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Abstract

The numerical solution of PDE-constrained optimization problems subject to the
non-stationary Navier-Stokes equation is a challenging task. While space-time
approaches often show favorable convergence properties they often suffer from
storage problems. We here propose to approximate the solution to the optimiza-
tion problem in a low-rank from, which is similar to the Model Order Reduction
(MOR) approach. However, in contrast to classical MOR schemes we do not
compress the full solution at the end of the algorithm but start our algorithm
with low-rank data and maintain this form throughout the iteration. Theoret-
ical results and numerical experiments indicate that this approach reduces the
computational costs by two orders of magnitude.
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1 Introduction

Optimization subject to constraints given by partial differential equations (PDEs) is
an active field of research [54, 27]. Much progress has been made over the last years
concerning the analysis of problems and the development of efficient numerical schemes
to solve the linear and nonlinear optimization problems. In almost all scenarios one
arrives at the solution of a large scale linear system that either represents the first
order (KKT) conditions [41] or is part of some nonlinear scheme such as an SQP or
interior point approach [24, 55].

The development of iterative solvers and especially preconditioners for these linear
systems, which often have a saddle point form, has been a key research area in nu-
merical linear algebra [14, 39, 21]. For parabolic problems space-time methods have
shown great promise [48, 52] regarding robustness with respect to dependence on both
mesh- and regularization parameters. Multigrid methods [9] are also used for parabolic
problems and also methods using stationary iterations [28].

Our approach in this paper follows a recent work presented in [51] where the space-
time system is solved using a low-rank decomposition. This schemes replaces the
space-time solution, which can be written as a matrix, by an approximation that only
needs little information coming from the space and time domains. We will make this
more precise in Section 2.1. The goal is to reduce the storage amount to a small
multiple of that of the stationary problem. The work in [51] only considered linear
problems and we here present how this approach can be carried over to the case when
we consider the optimization subject to the Navier-Stokes equations. The control of
the Navier-Stokes equations has been an active research topic for the last years and
we refer to [22, 17] and the references given therein.

Low-rank approximations have become state-of-the-art methods for data-sparse so-
lution of high-dimensional problem [32, 16, 18]. This approach is based on the idea of
separation of variables, and approximates a large multidimensional array (tensor) by
a polylinear combination of smaller tensors. Some of the most powerful of such combi-
nations are the Tensor Train (TT) [44] and Hierarchical Tucker (HT) [20] formats. A
tensor can be associated with a discretized operator or solution of a high-dimensional
PDE. To solve an equation, one needs an iterative algorithm, since elements of an
initial (large) tensor are never accessed directly. One can adapt classical algorithms
such as GMRES [3, 26], or develop tailored methods for low-rank formats, such as the
Alternating Least Squares [25].

TT and HT decompositions are based on a recurrent application of the matrix low-
rank factorization, for example, the Singular Value Decomposition. Therefore, their
storage efficiency depends on the ranks of the corresponding matricizations of a tensor.
If all ranks are bounded by a moderate value for the given data, the storage needed
for a low-rank format is logarithmic compared to the cardinality of the initial tensor.
In an ultimate scenario, one can reshape any data to a tensor, the dimensions of which
are prescribed by the smallest (prime) factors of the number of elements. The TT
decomposition applied to such tensor was called the Quantized Tensor Train (QTT)
format [31, 43], and it has demonstrated impressive compression properties for smooth
solutions of PDEs, discretized on tensor product grids.
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However, if a PDE is posed on a complicated spatial domain, an ultimate tensori-
sation is inapplicable. Nonetheless, there can still be several independent variables,
such as an aggregated spatial coordinate, time and auxiliary parameters. In this pa-
per we consider separation of space and time variables only. In this case, the solution
is reshaped to a matrix, and the classical low-rank decomposition is sought. There
exist many efficient algorithms for solution of matrix equations in the low-rank form,
such as the ADI and Krylov methods for Sylvester equations [56, 4] (including high-
dimensional generalizations [34, 38]). However, they often require commutativity of
(at least, dominant) low-rank factors of the operator. Alternating tensor algorithms
can be more efficient for problems such as the Navier-Stokes equations, where the
operator has a complicated structure.

Development of low-rank methods for nonlinear problems was performed in different
communities in different ways. On one hand, the Proper Orthogonalized Decompo-
sition (POD) is a mature technique in Model Order Reduction, and it was used in-
tensively for reducing the Navier-Stokes equations, see e.g. [10, 2, 40]. However, the
POD requires to solve the full problem first, which might be extremely computation-
ally demanding. On the other hand, tensor methods compute directly the low-rank
factors, but they were applied to only a few nonlinear problems. One can mention the
Hartree-Fock equation [30, 49] and some plasma models [12, 33]. More developed are
methods for Ricatti equations [6], but they rely on the form of the operator explicitly.

In this paper we generalize the Alternating Least Squares algorithm to the saddle-
point structure of the optimality system, arising from the Lagrangian optimization,
and adapt them particularly to the Navier-Stokes equations in constraints. We com-
pare them with the traditional space-time optimization with the state-of-the-art pre-
conditioners [48] and show that the new algorithm provides a significant reduction of
computational time and storage.

Our paper is structured as follows. We first introduce the problem formulation for
both the Navier-Stokes forward problem and the corresponding optimization problem.
In Section 2.1 we discuss the forward formulation and introduce an appropriate low-
rank formulation. This is followed by Section 2.2 where a low-rank formulation for
the optimization problem is developed. We also show that this can be used with
various time-discretization schemes. In Section 3.1 we propose an alternating linear
scheme (ALS) for the forward simulation which in Section 3.2 is followed by a detailed
discussion of such an ALS method for the optimality system that sits at the heart
of the outer nonlinear Picard iteration. The particular case of carefully handling the
pressure degrees of freedom needed for the ALS method is discussed in Section 3.3.
We propose efficient solvers for the linear systems in saddle point form in Section 3.4.
A discussion about the existence of solutions for the optimization problem is added in
Section 4. Our numerical experiments shown in Section 5 illustrate that our method
performs very robustly. In particular we show that the storage amount needed for the
low-rank scheme is typically a fraction of the storage requirement for the full problem.
This is combined with a thourough parameter study where all system parameters are
varied over orders of magnitudes with only observing very benign rank growth.
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2 Problem formulation

We start our discussion by introducing the formulation of the Navier-Stokes equations
that we are going to use throughout this paper:

yt − ν∆y + (y · ∇)y +∇p = u, (1)

∇ · y = 0, (2)

posed on domain Ω ∈ R2,3 with appropriate boundary and initial conditions (see [14]
and the references mentioned therein for more details). Often one is also interested
in solving optimization problems where the Navier-Stokes equations appear as a con-
straint [7, 8, 22]. For this we consider the following objective function

J(y,u) =
1

2
‖y − yd‖2Q0

+
β

2
‖u‖2Qc (3)

where Qo = Ωo × [0, T ] and Qc = Ωc × [0, T ] are space-time cylinders. Here Ωo ⊆ Ω
is the observation domain and Ωc ⊆ Ω the control domain. We for now assume that
both are equal to Ω. The function yd is the desired state. For this case the right hand
side of equation (1) represents the control u, which is computed in such a way that
the solution of the Navier-Stokes equation is close to the desired state.

Additionally, we also consider an objective function including a vorticity term [22]

J2(y,u) =
α1

2
‖y − yd‖2Q0

+
α2

2
‖curl(y)‖2Qc +

β

2
‖u‖2Qc (4)

Many people have studied the numerical solution of Navier-Stokes equation and also
the optimization problem with them as a constraint. Our goal here is to discuss
the possibility of extending the framework recently introduced for PDE-optimization
problems [51] with linear constraints. This framework utilizes a low-rank structure of
the solution and hence enables efficient solvers for the optimization problem.

Before discussing the Navier-Stokes case we briefly want to introduce the idea using
the Stokes equations as an example. For this we consider the Stokes equations

yt − ν∆y +5p = u (5)

5 · y = 0 (6)

equipped with appropriate initial and boundary conditions. Employing a finite element
discretization in space, an implicit Euler discretization for the temporal discretization
of the PDE, and a trapezoidal rule for numerical integration of the objective function
leads to a discretized optimization problem [52, 23]. The first order conditions using
a Lagrangian with Lagrange multiplier λ then lead to the following system

 M1 0 KT
0 M2 −MT

3

K −M3 0




yh
ph
uh
λh
ξh

 =

 M1yd
0
d

 , (7)
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which we want to write in Kronecker notation utilizing the following that the Stokes
equations are discretized as

K
[

yh
ph

]
−M3uh = d, (8)

where

K = (In ⊗ L+ C ⊗M) , M3 = In ⊗
[
M
0

]
, d = e1 ⊗

[
My0

0

]
+ f,

where e1 ∈ Rn is the first unit vector (this term accounts for the initial state), and f
agglomerates the boundary conditions (it will be written in detail later). The number
n denotes the number of time-steps and C ∈ Rn,n is given by

C =
1

τ


1
−1 1

. . .
. . .

−1 1

 ,
where τ is the time step. As for the spatial matrices,

L =

[
L BT

B 0

]
represents an instance of a time-dependent Stokes problem with B the discrete diver-
gence, L is the Laplacian (including viscosity ν), and M is the mass matrix, associated

with the velocity space, M =

[
M 0
0 0

]
is the mass matrix for the velocity-pressure

space. The matricesM1 = Θ⊗M and M2 = βΘ⊗M with Θ = τ ·diag( 1
2 , 1, . . . , 1,

1
2 )

denote the mass matrices coming from the discretization of the functional (3).
The goal then is to use the fact that the right hand side of the optimality system

can be written in low-rank form and this can be carried trough an iterative solver like
Minres [46] without a substantial increase in the rank of the solution [51].

2.1 Low-rank approximation of the Navier-Stokes forward problem

The situation for the Navier-Stokes equations is more complex as the nonlinear con-
vection term does not allow for such an easy description of the problem. Typically the
Navier-Stokes equations are discretized in space followed by a discretization in time.
One then has to solve a nonlinear problem at every time-step for which both Newton
as well as Picard iterations have shown to be good candidates [14]. We here focus on
the Picard iteration and follow the description in [14, Chapter 8.2] which establishes∫

ytv −
∫
ν∇y : ∇v + c(ȳ,y,v)−

∫
p(∇ · v) =

∫
uv ∀v ∈ H1(Ω) (9)∫

q(∇ · y) = 0 ∀q ∈ L2(Ω) (10)
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with the trilinear form

c(ȳ,y,v) :=

∫
(ȳ · ∇y) · v,

where ȳ denotes the previous iterate of the nonlinear Picard solver. Note that this
formulation is typically known as the Oseen equations and will be at the heart of this
paper.

The basis for the low-rank solution in the Stokes case is based on the fact that the
right hand side of the linear system is of low-rank or can be well approximated by a
low-rank function. We start by considering the forward problem with the right-hand
side u. We now assume that u is either given or approximated by

u =

ru∑
i=1

vi,u(t)wi,u(x)

which is in discretized form written as

uh =

ruh∑
i=1

vi,uh ⊗ wi,uh .

Using this for the first step of the Picard iteration, an implicit Euler discretization in
time and finite elements in space, we obtain the following discretized system,

(C ⊗M+ In ⊗ L)yh =

ruh∑
i=1

vi,uh ⊗ wi,uh + d. (11)

Note that this represents the Stokes system as no other initial guess was used. We
now assume that at a step ` of our Picard iteration, the previous solution is given by

ȳh =

rȳh∑
i=1

vi,ȳh ⊗ wi,ȳh , (12)

and we want to compute the next (`+ 1-th) Picard iteration. Notice that the trilinear
form in (9) is linear in ȳ, and hence preserves the low-rank form of ȳh. Let us assume
that finite elements {φ1(x), . . . ,φm(x)} are used for the discretization of the velocity
in space. Then ȳ(tl, x) is constructed from ȳh by interpolation

ȳ(tl, x) =

m∑
k=1

ȳh,k(tl)φk(x) =

m∑
k=1

rȳh∑
i=1

vi,ȳh,l ⊗ wi,ȳh,kφk(x),

where l = 1, . . . , n is the time step. Plugging this into c(ȳ,y,v), we obtain

c(ȳ(tl),φj′ ,φj) =

rȳh∑
i=1

vi,ȳh,l ⊗ (Ni)j,j′ , j, j′ = 1, . . . ,m, (13)

5



where Ni ≡ N(wi,ȳh) ∈ Rm×m is defined by its elements

(Ni)j,j′ =

∫
φj

(
m∑
k=1

wi,ȳh,kφk

)
∇φj′ . (14)

Since φk(x) are finitely supported, most of the triple products of φ above are zeros,
and Ni can be assembled in O(m) operations.

Now, for the fully discretized problem, we have(
C ⊗M+ In ⊗ L+

rȳh∑
i=1

Di ⊗Ni

)
yh =

ruh∑
i=1

vi,uh ⊗ wi,uh + d̄, (15)

where Ni = bkldiag(Ni, 0) and Di = diag(vi,ȳh). Note that d̄ consists of the contribu-
tions coming from the boundary conditions at the previous step due to the changing
matrix Ni. The Picard iteration is now continued until convergence. The main advan-
tage of the nonlinear solver, i.e., Picard iteration in this case, as the outer iteration is
that we can reduce the storage amount for the inner space-time problem. This is true
if the ranks ryh are kept small and hence the amount of storage is kept small and only
a few matrices Ni have to be assembled.

Note that our method can also be used when different temporal discretizations [14]
are used

1

τ

(
y(l+1) − y(l)

)
+ (ȳ∗ · ∇)y(l+ 1

2 ) − ν∆y(l+ 1
2 ) +∇p(l+ 1

2 ) = u(l+ 1
2 ) (16)

∇ · y(l+ 1
2 ) = 0 (17)

where y(l+ 1
2 ) := 1

2 (y(l+1) + y(l)) and similar for u and p. The choice ȳ∗ = y(l+ 1
2 ) rep-

resents the Crank-Nicolson scheme and ȳ∗ = 3
2y

(l) − 1
2y

(l−1) the Simo-Amero scheme
(cf. [14] for more details and further references). Note that as we approximate the
space-time solution in a low-rank form we do not proceed sequentially in time and
these schemes need to be rewritten for our purposes. Hence we consider an all-at-once
semi-discretized system for which the state can then be written as

y :=


y(1)

y(2)

...
y(n)

 . (18)

For this we need the two matrices

C =
1

τ


1
−1 1

. . .
. . .

−1 1

 and C̃ =
1

2


1
1 1

. . .
. . .

1 1

 (19)
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Cy − ν∆C̃y + N(ȳ)C̃y +∇C̃p = C̃u (20)

∇ · C̃y = 0 (21)

where for the Crank-Nicolson scheme the semi-discretized part is given by

N(ȳ)C̃y =
(
Ĉȳ
)T

blkdiag(·∇, . . . , ·∇)C̃y, (22)

where Ĉ = C̃ represents a Crank-Nicolson scheme or the Simo-Amero scheme via

Ĉ =
1

2


1
0 1
−1 3 0

. . .
. . .

. . .

−1 3 0

 .

This is then followed by a spatial discretization where the discretization of most terms
in (20) is straightforward and we focus on the term N(ȳ)C̃y which using (14) is
discretized as

rȳh∑
i=1

diag(Ĉvi,ȳh)C̃ ⊗N(wi,ȳh) =

rȳh∑
i=1

D̃i ⊗N(wi,ȳh),

where D̃i = diag(Ĉvi,ȳh)C̃. This leaves us with the overall space-time discretization(
C ⊗M+ C̃ ⊗ L+

rȳh∑
i=1

D̃i ⊗Ni

)
yh =

ruh∑
i=1

vi,uh ⊗ wi,uh + d̄. (23)

2.2 Low-rank approximation of the optimization problem

We now consider the case when the Navier-Stokes equations represent a constraint
for a misfit functional such as the one given in (3). There are now two approaches
that one can take to solve the optimization. The first one discretizes the objective
function first and then optimizes the discrete problem while the second approach first
derives the optimality system and then discretizes the resulting system. As we are
only concerned with the efficient solution of a discretized problem we believe that our
approach can be used in both cases but focus on the optimize then discretize case.
This means that we first build an infinite dimensional Lagrangian and then consider
its variation with respect to state, pressure, control, and two Lagrange multipliers that
can be identified as the adjoint state and adjoint pressure [54, 27, 22]. We here simply
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state the optimality system as derived in [22, Example 3.1],

yt −∆y + (y · ∇)y +5p = u on [0, T ]× Ω

∇ · y = 0 on [0, T ]× Ω (24)

y(0, .) = y0 on Ω

y = yΓ on Γ

−λt −∆λ− (y · ∇)λ + (∇y)
T
λ +5ξ = −(y − yd) on [0, T ]× Ω

∇ · λ = 0 on [0, T ]× Ω (25)

λ(T, .) = −(y(T )− yd(T )) on Ω

λ = 0 on Γ

βu + λ = 0 on [0, T ]× Ω. (26)

Now it is easily seen that this is a nonlinear problem due to the nonlinearity coming
from the Navier-Stokes equation. Additional, nonlinearities could come into this equa-
tion if more complicated objective functions are considered. Note that the questions
of existence and uniqueness are answered in [22]. Once again this equation has to be
treated using a nonlinear solver and we again propose the use of a Oseen (Picard-type)
iteration [47] to give

yt −∆y + (ȳ · ∇)y +5p = u

∇ · y = 0

−λt −∆λ− (ȳ · ∇)λ + (∇ȳ)
T
λ +5ξ = −(y − yd)

∇ · λ = 0

βu + λ = 0.

where for brevity we omitted initial/final and boundary conditions. After that, we
update ȳ = y and proceed with the next iteration. We are now proposing the same
solution as in the forward simulation. Additionally, we assume that all quantities are
discretized in time and space. This means at each step of the algorithm we assume
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the states, control, and adjoint states are given by

yh =

ryh∑
i=1

vi,yh ⊗ wi,yh ph =

rλh∑
i=1

vi,ph ⊗ wi,ph (27)

λh =

rλh∑
i=1

vi,λh ⊗ wi,λh ξh =

rξh∑
i=1

vi,ξh ⊗ wi,ξh (28)

uh =

ruh∑
i=1

vi,uh ⊗ wi,uh . (29)

The Oseen equation that we have to solve is then of the following form

 Θ⊗M 0 K∗
0 Θ⊗ βM −M>3
K −M3 0




yh
ph
uh
λh
ξh

 = b (30)

where b represents the right-hand side and K describes the forward operator for the
space-time Navier-Stokes equations

K = C ⊗M+ In ⊗ L+

rȳh∑
i=1

Di ⊗Ni. (31)

The adjoint PDE represented by K∗ contains more terms than the forward equation
due to the terms (y · ∇)λ + (∇y)

T
λ. As in the forward problem, we assume (12),

so that (ȳ · ∇)λ is discretized as
∑rȳh
i=1Di ⊗ Ni. The term (∇ȳ)

T
λ now becomes∑rȳ

i=1Di⊗Hi(ȳh) with Hi(ȳh) being a matrix of entries
∫
φj ·∇ (

∑m
k=1 wi,ȳh,kφk) ·φj′

for j, j′ = 1, . . . ,m. The adjoint matrix is then given by

K∗ = C> ⊗M+ In ⊗ L−
rȳh∑
i=1

Di ⊗Ni +

rȳh∑
i=1

Di ⊗Hi,

where Hi = blkdiag(Hi, 0). We have now seen that we can perform an outer Picard
iteration and then proceed in a low-rank fashion with the inner Oseen problem. Al-
gorithm 1 depicts a pseudo-code of our proposed scheme. We will in the following
discuss the numerical solver for the low-rank solution of the linear system (30). We
also want to discuss the case when the objective function is changed to include the
vorticity term (4) following results in a different formulation of the adjoint equation
[29, 36]

−λt −∆λ− (y · ∇)λ + (∇y)
T
λ +5ξ = −α1(y − yd)− α2curl(curl(y)).

(32)
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Algorithm 1 Picard iteration for the Navier-Stokes optimization problem

Require: Desired state yd, initial state y0, initial guess ȳ.
1: for ` = 1 to Lmax do
2: Compute Di,Ni,Hi for i = 1, . . . , rȳh
3: Update the right-hand side d̄
4: Solve the system (33)
5: if Error ‖yh − ȳh‖ is small then
6: Stop
7: else
8: Replace ȳh = yh and continue
9: end if

10: end for
11: return [yh,uh,λh]

We now get the following system at every nonlinear step

 Θ⊗ (α1M+ α2L0) 0 K∗
0 Θ⊗ βM −M>3
K −M3 0



yh
ph
uh
λh
ξh

 =


(Θ⊗ α1M)yd

0
0
d̄
0

 =


b1
0
b2
b3
0

 ,
(33)

where L0 =

[
L 0
0 0

]
represents the discretized version of curl(curl(y)), which is just

the Laplacian operator, since the velocity is divergence-free.

3 Solution algorithms

We focus now on the efficient solution of the system (30) in low-rank form. Having
solved the full KKT system (30), the low-rank format of the solution (27)–(28) can
be computed by the Singular Value Decomposition. This is called an offline stage in
model reduction methods [37]. Our goal is to avoid this expensive offline stage and
compute the low-rank factors of the solution directly. One of the best tools for this
task is the alternating iteration.

3.1 Alternating tensor product methods for the forward problem

First, we start from a single linear system Ay = b, where A ∈ Rnm×nm and b ∈ Rnm
are given, and the solution sought in the low-rank form

A =

rA∑
i=1

Fi,A ⊗Gi,A, b =

rb∑
i=1

vi,b ⊗ wi,b, y =

ry∑
i=1

vi,y ⊗ wi,y.
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As a motivating example, consider the case A = A> > 0. Then the linear system
can be solved as a minimization of the energy functional, y = arg miny J(y), with
J(y) = y>Ay−2y>b. Now, plug the low-rank decomposition of y into J , and optimize
it sequentially (or alternating, hence the name) over vy and wy:

vy = arg min
vy∈Rnry

J

(
ry∑
i=1

vi,y ⊗ wi,y

)
, wy = arg min

wy∈Rmry
J

(
ry∑
i=1

vi,y ⊗ wi,y

)
, (34)

where vy and wy denote vertically stacked vi,y and wi,y. Differentiating J w.r.t. to
the elements of v and w, we can find that they are defined by smaller linear systems.
Let us introduce Vy ∈ Rn×ry and Wy ∈ Rm×ry , being matrices of horizontally stacked
vi,y and wi,y, respectively. Then (34) is satisfied by solving[

(In ⊗Wy)
>
A (In ⊗Wy)

]
vy = (In ⊗Wy)

>
b,[

(Vy ⊗ Im)
>
A (Vy ⊗ Im)

]
wy = (Vy ⊗ Im)

>
b,

(35)

or shortly we can write Âvy = b̂, Ǎwy = b̌.
These two systems are solved one after another until convergence. Minimization

of (34) is equivalent to minimization of the A-norm of the error, hence the method
is called Alternating Least Squares [35]. Due to linearity of (35), it was also called
Alternating Linear Scheme [25], abbreviated by ALS in both cases. Although it is
difficult to prove theoretical convergence (it is essentially local [50]), in practice this
method often converges rapidly, provided the rank ry is high enough.

However, it is inconvenient to guess the rank a priori. There is a variety of methods
which enrich the solution factors by some auxiliary vectors, and thus allow to increase
the rank, adapting it to a desired error threshold. It is reasonable to select the en-
richment related to the current residual. For example, ADI methods [56] solve shifted
linear systems and expand e.g. Vy by (FA − sI)−1VR, where VR is a low-rank factor
of the residual, greedy methods [53, 1, 42] compute rank-1 factors of the solutions
to Az = b − Ay. However, an advantage of the variational formulation (34) is that
the low-rank factors deliver locally minimal A-norm error in each step. Therefore,
it might be more efficient to combine the enrichment with the Galerkin update (35).
This is performed in the orthogonal greedy [42] and the alternating minimal energy
[11] algorithms.

These methods converge relatively well if the matrix is positive definite. However,
as was noticed in [5], even with orthogonal factors V and W , the Galerkin projection
(35) can become degenerate if A is a saddle-point system like (33). To avoid this issue,
we need to take the saddle-point structure into account explicitly.

3.2 Alternating methods for the inverse problem

Let us consider a block systemA11 A12 A13

A21 A22 A23

A31 A32 A33

y1

y2

y3

 =

b1b2
b3

 ,
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where each submatrix of A or subvector of b is presented in its own low-rank form, and
the sizes of all blocks coincide1. However, we will factorize the solution components
with one of the blocks shared : we suppose that eithery1

y2

y3

 =

ry∑
i=1

vi,y,1vi,y,2
vi,y,3

⊗ ŵi,y, or

y1

y2

y3

 =

ry∑
i=1

v̌i,y ⊗

wi,y,1wi,y,2
wi,y,3

 ,
where ŵi,y ∈ Rm, v̌i,y ∈ Rn, and agglomerated matrices are Ŵy ∈ Rm×ry and V̌y ∈
Rn×ry . Now, we can write two ALS steps in the block formÂ11 Â12 Â13

Â21 Â22 Â23

Â31 Â32 Â33

vy,1vy,2
vy,3

 =

b̂1b̂2
b̂3

 , Âkl = (I ⊗ Ŵy)>Akl(I ⊗ Ŵy),

b̂k = (I ⊗ Ŵy)>bk,Ǎ11 Ǎ12 Ǎ13

Ǎ21 Ǎ22 Ǎ23

Ǎ31 Ǎ32 Ǎ33

wy,1wy,2
wy,3

 =

b̌1b̌2
b̌3

 , Ǎkl = (V̌y ⊗ I)>Akl(V̌y ⊗ I),

b̌k = (V̌y ⊗ I)>bk,

(36)

where k, l = 1, 2, 3. Note that the blocks Ŵy and V̌y do not contain the enumerator
k, i.e. they serve as common bases for the components yk. To compute this common
basis (e.g. V̌y), we can use the truncated SVD. Similarly to a single Vy in the previous
section, we consider each component as a matrix Vy,k ∈ Rn×ry . Having computed Vy,k
in the first step of (36), we factorize via SVD[

Vy,1 Vy,1 Vy,3
]

= V̌ySP
> + E , s.t. ‖E‖F ≤ ε‖S‖F ,

where V̌ >y V̌y = Ir̂y , S is a diagonal matrix of r̂y dominant singular values, and P ∈
R3ry×r̂y is a matrix of right singular vectors. Left singular vectors V̌y ∈ Rn×r̂y give

the sought common basis. In the same way we derive Ŵy from Wy,k after the second
step of (36).

Notice that the new rank r̂y can be chosen from the range 1, . . . , 3ry. That is, the
blocked storage allows to increase the rank without any enrichment.2 This is similar
to the Density Matrix Renormalization Group (DMRG) method [57], developed in
quantum physics to solve high-dimensional eigenvalue problems in low-rank formats.
However, the DMRG method applied in our two-dimensional case would require to
solve the whole problem without any reduction, whereas the block ALS formulation
(36) allows to have both the rank adaptivity and moderate complexity.

The block ALS method requires only submatrices Akl to be positive (semi-)definite,
the whole matrix A needs only to be invertible. A drawback, however, is that the

1In practical computations, y1, y2, y3 have the meanings of yh, uh and λh, but here we present the
scheme in an abstract form, therefore we use more abstract notation than in Sec. 2. Later we will
also show that the requirement to have all block sizes equal is not restrictive.

2Nonetheless, a residual-based enrichment is usually recommended, as it improves the convergence
and accuracy. Even a very rough and fast low-rank approximation to the residual is usually a
sufficiently good enrichment [11].
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submatrices should be square. Moreover, with the Navier-Stokes constraints, A31 = K
(31) and A13 = K∗ are themselves saddle-point matrices. To avoid this issue, we will
compute the pressures separately.

3.3 Alternating methods for the (Navier-)Stokes equation

Let us start from the forward Navier-Stokes equation, which reads[
K In ⊗B>

In ⊗B

] [
yh
ph

]
=

[
d
0

]
, K = C ⊗M + In ⊗ L +

rȳh∑
i=1

Di ⊗Ni.

Suppose yh is presented in the low-rank form (27). If we are performing the second
ALS step, the matrix remains invertible: the saddle-point structure is introduced only
in the spatial variable, and the ALS projection of the temporal variable does not
touch it. Then from the second row we have BWyh = 0. For the moment, we leave
the representation of ph aside. Returning to the first ALS step, we project the first
row by In ⊗W>yh , so we have

(In ⊗Wyh)>K(In ⊗Wyh)vyh + (In ⊗W>yhB
>)ph = (In ⊗Wyh)>d.

However, the second term is zero irrespectively of the pressure: W>yhB
> = (BWyh)> =

0. Therefore, the first ALS step is also well-posed in this scheme.
The problem is that the formulation above is valid only with zero boundary condi-

tions. With nonzero Dirichlet conditions enforced, we have either a different matrix
instead of B>, or a nonzero second component of the right-hand side. We need to shift
the velocity by some function, such that the sought solution is zero at the boundary.

At this point, it is reasonable to assume that the boundary values, as any other
input data, are given in the low-rank form,

yh|Γ =

rΓ∑
i=1

vΓ,i ⊗ wΓ,i, (37)

where Γ denotes boundary degrees of freedom. We look for the solution in the form
y = q + µ, where q|Γ = 0 and µ|Γ = y|Γ. We could reformulate the equation for q, if
we find a convenient closed-form (and low-rank) expression for µ.

This can be done by solving a few stationary Stokes equations. Let us partition the
spatial degrees of freedom, and hence, the matrix elements, as follows,

L =

(
LΩΩ LΩΓ

LΓΩ LΓΓ

)
, M =

(
MΩΩ MΩΓ

MΓΩ MΓΓ

)
, B =

(
BΩ BΓ

)
,

where “Ω” corresponds to the inner points, and “Γ” denotes the boundary points. The
Stokes equation with nonzero boundary conditions can be written as follows,(LΩΩ

I

) (
B>Ω
0

)
(
BΩ BΓ

)
[wµh,i

ph,i

]
=

(−LΩΓwΓ,i

wΓ,i

)
0

 . (38)
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Since the Stokes equation is linear, it admits a superposition: solving (38) for all
i = 1, . . . , rΓ, we obtain exactly the low-rank factors for µ, and summing them up in

µh =

rΓ∑
i=1

vΓ,i ⊗ wµh,i,

we get the desired correction function.
The Navier-Stokes equation can now be rewritten for qh without the boundary,[

KΩΩ I ⊗B>Ω
I ⊗BΩ

] [
qh
ph

]
=

[
bΩ −KΩ:µh

0

]
, where (39)

KΩΩ = C ⊗MΩΩ + I ⊗ LΩΩ +

rȳh∑
i=1

Di ⊗Ni,ΩΩ,

KΩ: = C ⊗
[
MΩΩ MΩΓ

]
+ I ⊗

[
LΩΩ LΩΓ

]
+

rȳh∑
i=1

Di ⊗
[
Ni,ΩΩ Ni,ΩΓ

]
,

(40)

and N = N(ȳh) = N(q̄h + µh) is computed as previously from the last iterate ȳ =
q̄ + µ, which includes the correction µ together with the boundary nodes. Here, the
fixed right-hand side b carries only the initial state, b = e1 ⊗My0.

The presented ALS scheme computes only the velocity. To restore the pressure,
suppose that the velocity is known. Then the first row in (39) gives an equation,
which can be resolved by least squares:(

In ⊗BΩB
>
Ω

)
ph = (In ⊗BΩ) (bΩ −KΩ:µh −KΩΩqh).

The right-hand side is low-rank, since so are K,µh and qh, and the matrix in the
left-hand side is a direct product, which can be inverted without changing the rank.

In practice a single step of such method may give only an approximate velocity, so
we conduct several Chorin-type iterations,[

K̂ΩΩ Irqh ⊗B
>
Ω

Irqh ⊗BΩ

] [
wqh

dph

]
=

[
(Vqh ⊗ Im)

>
(bΩ −KΩ:µh)− (V >qh ⊗B

>
Ω )ph

0

]
,

ǨΩΩvqh = (In ⊗Wqh)
>

(bΩ −KΩ:µh),(
In ⊗BΩB

>
Ω

)
ph = (In ⊗BΩ) (bΩ −KΩ:µh −KΩΩqh),

(41)

and so on from the first equation. Here, K̂ΩΩ = (Vqh ⊗ Im)
>
KΩΩ (Vqh ⊗ Im), and

ǨΩΩ = (In ⊗Wqh)
>
KΩΩ (In ⊗Wqh). Remember that Vqh and Wqh are orthogonal-

ized before using them as projectors. A dummy variable dph in (41) is only needed
to impose the divergence-free equation, and can be discarded after the calculation.
Ideally, we should perform this velocity-pressure process inside each Picard iteration.
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In practice, we have found that one iteration is sufficient: we update N before starting
the computation of wqh , using the last qh from the previous step.

The inverse problem is solved in a similar way, the difference is only that there are
two “pressure-like” variables. Since we neither control nor observe the boundary, the
Lagrange multiplier can have zero boundary condition. So, the final ALS iteration for
the inverse Navier-Stokes equation is written as follows.

1. In the first step, we compute all spatial blocks,
M̂1 0 0 K̂∗ΩΩ Ir ⊗B>Ω
0 0 0 Ir ⊗BΩ 0

0 0 M̂2 −M̂>3 0

K̂ΩΩ Ir ⊗B>Ω −M̂3 0 0
Ir ⊗BΩ 0 0 0 0



wqh

dph
wuh

wλh

dξh

 =


b̂1 − (V̌ > ⊗B>Ω )ξh

0
0

b̂3 − (V̌ > ⊗B>Ω )ph
0

 ,
(42)

where b̂1 = (V̌ >Θ⊗ α1MΩ:)yd, b̂3 = (V̌ ⊗ Im)>(bΩ −KΩ:µh),

M̂1 = (V̌ >ΘV̌ )⊗ (α1MΩΩ + α2LΩΩ),

M̂2 = (V̌ >ΘV̌ )⊗ βMΩΩ,

M̂3 = Ir ⊗MΩΩ,

K̂ΩΩ = V̌ >CV̌ ⊗MΩΩ + Ir ⊗ LΩΩ +

rȳh∑
i=1

V̌ >DiV̌ ⊗Ni,ΩΩ,

K̂∗ΩΩ = K̂ΩΩ +

rȳh∑
i=1

V̌ >DiV̌ ⊗ (Hi,ΩΩ − 2Ni,ΩΩ).

(43)

Compute the SVD
[
Wqh Wuh Wλh

]
≈ ŴSP> to derive the common basis.

2. In the second step, we compute the temporal blocks of the velocities, M̌1 0 Ǩ∗ΩΩ

0 M̌2 −M̌>3
ǨΩΩ −M̌3 0

vqhvuh
vλh

 =

b̌10
b̌3

 , (44)

where b̌1 = (Θ⊗ α1Ŵ
>MΩ:)yd, b̌3 = (In ⊗ Ŵ )>(bΩ −KΩ:µh),

M̌1 = Θ⊗ Ŵ>(α1MΩΩ + α2LΩΩ)Ŵ ,

M̌2 = Θ⊗ βŴ>MΩΩŴ ,

M̌3 = In ⊗ Ŵ>MΩΩŴ ,

ǨΩΩ = C ⊗ Ŵ>MΩΩŴ + In ⊗ Ŵ>LΩΩŴ +

rȳh∑
i=1

Di ⊗ Ŵ>Ni,ΩΩŴ ,

Ǩ∗ΩΩ = ǨΩΩ +

rȳh∑
i=1

Di ⊗ Ŵ>(Hi,ΩΩ − 2Ni,ΩΩ)Ŵ .

(45)
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Compute the SVD
[
Vqh Vuh Vλh

]
≈ V̌ SP> to derive the common basis.

3. In the third step, we update the pressures via standard low-rank algebra,(
In ⊗BΩB

>
Ω

)
ph = (In ⊗BΩ) (bΩ −KΩ:µh −KΩΩqh + M3uh),(

In ⊗BΩB
>
Ω

)
ξh = (In ⊗BΩ) (Θ⊗ α1Myd −K∗ΩΩλh −M1qh).

(46)

3.4 Preconditioning for the spatial system

The systems on the temporal factor (44),(45) and pressure (46) have moderate sizes
and are essentially sparse. Our concern is now the spatial system (42), which can
be too large for a direct solver even for a rank-1 solution. We solve this system by
a preconditioned GMRES method. First, we use a block Jacobi approximation with
respect to the rank dimension: the preconditioner reads Ã = blkdiag(Ã1, . . . , Ãr),
where

Ãi =


M̃1,i 0 0 K̃∗i,ΩΩ B>Ω

0 0 0 BΩ 0

0 0 M̃2,i −M> 0

K̃i,ΩΩ B>Ω −M 0 0
BΩ 0 0 0 0

 ,
M̃1,i = (v̌i ⊗ Im)>M1(v̌i ⊗ Im),

M̃2,i = (v̌i ⊗ Im)>M2(v̌i ⊗ Im),

K̃i,ΩΩ = (v̌i ⊗ Im)>KΩΩ(v̌i ⊗ Im),

K̃∗i,ΩΩ = (v̌i ⊗ Im)>K∗ΩΩ(v̌i ⊗ Im),

for i = 1, . . . , r. Solution of each of these systems is of the same complexity as the
solution of the stationary problem. We precondition it by a block-triangular factor of
the LU decomposition, where the Schur complement is approximated in the factored

form using the matching argument [52]. Given the right-hand side f =
[
f1 f2 f3

]>
,

the inverse triangular factor can be applied as follows,

1. y1 = M̃−1
1,i f1,

2. y2 = M̃−1
2,i f2,

3. y3 = S−1

(
K̃i,ΩΩy1 −

(
M
0

)
y2 − f3

)
,

followed by the assembly y =
[
y1 y2 y3

]>
, where the first matrix is augmented as

M̃1,i =

[
M̃1,i 0

0 τh2βI

]
, and K̃i,ΩΩ =

[
K̃i,ΩΩ B>Ω
BΩ 0

]
. Now, instead of the exact Schur

complement, we use the factored approximation

S−1 =

[
K̃i,ΩΩ + 1√

β
M B>Ω

BΩ 0

]−1

M̃1,i

[
K̃∗i,ΩΩ + 1√

β
M B>Ω

BΩ 0

]−1

.

The matrices in the last equation are of the form of the forward stationary Stokes
equation, and, for moderate grids, can be treated by the direct linear solver. Otherwise,
many iterative solvers can be used [52, 39].
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4 Existence of low-rank solutions

The efficiency of tensor product methods depends heavily on the particular values
of the tensor ranks. However, it is difficult to estimate the ranks of the solution of
the forward Navier-Stokes equation; moreover, in a highly turbulent regime they may
actually reach the maximal values. We begin the analysis with the Stokes equation,
which is to be followed by the analysis of the inverse Navier-Stokes equation. The
ranks in the inverse problem can actually be smaller than the ranks of the forward
problem, if the desired state is taken low-rank, for example, as the Stokes solution.

Lemma 1. Given the Stokes system (5)–(6) after the discretization,[
C ⊗M + I ⊗ L I ⊗B>

I ⊗B

] [
yh
ph

]
=

[
uh
0

]
, (47)

where C is the time difference matrix (19) of size n, L and M are the finite element
discretization of Laplace and mass operators, respectively. Suppose the right-hand side
is given in the low-rank form (29), the boundary condition is given in the low-rank
form (37), and the solution is approximated in the form[

yh
ph

]
≈

r∑
i=1

v̌i ⊗
[
wi,y
wi,p

]
up to an accuracy ε.

Then the rank of the solution is bounded by

r = O
((

log ε−1 + log h−1 + log τ−1
)2

(ruh + rΓ)
)
.

Proof. First, we exclude the boundary condition as described in the previous section,
and arrive at the Stokes system on qh,[

C ⊗MΩΩ + I ⊗ LΩΩ I ⊗B>Ω
I ⊗BΩ

] [
qh
ph

]
=

[
fΩ

0

]
,

with fΩ = uΩ − C ⊗
(
MΩΩ MΩΓ

)
µh − I ⊗

(
LΩΩ LΩΓ

)
µh.

Denoting by Φ the orthonormal basis of the kernel of BΩ, we conclude that qh ∈
span(I ⊗ Φ), or qh = (I ⊗ Φ)q̃h. The coefficients q̃h can be found by projecting the
velocity equation onto I ⊗ Φ>. Since Φ>B>I = (BIΦ)> = 0, we have(

C ⊗ M̃ + I ⊗ L̃
)
q̃h =

(
I ⊗ Φ>

)
fΩ, (48)

where
M̃ = Φ>MΩΩΦ, L̃ = Φ>LΩΩΦ.

Since both MΩΩ and LΩΩ are symmetric positive definite and Φ is orthogonal, it holds
that M̃ and L̃ are symmetric positive definite. We can premultiply (48) by (I⊗M̃)−1,
to then get

q̃h =
(
C ⊗ Im + In ⊗ M̃−1L̃

)−1 ((
I ⊗ M̃−1Φ>

)
fΩ

)
.
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The terms in the first brackets commute, and each of them is positive definite. The
inverse can be approximated in the low-rank form by the exponential quadrature [15,
19]: for given R and k we introduce tk = exp(kπ/

√
R), ck = tkπ/

√
R, then

K̃−1 ≡
(
C ⊗ Im + In ⊗ M̃−1L̃

)−1

≈
R∑

k=−R

ck exp(−tkC)⊗ exp(−tkM̃−1L̃),

where the accuracy is estimated by O
(
‖K̃‖2e−π

√
2R
)

, provided that ‖K̃−1‖ = O(1).

In other terms, the tensor rank of K̃−1 estimates as O((log ε−1 + log cond K̃)2).
Remember that the rank of uh, and, therefore, of uΩ, is bounded by ruh . The

solution qh in the initial Finite Element basis is restored without changing the rank,
by multiplying I⊗Φ by q̃h. Moreover, cond K̃ = O(h−2 +τ−1), where h is the spatial,
and τ is the time grid steps. Finally, rank(qh) ≤ (2R+ 1)(ruh + 2rΓ), and the rank of
the velocity yh is estimated immediately, since the rank of µh is rΓ.

From (41) we see that the pressure rank is ruh + rank(KΩ:y), where now KΩ: has
rank 2, which concludes the lemma.

Remark 1. We can use the solution of the Stokes equation as a desired state in
the misfit optimization (3), constrained by the Navier-Stokes equation (with smaller
viscosity). This is reasonable if we want to get rid of turbulences. If the control is
defined on the whole domain, it is known that the misfit decays with the regularization
parameter, ‖yh−yd‖ = O(

√
γ). Therefore, if we select ε ∼ √γ, Lemma 1 is also valid

for the solution of the inverse Navier-Stokes problem.

If the state can be approximated by a low-rank decomposition, the low-rankness of
the control comes straightforwardly, taking into account the Kronecker form of the
forward operator (31). It is enough to multiply (31) by a rank-ryh representation.

Corollary 1. Let the state be decomposed in a low-rank form (27) with the rank ryh .
Then the control admits a low-rank decomposition (29) with the rank ruh ≤ r2

yh
+2ryh .

5 Numerical Results

The inflow condition y1|x1=0 = x2(1− x2)(1− e−0.1t) is imposed at the left boundary,
Neumann boundary condition at the right boundary x1 = L and zero condition at
other walls. Other default parameters are given in Table 1. In the experiments below,
we will vary each of them separately.

Our implementation is based on the IFISS package [13] and the tensor train toolbox
[45] both of which are Matlab R© based packages. Nevertheless, the methods presented
here are usable in any other computational evironment.

We consider two types of the objective functional (4). First, we minimize only the
distance to the desired state (i.e. α1 = 1, α2 = 0), where the desired state is the
solution of the Stokes equation. Second, we minimize only the vorticity without any
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Table 1: Default simulation parameters

n h T ε ν β α1 α2

211 1/32 200 10−4 10−3 10−3 1 0

desired state by setting α1 = 0 and α2 = 1. Both observation and control domains
coincide with the whole domain, Qo = Qc = Q. The domain is the so-called “backward
step” with length L = 5 (see Fig. 16).

There are three ways to estimate the error in the solution. First, we compute the
relative residual of the KKT system (33),

residual =

∥∥∥∥M1

[
yh
ph

]
+K∗

[
λh
ξh

]
− b1

∥∥∥∥
F

/‖b1‖F

+

∥∥∥∥M2uh −M>3
[
λh
ξ

]∥∥∥∥
F

/‖M2uh‖F

+

∥∥∥∥K [yhph
]
−M3u− b3

∥∥∥∥
F

/‖b3‖F .

Second, we can solve the problem with two thresholds, e.g. ε and 0.1ε. Denoting e.g.
the state velocity of the former one as y, and of the latter one as y?, we can compute

E(y,y?) = ‖y − y?‖F /‖y?‖F ,

and similarly for the control u and other quantities. Let us assume that the true error
‖y − yex‖ depends almost linearly on ε, ‖y − yex‖ = Cε + o(ε). Justification of this
linear dependence is given by Fig 9, 15. Then

‖y − yex‖ = Cε+ o(ε) ≤ ‖y − y?‖+ ‖y? − yex‖ = ‖y − y?‖+ C · 0.1ε+ o(ε),

and so ‖y − yex‖ ≤ 1
0.9‖y − y?‖+ o(ε).

Third, we can measure the distance between two Picard iterations, E(y, ȳ).

5.1 Convergence of the Picard iteration

In the first test, we check the convergence of the residual with the Picard iteration
in the low-rank scheme. We test both distance and vorticity minimization, and two
accuracy thresholds, ε = 10−4 and ε = 10−7. The results are presented in Fig. 1.

We see that the convergence is very fast and attained in 3 iterations in both lower-
accuracy tests. The vorticity minimization converges faster than the misfit minimiza-
tion, since the Stokes solution might actually be more turbulent than the one with the
minimal vorticity.

5.2 Optimization of a tracking type functional

5.2.1 Comparison with the full scheme

An important justification for a new approach is a comparison with an established
method. In our case, we compare the low-rank scheme (LR) with the classical precon-
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Figure 1: Tracking functional, nonlinear convergence. Left: misfit minimization (α1 =
1, α2 = 0). Right: vorticity minimization (α1 = 0, α2 = 1).
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ditioned GMRES for the full KKT system without low-rank approximations. Since the
full data do not fit into the memory on fine grids, we perform two tests with h = 1/8
and h = 1/16. The results are reported in Fig. 2 and 3, respectively. In the horizontal
axes, we vary the number of time steps n.

We see that the residuals are almost the same in both schemes, although the control
error grows with the grid refinement. Another interesting quantity is the number
of GMRES iterations. Both schemes perform the block Jacobi preconditioning with
respect to time. However, the low-rank method invokes the GMRES (for the spatial
factor) twice in each Picard iteration due to the ALS procedure. Moreover, it is being
perturbed by the SVD truncation. This results in a higher number of iterations.
However, the CPU time of the full scheme is at least equal to the time of the low-rank
scheme for the coarsest grid, and becomes larger for finer grids. The ratio of memory
costs, needed for the low-rank and full solutions, decreases with the system size and
falls below 10% when the number of time steps exceeds a couple of hundreds.

5.2.2 Experiment with n

Here, we perform an extended test of the low-rank scheme with respect to the number
of time steps, see Fig. 4. The method is robust even with very fine time grids up to
n = 65536. The rank grows logarithmically with the number of time steps, and so do
the CPU time and number of iterations.

In this and remaining figures, we report the rank of the solution, instead of the

memory ratio as in Fig. 2, 3. The memory ratio reads % Mem =
n+m

nm
r. For

example, for h = 1/32 it holds m = 5890 (for the velocity), and for n & m, the
memory consumption is reduced by factors of 100 to 300.
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Figure 2: Tracking functional, LR vs full, h = 1/8. Left: Residual and errors w.r.t.
the reference solutions. Right: CPU time, total number of local iterations,
rank.
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5.2.3 Experiment with T

We can also vary the time interval (Fig. 5). From the physical point of view, solving
an optimal control problem on a smaller time interval means that we must exert a
larger force. Interestingly, this is also true in the sense of computational complexity.
While the rank is almost independent of T , the matrix become more ill-conditioned
for smaller T , and hence the number of iterations grows, followed by the CPU time.
The state error is also stable w.r.t. T , while the control error is higher for smaller T .

5.2.4 Experiment with β

In this test, we vary the control regularization parameter. The results are shown in
Fig 6. As an additional quantity, we report the distance to the desired state, E(y,yd).
This distance decays proportionally to

√
β, until being contaminated by the SVD error

of level ε.
The scheme is quite robust until β becomes too large. In the right panel of Fig. 6,

we show also the number of Picard iterations until convergence. We see that for small
β the scheme needs 3 Picard iterations (in agreement with Fig. 1), but for β ≥ 0.1 the
convergence becomes slower. In particular, for β ≥ 1, we were not able to compute
a solution out of 15 Picard iterations. In future it might be more appropriate to use
Newton methods for strongly nonlinear systems. In general smaller values for β are
more important as they allow the state to better approximate the desired state.

5.2.5 Experiment with h

Now we vary the spatial mesh size. The results are shown in Fig 7. Here, the CPU time
grows nearly quadratically with the reciprocal h, as expected for a two-dimensional
problem. Other quantities grow as well, but in a much milder way.
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Figure 3: Tracking functional, LR vs full, h = 1/16. Left: Residual and errors w.r.t.
the reference solutions. Right: CPU time, total number of local iterations,
rank.
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5.2.6 Experiment with ν

Another parameter to vary is the viscosity. The results are shown in Fig 8. It is
natural that all performance indicators improve with larger viscosity, as the system
becomes closer to the Stokes regime. Nonetheless, even a highly convection dominated
simulation with ν = 1/5000 is tractable.

5.2.7 Experiment with ε

In the last test with the distance functional, we vary the low-rank approximation
threshold, see Fig. 9. We confirm that all errors decay linearly with ε. Besides, we
notice that all complexity indicators grow as log ε−1.

5.3 Optimization of a vorticity functional

In this section, we consider the case of the vorticity minimization. The default param-
eters are the same as in the previous section. The results are presented in the same
layout. Fig. 10 shows the performance of the scheme with respect to the number of
time steps n, Fig. 11 corresponds to the time interval T , in Fig. 12 we vary the control
regularization β, Fig. 13 considers different spatial grid steps h, Fig. 14 shows the
role of the viscosity ν, and Fig. 15 concerns variation of the truncation threshold ε.

The behavior of the method for the vorticity minimization is highly similar to the
case of the misfit minimization. Here we outline the main differences. First, the
solution with minimal vorticity exhibits smaller ranks than the Stokes solution: 10–
15 versus 20–30 in the previous section. This leads to smaller computational times.
The velocity error is also smaller: here it remains on the level 10−6, compared to
10−5 for the misfit functional. The control error and the residual follow the same
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Figure 4: Tracking functional, n varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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trends as in the previous case. The Laplace operator in the observation matrix M1

leads to higher condition numbers of the KKT matrix. For example, in Fig. 13, the
number of iterations begins to grow for spatial grids finer than h = 1/32, while the
misfit optimization demonstrated the opposite situation. The same holds true for the
viscosity Fig. 14: with ν ∼ 1, the spectra of matrices M1 and K come closer to each
other, and the efficiency of the preconditioner deteriorates. Variation of ε also reveals
that the error estimates decay linearly with ε, which confirms their consistency.

To see how the vorticity minimization influences the behavior of the fluid, we show
the vorticity plots in Fig. 16. In the left plane we show the snapshots of the solution
of the forward Navier-Stokes equations with the default parameters, taken at t = 12
and t = 200, in the right plane we show the solution of the optimal control problem
at the same time steps. We see that the flow becomes much less turbulent when the
control is employed.

From Fig. 12 we can also note that the norm of the curl is almost independent on
β in the considered range. It might become larger with larger β, but we were unable
to compute such tests due to the convergence issue mentioned in Sec. 5.2.4.

6 Conclusions

We have shown in this paper that a low-rank approach for solving the optimal control
problem subject to the Navier-Stokes equations is possible. In order to achieve this
we have established the low-rank formulation for two different objective functions and
then introduced a schemes that utilizes the low-rank nature of the desired state to carry
this low-rank through an alternating iteration procedure. For this we had to rely on
efficient tensor techniques in combination with sophisticated spatial preconditioners for
Navier-Stokes systems. We further establish existence results for the low-rank solutions
to the Stokes equations. In our numerical results we have performed a parameter study
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Figure 5: Tracking functional, T varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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with respect to the convergence of our proposed scheme. We showed that our method
is robust with respect to parameter changes while maintaining a consistent low rank
for even large-scale setups.
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Figure 10: Vorticity functional, n varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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Figure 11: Vorticity functional, T varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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Figure 12: Vorticity functional, β varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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Figure 13: Vorticity functional, h varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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Figure 14: Vorticity functional, ν varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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Figure 15: Vorticity functional, ε varies. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of local iterations, rank.
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Figure 16: Vorticity plots at t = 12 (top) and t = 200 (bottom) for the forward
(uncontrolled) Navier-Stokes system (left), and the controlled system with
the minimized vorticity (right).
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