygonal domaiRfhwith boundarn™ =Tp UTy,
o NIy = 0. We adopt standard notation from Lebesgue and Sobolev $pacey (see, e.g.,
[1]) and refer to(-,-)xs and |- |ks, || - ks k€ N, SC Q, as theH¥(S)-inner product and
associated semi-norm and norm, respectively. In additiar,C denotes a general positive
constant.

We here consider the following boundary control problemegoed by linear-quadratic
elliptic equations with constrained controls on the pathef Neumann boundary

I | ()
minimize > ly(x) = y*(x)|[5.q + % lux) = u(X)|[3r, )
uevad 2 2
subject to
~Ay(x) +a(x)y(x) = f(x) x€Q, (3a)
y(x) =g° x€ T, (3b)
%(x) =u(x)+g" xe M, (3c)
with control constraints on a closed convex\dét given by
Uad:= {ve L2(Ty): P <v(x) <’ a.e.xely}, (4)

whereu?, uP € L®(I'y), with u? < uP for almost allx € I'y. The functionug, called desired
control, is a guideline for the control, see, e.g., [10, Njte that this formulation also allows
for the special and most common cage= 0, i.e., there is no a priori information on the
optimal control.



We make the following assumptions on the functions and patars in the optimal control
problem (2)-(3) to show the well-posedness of the optimatmd problem:

.y el?Q), W el?(Ty), o® e HY2(Mp), gN e L?(Mn), weR,, a€Ll®(Q). (5)

Let us first consider the weak formulation of the state egua). If we define the spaces
of state and test functions by

Y={yeHYQ): yIr, =¢°}, V={veHYQ): v|r, =0}
and the bilinear form by
aly,v) = /Q(Dy- Ov+ ayv) dx,
then the weak form of the state equation (3) for a fixedads as follows: fingt € Y such that
aly.v) = (f,Vjoa+u+g" Vor, WeV. (6)

It is well-known that under the above assumptions (5), thenldary control problem (2)-
(3) admits a unique solutiofy,u) € Y x U39, see, e.g., [13, 31, 33]. The solutiénu) is
characterized by the existence of an adj@rtV such that

a(y,v) = (f,v)oa + (u+g",vory Wev, (7a)
a(W,p) = —(y—y", W)oo VeV, (7b)
(w(u—u?)—p,v— Wor, =0 Yveudd (7¢)

Note that the inequality (7c) can be equivalently statedriwpking a Lagrange multiplier
corresponding to the inequality constraiots L?(I'y):

wu—ut)—p—0®+0®=0 a.e. infy, (8a)
(WP =)y, = (a®u— ub)o’ =0 a.e. inMy, (8b)
o=a°~0® 0*>0, o®>0, W<u<’ a.e. il (8¢)

with
o =max{0,0+y(u—u’)} +min{0,0 —y(U*—u)} a.einly, 9)

wherey is any positive constant.

Itis well known that (8) enjoys the Newton differentiabjliiroperty [20], at least foy = w.
Therefore, a generalized (semi-smooth) Newton iterataante applied. We can express the
Newton iteration in terms of an active set strategy due tasthecture of the nonsmooth part
(9). For any Newton iteration step, the active sets are tle¢erchined by

Aa={xeTn: o—y(UP—u) <0}, (10a)
ap={xeln: o+yu—uP) >0}, (10b)



and the inactive set i = 'n\{4aU 4y }. Then, the complimentary conditions in (8) can be
rewritten as

ux)=u?, o®=0, 0<0, a.e. on4,, (11a)
ux)=uw, o®=0, 0>0, a.e.ond, (11b)
wW<ux)<Ww, o*=d=0, 0=0, ae. onl. (11c)

3 Symmetric interior penalty Galerkin (SIPG) method

We discretize our optimal control problem (2)-(3) using acdintinuous Galerkin method,
namely, the symmetric interior penalty Galerkin (SIPG)cdi$ization due to the symmetry
property of its bilinear form, i.ean(y,v) = an(v,y), see e.g., [3].

We assume that the domaihis polygonal such that the boundary is exactly represented
by boundaries of triangles. We dendté, }1, as a family of shape-regular simplicial triangu-
lations of Q. Each mesHZ;, consists of closed triangles such titat= UKeffhK holds. We
assume that the mesh is regular in the following sense: fterdnt triangles<;,Kj € 7y,

i # |, the intersectionk; NK;j is either empty or a vertex or an edge, i.e., hanging nodes are
not allowed. The diameter of an elemé&hand the length of an eddeare denoted bk and
hg, respectively.

We split the set of all edgeg;, into the setﬂ? of interior edges, the s@r? of Dirichlet
boundary edges and the s&}' of Neumann boundary edges so tiat = £2 U 0 with
£B = EPUEN. Letthe edg& be a common edge for two elemektandK®. For a piecewise
continuous scalar functioy there are two traces gfalongE, denoted by/|e from insideK
andy®|e from insideK®. The jump and average gfacross the eddge are defined by:

V] = vlenk +lence, ()} = 3 (vl +Y7le). (12

wherenk (resp.nge) denotes the unit outward normald& (resp.oK®).
Similarly, for a piecewise continuous vector fiély, the jump and average across an edge
E are given by

NI =

[Oy] = Oyle - nk + Oy*le -nke, {0y} = = (Oyle + Oy°le). (13)

For a boundary edgeé € KNT, we set{y}} = Oy and[y] = yn, wheren is the outward
normal unit vector orf.

Recall that in discontinuous Galerkin methods, the stadid@st spaces consist of piecewise
discontinuous polynomials. That is, no continuity constisaare explicitly imposed on the
state and test functions across the element interfaces.cAasequence, weak formulations
must include jump terms across interfaces, and typicalhajig terms are added to control
the jump terms. Then, we define the spaces of test functibesliscrete states and controls

by
Va=Yh={yeL?Q): ylke P(K) VK€ R}, (14a)
Upn={uel?(Tn) : ulee PLE) VEE€ )}, (14b)



respectivelyP!(K) (resp.P'(E)) is the set of linear polynomials ik (resp. orE). Note that
the spacé, of discrete states and the space of test functigrere identical due to the weak
treatment of boundary conditions in DG methods. We themihtce the following (bi-)linear
forms forvv € \, according to

ayy) = 3 [(Oy-Ovrapwde 3 [ (HOV) M+ (O ] )

KeThik EcEUED E

e/ 1

Ee‘Ehu
br(u,v) = z /uvds (15b)
EcENE
Ih(v) = fvdx+ g n V] — {0Ov}) ds+ gVv d45c)
" KeffhK/ Z / - ) EEZE}L\‘ E/

where the parametery € R} is called the penalty parameter, which should be suffigientl
large to ensure the stability of the DG discretization; ipeledent of the mesh siZe[38,
Sec. 2.7.1]. However, large penalty parameters decreagartips across element interfaces,
which can affect the numerical approximation. Further, @& approximation converges to
the continuous Galerkin approximation as the penalty patangoes to infinity (see, e.g., [8]
for details).

The bilinear formay(-,-) is consistent with the state equation (3) for a fixed givertrmb
in the following sense: if satisfies (3), then

(i) = (T+uvoa+ 3 (npone- [V - {0vHoe (16)
Eczp
+ Z (e -0y, V)oE, YW E V.
Ecz

We then define the SIPG approximatigyof the solutiony of the state system (3) for a fixed
given controlup = u such that

an(Yh,V) = In(V) +bn(un,v) YW E W (17)
Thus, we have the following orthogonality relation:
an(y—V¥n,Vv)=0 YV € V. (18)

We need the following trace and inverse inequalities, whithbe used frequently in the a
posteriori error analysis, see e.g., [7, 26],

Voos < crlVlLs, v e HY(9), (19a)
Moos < cr(htIVI[Gs+hklDvi§s),  WweHY(S), (19b)

and o
IV]j.s < cinvhs ! V)i s, WeP(S), 0<i<j<2 (20)

Note that the constantg in (19) are different for both trace inequalities. To eagerthtation,
they are denoted by the same notation. We can now state thiewitynand coercivity of the
bilinear formag(+,-) in the following lemma [27, Lemma 3.1]:



Lemma 3.1 For an(-,-) asin (15a), it holds:

@)
(V[ < 2V VY,V € Yh, (21)

(i) There exists a positive constagtsuch that

an(vv) > cal|VI[®,  YveVh (22)
with the following mesh-dependent energy norm

Iv=( S (IOl + alvi3) (23)
KeTy

; he [0V 136 + 2wl 13e))
EG%fE(E 0F ™ e 1N O'E))

The proof of (i) is an application of the Cauchy-Schwarz inady, while the proof of (ii) is
obtained by applying the trace (19b) and inverse (20) inkiipsga

In the a posteriori error analysis, we invoke data oscdlegi since we do not assume any
regularity of the data. Then, the data of the problem (caefiis of the equation, right-hand
side, boundary conditions) are approximated by using thte felement ansatz functions on
the underlying triangulation. Let

d N b
fha yda ah S th uh7 gha uﬁv uh S Uh,N

denote approximations to the right hand sitlethe desired statg?, the reaction ternu,
the desired controli, the Neumanrg™ boundary condition, the lower bound and the
upper boundp, respectively. Similarly, the Dirichlet boundary conditiis approximated by
oP €Unp={yeL?(p): ylee PL(E) VE e £P}.

Then, the SIPG discretization of the boundary control [:EDb{Z) (3) is given as follows:

minimize Jn.un) =2 3 Iyl + T SlunlZe (242)
Ke‘fh Eefﬁ‘

over (Y, Un) € Yh x U4, (24Db)

subject toah(yh,vh) = |h(Vh) + bh(Uh,Vh), Vh € W (24c¢)

with the discrete constraint set for the boundary controls
={Uh €Upn: Uf <up < uﬁ}. (24d)

The optimality conditions of the disretized optimizatiaplem (24) involve the existence of
a discretepy, € V, such that

an(Yh,Vh) = Ih(Vh) -+ bn(Un, vh) WYWh € Vh, (25a)
an(Wh, Pn) = —(Yh — YA, Wn)o.o Y € Vh, (25b)
(w(un — ud) — pn, Vi — Un) o, = O Yvh € URC. (25c)



As in the continuous setting, the condition (25c) can be iteswr by invoking the discrete
co-controlo, € Up :

w(Un — UR) — Pph— OR+ 0 =0 (26a)
(OR Uh = Un) o, = (Ot = U)o = O, (26b)
Oh=0R—0f, OR>0, Op>0, W <up<up. (26¢)

with the discrete co-control
oh = max{0, o + y(up — ud) } +min{0, o — y(U? — un) }. (27)
We then define the discrete active sets as
Aan=J{(E € B | on— V(Ui —un) <O}, (28a)
Aon=J{E € | on+y(un—u3) >0}, (28b)

and the inactive set i, = Z?']“\{ﬁla,huﬁlb,h}. Further, the complimentary conditions in (26)
can be rewritten as in the continuous setting

uh(x)=wd, ol=0, on<0, ae. ondyp, (29a)
u(x)=ud, of=0, op>0, ae. ondyp, (29b)
W<up(x) <Ww’, of=0l=0 0,=0, ae.onk. (29c)

4 The residual type a posteriori error estimator

We here introduce a residual-type error estimator for thinwd control problem (2)-(3),
consisting of easily computable element and edge resisitiigespect to the SIPG approxi-
mation. The error in the stateand adjointp are measured by the energy najm||, which is
defined in (23), while the error in the conttohnd co-controt are measured by tHeé-norm
on the Neumann boundaly.

The residual-type error estimatqgrfor the SIPG approximation of the boundary control
problem (2)-(3) is

1/2
n= (ﬂ§+n%+nﬁ) , (30)
where the state, the adjoint and the control estimatorsefiead! according to
2 2 2 5 \1/2
o= (3 Mkt Y nleot Y et Y nZen) (31a)
KeT, Eez? EcZp EczN
2 2 2 ) \2
p = (3 ndk+ 3 Mot T nleot I Mien) (31b)
KET, EeE) EcED ECZN
1/2
nu — ( z niEN) 3 (31C)

EcE)



respectively. The element residuglgc,npk are given by

Nyk = bkl fh-+Ayh— dnyhllok Ke 7, (32a)
Npk = Nkl = (Yh—YR) +APh— Anpnllox Ke . (32b)
The edge residualg, go, N, zo associated with the interior edges= 0 are
Nyeo = heZI[Oynlloe +oohe?IIynlloe  E €% (33a)
Npee = heZI[0pallog +oohe [Pl E € Z, (33b)

and the boundary edge residuajso, N go andnygn, N en, Ny gnv With respect to the Dirich-
let E € £P and Neumann boundary eddges EN are

—-1/2 —-1/2
Nyeo = oohe 2)loR —yalloe Npeo = Oohe[pallocE € 20, (34a)
Nyev = g Jun+oN —ne-Oyaloe  Npen = e “lne - OpnllogE € £, (34b)
F]U‘EN = hE||nE . D((.O(Uh— uﬂ) — ph)Ho,EE S ‘Er']\‘ (34C)
We further invoke data oscillations in the error analysis
0 = (02+62+62)"% (35)
where
o = > hx(If —fallsk + Ia —anynldx) + Y he'll® —oRlde  (36)
KeTy Y EEEE_ZV_/
02y 6o
+ 5 hellg - aNlGe,
EE'Z],’]\‘%/_/
92
yEN
0 = 5 hz(IY' —Whllox + (@ —an)pnllEk), (36b)
KeTp,
82k
68 = Y (wlu’—udlBe+ vt - e+ I - wBlEe) (36¢)
EcZ)
eﬁ,EN

4.1 Reliability of the error estimator

In this section, we derive an upper bound for the discratinagrrors of the state, the adjoint,
the control, and the co-control. The reliability means thatto data oscillations (35), the
discretization errors can be bounded by the residual-tyee estimatom (30).

To prove our reliability result, we need the auxiliary s@uasy|uy], p[un] € Y, which solve
the following system

alylun,v) = (f,V)oa+ (un+g",Viory Wwev, (37a)
a(q, plun)) —(y[un] —¥*, @og Vg e\V. (37b)



By (7) and (37), we obtain

a(y —Yy[un],v) = (U=Un,V)ory, and a(g, p— plun]) = (y[un] -y, Q)00
Then, by using Lemma 3.1 with the trace inequality (19a), ain the following relations
lly=ylunlll < ewrcocs tlu—unllory, (38a)
lIp=plunlll < cocally—yunlloe. (38b)

wherecy = min(a,a1).
We now find a bound, up to the control estimatprand the data oscillatiof, for the
discretization errors in terms of the auxiliary stgfe,| and the auxiliary adjoinp[up).

Lemma 4.1 Let(y, p,u) and(yn, pn,un) be the solutions of (7) and (25), respectively, and let
the co-controb and the discrete co-contral, be defined in (8) and (26), respectively. Assume
that U3¢ < U, (w(un — Uf)) — pn) [eczn € HY(E) and that there is awe UR¢ such that [33]

[ (e(tn = UR) = Ph,Vh = U)oy <C 5 helIne - O(0d(un — Uf) — pn) [logllu— tnllog. (39)
Ecz)

Then, there exist positive constan{s C< i < 4, depending on the regularization parameter
w, the coercivity constant,and Q, such that

[lu—=Unllory + 1o =0nllory+lly = Yall + lIIp = pnll (40)
< CiNu +C28u+ Ca|[p[Un] — Pll[ + Cal[[y[un] — yall[-

Proof. In view of (7), (25) and (38), we have

Iy =yall < ercoCq|lu—unllory + [lIy[un] — yhll (41a)
lip—pnll < ca’colly—ylunlllo.c + lplun] — pll (41b)
< a 'SGllly — yunlll + [l P[un] — prl]-

By the inequalities (26), (38) and an application of theara@quality (19a), we find

lo—0onllory = w|lun—ullory+w||u’ = uiflory + [[P— Prllory (42)
< (w+ciea%eg)l|un— ullory + wl|u® — udlo,ry =+ CirColllPlun] — Palll

By the optimal equalities (7c) and (25c¢), we obtain

Wlu—unl§ry, = (U U=Un)gr — (WUn,U—Un)or (43)
< (w4 pu—up) ory — (@WUn,U—Un)o
= —(0(un— ) = pn,u—n) o+ (P—Pn,U—Un) o + (U — Ul u—un)o
< (U —U§) = Pn, Ve — U)o+ (P— PnoU—Un)gr, + (U — R, u—Un),p -



For the first term on the right-hand side of (43), in view of #esumption in (39), and an
application of Young's inequality, we obtain

2
(c(un = Un) = Pn.Vh = U)o <o Y hEIn-O(o(un — u) — pr) G (44)
Ecz)

W
+ gHU— Uh||g,rN-
We split the second term on the right-hand side in (43) adogrid
(P=PnUu=Un)gr = (P—plun],u—un)gr + (PUn] = Pn,u—Un)gp - (45)
The auxiliary equations in (37) yield

(U=utn,p—=p[un)ory = (U,p—pP[un])ory — (Un, P— PlUn])ory; (46)
= a(y—y[un],p) —aly — y[unl, p[un]),
= (y—Y[un),ylun] —Y)oo = —Ily— Y[un 5o < O.

Using Young’s inequality with the inequality (46) and thade inequality (19a), we obtain

@ 2 cich 2
(P Prt= ), < U=l + 22 plun]  pal (47)

The last term on the right-hand side of (43) can be estimagadvoking Young’s inequality
again, such that

d . d w 2 2 d o dy2
(*)(U —UhaU—Uh)o,rN < g”u—uhHo,rN‘*‘c—on(U —Up)l[G,ry- (48)

Then, using (44), (47)-(48), we end up with

2¢2 2 4
[u=Unl§ry < (22;2 2|l plun] — pnll§ry + @HM(Ud —up)llary (49)
4
TR > hEIn- O (w(un— uf) — pn) [I§e-
Ecz)
Finally, combining (41), (42), and (49), the desired remutibtained. O

It follows from Lemma 4.1 that we need to find a bound|f@(un] — pn|||. Now, we derive
an upper bound for the errors between auxiliary solutiortsdiscrete solutions in terms of
the error estimators and data oscillations.

Lemma 4.2 If (y[un], p[un]) and (yn, pr) are the solutions of (37) and (25), respectively, then

llplu) = poll? < C(n3+83+ lylu —whli3a ) (50)
llylun) = pull® < C(nZ+65). (50b)

10



Proof. Let e, = p[un] — pn. By using the coercivity result (21) and the orthogonaléation
(18), we obtain

Calllepll® < an(ep,ep) — an(vh. €p) = an(P, &p) (51)
= =yl W)oq— (T (OW.Oprox+a(W.priox)
KeTy

+ 5o Do + (O [Woe - o1l o
Ec£IUED E

Integrating by parts, we see that

S (O O¢ox = Y (~ApnWlox+ Y [(H{0pn} [WD)oe + (I0p], wHoe]

KeT, KeT EcE)
+ > (ne-OpnWoe+ Y (ne-Opn Yok (52)
EcZD Ecz)

Now, using (52) in (51) with the addition and subtractiontod given data, we obtain

Callepll? <5 (= Yot APn— anbn, )+ — Y Whox + ((@n— )P W)y

KeTy

£3 Oh-yiwlWok+ 3 (ne-Ob— 2 p) — 3 (ne-Dpn. Woe

KeT, EcED Ecz)

+ 3 [ow. [ — 220l [nDoe ~ ([9po]. {Hoe]. (53)

EcE)
For all{ € VaNH(Q) with Z|r, = 0, the orthogonality relation (18) yields
O=an(ep,pn—0) = 5 (Oep,0(Ph—7))gx +a(ep, Pr— Lok
KeTy
- > ({BOPn=0} leploe— 3 (ne-0O(pn—7),€p)oe
Ecz? Eczp
— > ({Oep}t. [Pnl)oe— 5 (ne-Cep,pn)oe
Ecz? EczP
Oo
+ PrlJoe— 3 (P, Ph)oE. (54)
EEZEI? . 0E Eezf,?hE h; Ph)oE

Letting Y = e, — vh, wherev;, is piecewise constant ofy, and using (54) in (53), we obtain

callepl® < > [(Yd Yh+APh — ohPn, W) o + (" = ¥R, Wok + ((an— o) pn, W), }

KeTy

5 Oh=yln Wok— 3 [22(0pu]. [WDoe+ (10p]. W} oe

KeT, EcE)

11



Oo

he (W, pn)oE — z (ng - Opn, W)oE

-2

EcZD Ecz)

+3 [(Dep,D(ph—Z))o’KJra(ep, ph—Z)QK} = > ({0 =0}, [epl)oe
KT, Ecz?

— > (ne-O(ph—0).eploe— H %([[ph]]a[[ph]])o,lz— > %(Dh,ph)o,lz- (55)
EcED Ecz0 ' © EcED ©

We now obtain bounds for the terms on the right-hand side®). (Bhe terms containing
are bounded by

1
5o (T 3 19— yn-Bpn —anpnl B+ Iy B+ l@n—c)pnliBic)  (56)
KeTy,
1 1 1 _
Sk Y Iyn=ylulliok+5= Y hell[Donllige+5- > oohe™llpnllioe
boKem, 2 gcx 3 g
1 B 1 _
T UohElﬂth%,E‘F)\— > helin-Opnllge -+ Y h®wilsk
4 EcED SEez KeT,
+x2 Y hel[{OWRIBe+As Y oohet[W]IGe+2a Y oohetlwlGe
Ecz? Ecz? EczP
+As z hE1||llJH%,E
EcE)

foranyA; > 0,i = 1,2,3,4,5. To estimate the terms containigign (56), we choossy as the
best piecewise constant approximatioregf Then, using an approximation result of [4]

[Wllox <chk|[Depllox K€ T

with the trace inequality (19b), we obtain

S hllwlk <c S 106z, (57a)
KeTy K7y
> het(IHOwlEe + Iwllige) <c ; he® (hi 1 Wllgx + e [Ine - Ow[I k)
Ecz? EcE0K=KK®
<c Yy |Depli, (57b)
KeTy
S hetlwlge<c Y szhgl(hkluwllawmnna-Dwné,K)
EcZP EcrIK=
<c Y ||0epl- (57¢)
KeTy

Note that here we ushrglhK <1, which holds by the shape regularity of the mesh. The terms

12



containingp, — ¢ on the right-hand side of (55) are also bounded by

1
Ae Y lIeplloi+5- > I0(Ph—lIFk+2Ae Y allepl§x (58)
KeT, 8 Ky, KeT,

b Y IP=TBkt Y hel{Om-OBIBe+ 3 netlimliEe

KeT, EcE0 EcEO
+ S helne-Opn-lBe+ 3 hellimmliZe.

EcEDP EczDb

The terms(pn — ) in (58) is bounded by S [|0(pn— Q)13 by using the trace and inverse
KeT, ’

inequalities. Further, the latter is bounded By hgt|/[pa]ll3 + S helllpnllZ e, in view
Ecz0 ’ ezb ’

of the estimate in [27, Thm. 2.1]. Likewise, the terrf | pn— ][5« is also bounded by
KeTy,

> helllplllfe+ ¥ bhellpnllge:
EcE0 EcEP

Finally, combining the bounds in (56)-(58) wittilep|lok < |llepll| anda|eplok < |l eplll

provided that\;,i = 1,...,9 are sufficiently small, the desired result (50a) is obt@ine
The proof of (50b) is carried out in the similar way. O
Combining Lemmas 4.1 and 4.2, we obtain the following religtestimate:

Theorem 4.3 Let (y, p,u) and (yn, pn,Un) be the solutions of (7) and (25), respectively, and
let the co-controlo and the discrete co-contrat, be defined in (8) and (26), respectively.
Assume that all the conditions in Lemma 4.1 hold. Then,

[u—unllory + lo—Gnllory + ly—=Ynlll + l[P— pnl| <C(n+86). (59)

4.2 Efficiency of the error estimator

Here we provide a lower bound, up to data oscillations, ferdfscretization errors in terms
of the error estimator as given in (30). We will show that thedl error estimators can be
bounded from above by the local constituents of the erroreasdciated data oscillations. We
use the same arguments as in [39, 27]. The element and edgke uibctions, denoted by
andbg, respectively, are defined by

bk llwk =1, bk €Hg(K) and ||bglleg =1 be € Hg(we), (60)

wherewg is the union of the two elements that share it. We recall fr86] fhat there exist
constants, depending on the shape regularity of the trlatign ‘7, such that

MGk < ci(vvb)ok, K €T, (61a)
[Vixllox < c2f[Vlok. K € T, (61b)
Vbk|ik < cshidV]ok, K € T, (61c)
IWllge < ca(wwbe)og, E € %, (61d)
[whlog < cslwok, E € %, (61e)
Iwbellowe < Cehe|wloe. we = KUK®, E=KnNK®, (61f)
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Wheliee < Crhg Wlog, we = KUK®, E=KNK®, (61g)

for any elemenkK € 7y, edgeE € E,, and polynomials andw defined on elements and edges,
respectively.
In the following, for a set of elemen; we denote byj| - ||| the local energy norm

Ils= (5 (D3 alvg) + 5 (rell (VB B+ 22l wlle))
€ EczlUEPCS

Lemma 4.4 Let(y, p,u) and(yn, pn,un) be the solutions of (7) and (25), respectively, and let
the error estimators)yk, Npk and the data oscillation8yk , 8,k be given by (32) and (36),
respectively. Then,we have

IN

C 1Dy =y lI% + 62 ) (622)

C(I1o(p—pu)lli + 8k + MR lly—ynll3x ). (62b)

2
If]y,K

IN

2
n p.K

Proof. We define the residud = f,, + Ayn — apyh, and seW = hﬁRtk, wherebg is the
bubble function 2X1A>A3 expressed in terms of the barycentric coordinates = 1,2, 3, of
K. By the inequality (61a),

hZIRl§x < cL(RW)ox = Cl((f + Byh — Anyn, W) g + (T — f,w>o,K).

Since the exact solution satisfieb+ Ay — ay)|x = 0, we obtain, using integration by parts
and addition and substraction of the exact data, that

h%”RH%K < Cl(([l(y_yh)v DW)O,K + (fh - fvw)O,K + ((C( - qh)yhaW)O’K) .

Here, we also used th#{|;qo = 0. By the inequalities (61b), (61c) and an application of
Young’s inequality, we obtain

% IRI3x < C(II0(y—yn)IFk + &Il T — full3k + & | (@ — an)ynli3 ) +C3RIBk

which is the desired result (62a) for sufficiently smallThe inequality (62b) can be proven
analogously. O

Lemma 4.5 Let(y, p,u) and(yn, pn,un) be the solutions of (7) and (25), respectively, and let
the error estimators)yk, Npk and the data oscillation8yk ,8pk be given by (32) and (36),
respectively. In addition, lebg = K UK® be the union of any two elements, i.e, KK with

E = KNKE® Then, we have

hell[Oy]I3e < C(Illy—wnllge + Nyx + 6k ). (63a)
0.E ( WE K:;Ke y,K K:;Ke y,K)

A

N

hell[OplIGe < C(lIP—pnllgy, + N2k + 03k )- (63b)
°E ( “ K:;Ke PK K:;Ke p’K)
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Proof. We setW = [[Oyy] b, wherebg is the bubble edge function an: given by
belk = 4A1h2,  belke = 4ATNS.
By using the inequality (61d) and the fact thjaty] = 0 on the interior edges, we obtain
he | [Oynlli6.e < cahe ([OYA],W)g g = cahe ([0(h — Y)[.W) g -
After integration by parts over each of the two elementept= K UK®, we have
(IO =YTW) e = (Al¥h—Y).W) g . + (Bh—y), Ow)y -
Using the differential equatiorAy + ay = f and approximating the data, we obtain

he|[[Oyn]llfe < C4hE((fh+AYh—0(th,W)o’wE+(f—fh7W)o,wE+((Gh—G)Yh,W)o’wE)

+cah ((@(yh = Y) W) g + (O0n =), OW)g ).
Then, the inequalities (61f) and (619) yield

relllowllfe <O loe(ly-wilee + (3 nd)"+( 3 e)").

which gives the desired result (63a) after an applicatiovicafng’s inequality and the shape-
regularity of the mesh, i.ehg < yhg with y> 1. The proof of (63b) is carried out in the
similar way. O

Lemma 4.6 Let (y, p,u) and (yn, pn,un) be the solutions of (7) and (25), respectively, and
let nyen and Ny en and the data oscillation$yk, 6, gn,Op be given by (34b) and (36),
respectively. Then, we have '

e < C(Iy=WllR + gk + 8 +82en + lu—wnll3e ), (64a)
n2en < C(llp=prll& +n3k+83x). (64b)

Proof. We setW = (ng - Oyp — Un — gﬁ)bE, wherebg is the bubble edge function. By using
the inequality (61d) and the fact thag - Oy = u+gN on the Neumann boundary edges, we
obtain

NZen = hefun+o —ne-Oynl§e
czhe (Ng - Oyh — Un— g”’W)O,E
cahe ((nE +D(yh = ¥), W) + (U= tn,W)oe + (g - 9”7W)0,E)-

By integration by part over the elemelitD E, the differential equatior-Ay+ ay = f and
approximating the data, we obtain

IN

Noen < cahe ((fh + Ay — Oy W) o i« + (F = Tn,W)ok + ((an — O()Yh,W)O,K)
+cah ((@yh = )W) o + (T0h =), W) )

+cahe ((U —Un,W)og + (g" — QN,W)O,E) -
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Then, the inequalities (61e)-(61g) yield

1/2
N2en < CHE llun+ Y — ne - Oynllog (ly — yall + N3k + 83k + 62en + lu— nl3e ).

Finally, by applying Young’s inequality, we obtain the desi result (64a). The proof of (64b)
can be verified by using the same arguments. O
What is now left is to bound the estimator for the discret@aerror in the controls.

Lemma4.7 Let(y, p,u) and(yn, pn,Un) be the solutions of (7) and (25), respectively, and let
Nuen andBy be given by (34c) and (36), respectively. Then, we have

n2en <C(lu=unl3r, + llp— pull + 63 (65)
+ el (ne - O (co(un — u) = pn)) X, 13 )

whereA4, is the union of the active sef#& ;, and Ay .

Proof. We have thatw(u— u%) — p)x; = 0 from (11). It follows from the inverse inequality
(20) that

Noen = hellne- O(w(un—up) — pn) Il e

Cll (w(un— Uf) = ph)X sy llo + hel| (ne - D(w(un — uf) — ph) ) X1, 15

Cll (w(un — up) — pr— w(u— %) + p) X 1[5 £ + hell (Ne - O(w(Un — UY) — Pn) )X, ll5
C(wlju—unl[§e +wlu = uli§e + 1P — prll§e) + hell (ne - D(w(Un — uR) — pn) ) X, 15 e-

This is the desired inequality. O
Now, we can derive the efficiency estimate in the followingdtrem.

IN

IN

Theorem 4.8 Let (y, p,u) and (yn, pn, Un) be the solutions of (7) and (25), respectively, and
the error estimaton and data oscillatior be given as in (31) and (35), respectively. Then,
it holds

0 <C(llu=unllory + Iy = yall + lIp— pall| +© (66)
+ 3 hell(ne - O((uh— ) — pr)) X, loe )
Ecz)

Proof. By the definition of the energy norm defined in (23), and thé flaat[y]] = 0 on the
interior edges ang = gP on the Dirichlet boundary edges, we can easily derive

02 o2 B
> h—zll[[yh]]|\5,5+ > h—EHgE—VhHS,ESC(|||Y—Yh|H2+ S hetlle® -arlge). (67)

Ecr) Eczp EcEp
Analogously, we obtain
a3 a3
S Llledlze+ S 2lienlde <Clip—pall® (68)
o Ne o Ne
EeEy E€Ey
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Then, the combination of the results in Lemma 4.4-4.6 withitrequalities (67)-(68) gives

the assertion (66). O
Remark 4.9 In our numerical experiments, we use
Nu= Y hell(ne-O(co(un— u?) — pn) )X llog (69)
Ecz

as an indicator of the control instead qgf, (31c¢), sincen, does not lead to a localization of
refinement of the inactive set. The same problem is also wdddor the control indicators
proposed in [22, 28, 33].

In addition, we approximate the characteristic functiongbposteriori quantities as done
in [32]. Foru >0, let
~ (Un—UR)(up—up)

hH 4 (Up — U2) (U — up)

th

5 Implementation details

5.1 The adaptive loop

An adaptive procedure for the symmetric interior penaltye@an discretization of the opti-
mization problem (2)-(3) consists of successive loops effthlowing sequence:

SOLVE — ESTIMATE — MARK — REFINE.

The SOLVE step is the numerical solution of the optimal control probl&ith respect to
the given triangulatiorify, using the SIPG discretization. By using the primal dualvacti
set (PDAS) algorithm as a semi-smooth Newton step, see,[8]gwe solve the following
discrete linear system:

Mo K Yh My
wMg —Mg Mp Un | _ MU (70)
KX —Mp : P | F ’
© YXa, : Xin Oh y(X/qa,huaJ’_ Xﬂb.hub)

wheredn = Aan U Ay is @ diagonal 0-1-matrix 4, ,, X a,,, @ndX 4, denote the characteristic
functions of 4aph, Aph and 4y, respectively. M and Mg are mass matrices on the domain
and boundary, respectivel and ¥ correspond to the bilinear foran(yn, vh) and the linear
form I (vn) defined in (15), respectively.

For theESTIMATE step, the residual error estimatayg n, andny defined in Section 4
are used. InthB1ARK step of the adaptive loop, the edges and elements for thenedint are
specified by using the a posteriori error estimator and bysimg subsetd/c C 7y, andMg C
Ep such that the following bulk criterion [12] is satisfied ftretgiven marking parametér
with0< © < 1:

Oy M*+MR)? < Y M)?+0R)?

KeZy Ke My
© 5 (E?+ME)*+mp)? < Y Mp)*+ng)*+ne)
ECE, EcMe
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Bigger © will result in more refinement of triangles in one loop and Bema® will result

in a more optimal grid but more refinement loops. We note thatdata oscillations may
be included in the bulk criterion in the same way. Finallythe REFINE step, the marked
elements are refined by longest edge bisection, whereatetineets of the marked edges are
refined by bisection [9].

5.2 Numerical results

We now present several numerical results in order to exathmeuality of the derived esti-
mators in Section 4 and the performance of the adaptive loimpduced in Section 5.1. We
use piecewise linear polynomials for the approximationhef state, the adjoint, the control
and the co-control. The penalty paramedgiin the SIPG is chosen a® = 6 on the interior
edges and 12 on the boundary edges. The parameised in the definition of the active
and inactive sets is chosen as equal to the regularizatiempderw. The effective index is
calculated according to

Ny +Np~+Nu

effectivity index= . (72)
[y = Ynlll + lllp = Palll + l[u = Unllo.ry + [0 — Onllory
We finally define the projection of the control such that
Proja (V) = max{u®, min{u®,v}}. (72)

5.2.1 Example 1

We use an example on the L-shaped domain, which is given Hy as(—1,1)2\ ([0, 1] x
(—1,0]) with I' = I'y, see Figure 1. The control is defined all Neumann boundarg. bix
constraints are given hy? = —0.5 andu® = 0.5. The reaction termx and the regularization
parameter are taken ast = 1 andw = 1, respectively. The remaining data of the problem
are

f(r,8)=0, u(r,6)=0, gN(Le):—Projua,ub(rzwsin(ge)), yd(r,e):r2/3sin(§9),

= /X4 x2 _ | atanZxq,xp), atanZxp,x2) >0, .
wherer = /xg + X5, V(x1,X2) € Qandd = { AT o) 4 2 atandn a0 <0 with

the function atangi, x2), i.e., four-quadrant inverse tangent (arctangentyaindx,. Note
that the function atan(s,xy) is defined in MATLAB®.

M3

P

4

M
M

M
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Figure 1: Example 5.2.1: L-shaped domain.

The analytical solutions of the state, adjoint, control aoetontrol are given by

y(r,6) = 0,

p(r,.8) = r2/3sin(§6),

u(r,8) = ProLa,ub(r2/3sin(§e)),

o(r,8) = r2/3sin(§6)—ProLa,ub(r2/3sin(§6)),

respectively.

Adjoint

Figure 2: Example 5.2.1: Computed solution of the adjpint

The adjoint exhibits a typical singularity at the re-entremrner of the domaif, see Fig-
ure 2. Figure 3 displays the computed contr@nd the computed co-contralon the Neu-
mann boundary. We observe that inactive set is equal to

I=[-0.78,0] x {—1}U[0,1] x {0} U{0} x [-1,0]U{1} x [0,0.78]. (73)

The initial mesh is generated by starting first divid@gnto uniform squares and then dividing
each square into two triangles. It should be emphasizedatbare working with a single
mesh for all variables. Consequently, the mesh reflect®mnegdf substantial change in the
variables. Figure 4 shows the adaptively generated triatigns after seven refinement steps
with © = 0.50 in the bulk criteria. The more refinements occurs on thelaral for the
singularity of the adjoint at the re-entrant corner, andtendther hand for the discretization
of the control in the inactive sdt(73), as we expected.

Figure 5 displays the performance of the error estimatop@sed in Section 4 in terms of
number of vertices for the marking parame&e= 0.5. The left plot shows the effectivity
index of the estimator, which is the ratio between the erreasured in théd| - |||-norm and the
estimator, defined in (71). Some minimal resolutions aressary so that the ratio becomes
constant.
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Figure 3: Example 5.2.1: The computed contraind the computed co-controlon the Neu-
mann boundary regions.

Figure 4: Example 5.2.1: Adaptively generated mesh aft@finement steps wit® = 0.50
in the bulk criteria.

The middle plot displays that thi - ||-error and estimaton decay with a rate close to
the optimal rateN—1/2, whereN is the number of vertices. Lastly, the right plot shows the
actual size of the state, adjoint and control related coraptaof the error estimator and data
oscillation. As can be expected, the adjoint component efetstimator is dominant due to
the singularity at the reentrant corner®f Since the desired controf and the bounds of the
control, i.e.,u u° are constants, the data oscillation of the corfigal equal to zero.
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Figure 5: Example 5.2.1: The left plot shows the effectiuitjex. The middle plot shows the
decay of the total error and estimator. The right plot shdvesdomponents of the
error estimator and data oscillation. The marking paramet@ = 0.50 in the bulk

criteria.
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Figure 6: Example 5.2.1: The global errors of the state,iatjo || - ||| andL?-norms (top),

and of the control and co-contra2ir?-norm on adaptively and uniformly refined
meshes with various marking paramet@rs- 0.3,0.5,0.8 in the bulk criteria.



We next have a closer look the convergence of the state,radfmintrol and co-control
variables. Figure 6 illustrates the errors of the state ajuirat in the||| - || andL?-norms, and
of the control and co-control in the?-norm on adaptively and uniformly refined meshes with
various marking paramete® = 0.3,0.5,0.8. For all case, the adaptive refinements lead to
better approximate solutions than the uniform refinemeAtthough the smalle® require
more refinement loops, it produces more accurate resultsodhe obtained optimal mesh.

5.2.2 Example 2

This example is taken from [28]. Kohls et al. have solved &ixiample by using a hierarchical
estimator, discretized by a continuous finite element agpration. We letQ = [0, 3]? with

I =T'n. However, the boundary control is only considered 6hx [1,2]. The reaction term
and the regularization parameteare taken as = 1 andw = 1, respectively. The remaining
setup of the problem is as follows:

fxi,x) = e 10%(41-4002),
wWixy,x2) = 0,
. i1
—Proja (% (@n+1) (3e-1) - (Be—-1)™")), (%) € {0} (1.2,
—10(9 _
N xe) = —~60e~% :yz)’ =3,
_BOeflo(X +9)’ Xp = 37
0, otherwise

2n—1 2n+1
Yix,x) = € +z< o (31T (3e-1 31 ,

wherer = 1/x§ +x§, V(x1,%2) € Q. The analytical solutions of the state, adjoint, contra an
co-control are given by

yre = el

o) = = (<2n+ 1 (3e-1) - (5e-1) 2”“) ,
Ur8) = Projay (% (<2n+ 1 (3e-1) - (5e-1) M)) ,
oo = (e () (o))

Proja (% <<2n+ D (Ze-1) - (3e-1) M)) |

respectively, withZz = 10,n = 20. The components of the error estimator exhibit local esfin
ments in different regions of the domain due to the partici@atures of the state, the adjoint,
and the control. The stateneeds more refinement around the origin due to the shape of the
narrow exponential peak. The adjomtisplays a boundary layer closexp= 0 andx, = 3.
These features can be observed in Figure 7.
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State Adjoint

Figure 7: Example 5.2.2: Computed solutions of the stdteft) and the adjoint (right).

Control

%

Figure 8: Example 5.2.2: Adaptively generated mesh (Iéférd. 3 adaptive refinement step
with ® = 0.5, and the computed contralright) for the inactive case.

To observe the sensitivity of the adaptive algorithm witsprect to the changes of the active
and inactive sets, we test the example with different boxstamts:

Inactive case: We first consider the control constraints as

wW=-5 and W=5.

Figure 8 reveals the adaptively refined mesh (left) and thmepeded control (right) for the
inactive case. We observe that the control is between therltwwund and upper bound,
i.e., 1d < u< u. Therefore, the inactive sdtis equal to all of the control boundary, i.e.,
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I =1{0} x [1,2]. In the adaptive refinement, our error indicafgr(69) catches the inactive set
well, see Figure 8 (left), after 13 adaptive refinement steiis © = 0.5 in the bulk criteria.
Further, the resolution of the state and the adjoint occexascted.

Mixed case I: The control constraints are now considered as
W=-2 and WP =0.
Now, the value of control varies between the lower bound gpkubound:
u=u® for x,€[1,1.2] and u=u’ for x; € [14,2)].

Therefore, the inactive sdt= {0} x [1.2,1.4]. Figure 9 reveals that the inactive set of the
mixed case | are picked out well in the adaptive refinement.

Control Co-control
0.5 4

1.2 14 1.6 18 2 1 12 1.4 16 1.8 2
X, X,

2 2
Figure 9: Example 5.2.2: Adaptively generated mesh (Iéf@rd 3 adaptive refinement step
with ® = 0.5, and the computed control(middle) and co-contrab (right) for the
mixed case .

Mixed case II:  We finally considered the control constraints as
W=0 and u’=2

Now, the value of control varies between the lower bound gmukeubound as the previous
case:
u=u? for xp€[1,1.5 and u=u’ for x, € [18,2].

Therefore, the inactive sét= {0} x [1.5,1.8]. As previous cases, the inactive set of the mixed
case |l are picked out well in the adaptive refinement, seerBigo (left).

We next have a closer look some properties of the proposidatst for the inactive case.
Figure 11 (left) displays the ratio between the error jjth||-norm and the estimator, called
the effectivity index for the inactive case with the markipgramete© = 0.50. The ratio
converges to a constant after a few iterations.
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Figure 10: Example 5.2.2: Adaptively generated mesh (df&r 13 adaptive refinement step
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mixed case I
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Figure 11: Example 5.2.2: The left plot shows the effegtivitdex. The middle plot shows
the decay of the total error and estimator. The right plotxghthe components of

the error estimator and the data oscillation. The resudt®htained for the inactive
case with® = 0.50 in the bulk criteria.

10°

The middle plot in Figure 11 shows the decay of the error atichator versus the number
of vertices for the adaptive refinement. The estimator usgtanates the error by an almost
constant factor. We observe that the behaviour of the enditlae estimator is similar to the
results obtained in [28]. The right plot in Figure 11 shows #ttual size of the state, adjoint
and control related components of the error estimator amdaia oscillations for the inactive
case. The refinement process is dominated by the contniboftithe adjoint.

Figure 12 finally illustrates the errors of the state and iadljm the || - || and L2-norms,
and of the control in th&2-norm on adaptively and uniformly refined meshes with vasiou

marking parameter® = 0.3,0.5,0.8. The adaptive refinements lead to better approximate
solutions than uniform refinements.
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Figure 12: Example 5.2.2: Errors of the stgtéleft) and adjointp (middle) in || - ||| andL?-
norms, and the contral (right) in L?-norm on adaptively and uniformly refined
meshes for the inactive case with various marking paraméter 0.3,0.5,0.8 in
the bulk criteria.

5.2.3 Example 3

We use the example considered in [15]. Gaevskaya et al. lodwedsthis example by using
a residual-type error estimator, discretized by a contiisUite element approximation. In
this example we use non-constant lower and upper boundidordntrol, which are highly
oscillating constraints. The data of the problem are

Q= (0, 1)2, = (0, 1) X {O}, b= a\I'N, G(Xj_,Xz) = 1, w= 1073, Ud(X]_,Xz) = O,

0, x1 < 0.5,
Yixxe)=¢ 1,  05<x1 <075 , f(x,%)=0, g°(x1,%)=0, g"(x1,x)=0,
~1, 0.75<xi,

U2 =sin(8mx;), U =2+ cogT/2+8xp).

Figures 13 and 14 show the computed solutions of the gtdtee adjointp, the controlu,
and the co-contrab, respectively. The control switches from the lower to theempbound
and back again to the lower boundiog. This is an almost "bang-bang” type optimal control.

The initial mesh is generated by starting first dividiQginto 8 x 8 uniform squares and
then dividing each square into two triangles as in the prevexamples. Adaptively generated
meshes after six (left) and eight (right) refinements argldijed in Figure 15 witl® = 0.45in
the bulk criterion. As expected, more refinements occur erotte hand for the discretization
of the control in the inactive set, almost Neumann bound@gryand on the other hand for the
discretization of the state and adjoint on the right sidéhefrhesh, i.e.(0.5,1) x (0,1).

26



State Adjoint

06, e 002,

%

Figure 13: Example 5.2.3: Computed solutions of the stéleft) and of the adjoinp (right).
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Figure 14: Example 5.2.3: Computed solutions of the conti@ft) and of the co-contrab
(right). The lower and upper bounds on the control, LB.andu®, are shown as
'dashed (blue)’ and 'dotted (red)’ lines, respectively.

The components of the residual type a posteriori error @stimand data oscillations are

presented in Table 1 on the mesh hierarchy v@th- 0.45 in the bulk criterion. We observe
that dominating contributions such as the state estinrgtahe adjoint estimatan ,, and the
control oscillationg, are smaller than obtained in [15] for approximately the sammaber of

vertices.

27



Figure 15: Example 5.2.3: Adaptively generated meshes @fieft) and 8 (right) refinement
steps with® = 0.45 in the bulk criteria.

# vertices Ny Np Nu Bp Bu
81 4.83e-01| 1.20e-01| 5.30e-06| 8.07e-02| 1.00e+00
167 3.70e-01| 8.03e-02| 2.84e-06| 3.93e-02| 6.35e-01
332 2.80e-01| 5.81e-02| 9.21e-07| 2.37e-02| 3.89e-01
582 2.49e-01| 4.42e-02| 5.52e-07| 1.39e-02| 1.37e-01
1174 | 1.83e-01| 3.26e-02| 2.60e-07| 9.51e-03| 7.30e-02
2116 | 1.32e-01| 2.46e-02| 1.23e-07| 6.02e-03| 3.91e-02
4055 | 9.57e-02| 1.90e-02| 5.96e-08| 3.80e-03| 1.75e-02
7234 | 6.92e-02| 1.44e-02| 2.97e-08| 2.11e-03| 9.76e-03

Table 1: Example 5.2.3: Components of the error estimatdidaia oscillation fo® = 0.45.

6 Conclusions

In this paper, we study a posteriori error analysis of thergginic interior penalty Galerkin
(SIPG) method for the boundary optimal control problemsagoed by the elliptic PDEs with
bilateral control constraints. Piecewise linear polyrasare used to discretize the unknown
variables. The lower and upper error estimates are demvauw the efficiency and reliability
of the proposed error estimator by invoking data oscillaiolr he numerical results show that
the adaptive refinements are superior to uniform refinemenisure work will include the
extension of our results to Dirichlet boundary optimal cohproblems.
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