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Abstract

To solve a stochastic linear evolution equation numerically, �nite dimensional approxima-
tions are commonly used. For a good approximation, one might end up with a sequence of
ordinary stochastic linear equations of high order. To reduce the high dimension for practical
computations, model order reduction is frequently used. Balanced truncation (BT) is a well-
known technique from deterministic control theory and it was already extended for controlled
linear systems with Lévy noise. Recently, a new ansatz was investigated which provides an
alternative way to generalize BT for stochastic systems. There, the question of the existence
of an H2-error bound was asked which we answer in this paper.

1 Introduction

Model order reduction (MOR) is of major importance in the �eld of deterministic control theory.
It is used to save computational time by replacing large scale systems by systems of low order
in which the main information of the original system should be captured. Such kind of high
dimensional problems occur for example after the spatial discretization of a PDE which can be
used to model chemical, physical or biological phenomena. A particular ansatz to obtain a reduced
order model is to balance a system such that the dominant reachable and observable states are
the same. Afterwards, the di�cult to observe and di�cult to reach states are neglected. One way
to do that is to use balanced truncation (BT) which is introduced by Moore [11] and a thorough
treatment of the topic can be found in Antoulas [1] or Obinata, Anderson [12].
Since many phenomena in computational sciences and engineering contain uncertainties, it is
natural to extend PDE models by adding a noise term. This leads to stochastic PDEs (SPDEs)
which are studied in Da Prato, Zabczyk [6] and in Prévôt and Röckner [14] for the Wiener case.
Peszat, Zabczyk consider more general equations with Lévy noise in [13], where the solutions may
have jumps. To solve SPDEs numerically, one can reduce them to large scale ordinary SDEs by
using the Galerkin method. For that reason, generalizing MOR techniques to stochastic systems
can be motivated. The mentioned Galerkin approximation is for example investigated in Grecksch,
Kloeden [8], Hausenblas [9], Jentzen, Kloeden [10] and Redmann, Benner [15].
To reduce large scale SDEs, balancing related methods are generalized. BT is considered for SDEs
with Wiener noise in Benner, Damm [2] and for systems with Lévy noise it is done by Benner,
Redmann in [5]. Benner and Redmann provide an H2-type error bound and the preservation
of mean square asymptotic stability is shown in Benner et al. [3]. In Benner et al. [4] and
Damm, Benner [7] an example is presented which clari�es that the H∞-error bound from the
deterministic case does not hold for stochastic systems. Recently, a new ansatz to extend BT to
SDEs is considered by Benner et al. [4] or Damm, Benner [7] in which a new reachability Gramian
is used. This Gramian does not allow an energy interpretation, but the advantage of the new
ansatz is the existence of an H∞-error bound and the preservation of mean square asymptotic
stability. The remaining part to prove an H2-error bound, we present in this paper.
In this paper, we focus on BT for SDEs with Lévy noise. We start with giving an overview about
the two ways to generalize the deterministic framework and state the most important results that
are already proven. In Section 2, we brie�y discuss the procedure and emphasize results on error
bounds and the stability analysis of the methods. In Section 3, we contribute an H2-type error
bound for the new ansatz in [4] and [7] to close the gap in the error bound analysis.

2 Balancing of Stochastic Systems with Lévy Noise

Let A, Nk ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. We consider the following equations:

dX(t) = [AX(t) +Bu(t)]dt+

q∑
k=1

NkX(t−)dMk(t), t ≥ 0, X(0) = x0, (1)

Y (t) = CX(t),
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where M1, . . . ,Mq are scalar uncorrelated and square integrable Lévy processes with mean zero
de�ned on a �ltered probability space (Ω,F , (Ft)t≥0,P).1 In addition, we assumeMk (k = 1, . . . , q)
to be (Ft)t≥0-adapted and the increments Mk(t+h)−Mk(t) to be independent of Ft for t, h ≥ 0.
With L2

T we denote the space of all (Ft)t≥0-adapted stochastic processes v with values in Rm,
which are square integrable with respect to P⊗ dt. The norm in L2

T is given by

‖v‖2L2
T

:= E
∫ T

0

vT (t)v(t)dt = E
∫ T

0

‖v(t)‖22 dt,

where we de�ne the processes v1 and v2 to be equal in L2
T if they coincide almost surely with

respect to P ⊗ dt. For the case T = ∞, we denote the space by L2. Further, we assume the
control u ∈ L2

T for every T > 0. The solution of equation (1) we denote by X(t, x0, u) and the
corresponding output by Y (t, x0, u). Moreover, we assume mean square asymptotic stability which
is

E ‖X(t, x0, 0)‖22 → 0 for t→∞. (2)

Below, we set q = 1 and M := M1, N := N1 for simplicity of notation. Any of the following
results also holds for general q.

2.1 Type 1 balanced truncation

In type 1 BT the idea is to introduce a generalized fundamental solution to the state equation (1)
which is a matrix-valued process (Φ(t))t≥0 de�ned by X(t, x0, 0) = Φ(t)x0. This can be used to
de�ne Gramians

P :=

∫ ∞
0

E
[
Φ(s)BBTΦT (s)

]
ds and Q :=

∫ ∞
0

E
[
ΦT (s)CTCΦ(s)

]
ds. (3)

Following the arguments in Section 3 in [5] we know that the Gramians are solutions of generalized
Lyapunov equations:

AP + PAT +NPNT · c = −BBT and ATQ+QA+NTQN · c = −CTC, (4)

where c := E
[
M(1)2

]
. Below, we suppose to have a completely observable and reachable system

(1) in terms of the concepts used in [2] or [5] which implies P , Q > 0. By Section 3 in [5], we have
the following result:

Proposition 2.1. (i) The minimal energy to steer the average state to x ∈ Rn is bounded from
below as follows:

xTP−1x ≤ inf
u∈L2

T
,T>0,

E[X(T,0,u)]=x

‖u‖2L2
T
.

(ii) The energy that is caused by the observation of an initial state x0 ∈ Rn is

‖Y (·, x0, 0)‖2L2 = xT0Qx0.

Due to the energy interpretation in Proposition 2.1, we consider the state x to be di�cult to reach
if the expression xTP−1x is large and we call it di�cult to observe if the term xTQx is small.
In order to ensure that the sets of di�cult to observe and di�cult to reach states coincide, we
balance the system as follows.
We apply a state space transformation, which does not change the output, by using an invertible

1We assume that (Ft)t≥0 is right continuous and that F0 contains all P null sets.
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matrix T :

(A,B,C,N) 7→
(
TAT−1, TB,CT−1, TNT−1

)
which leads to transformed Gramians

(P,Q) 7→
(
TPTT , T−TQT−1

)
.

We choose T = Σ
1
2KTU−1, where Σ = diag(σ1, . . . , σn) > 0, U comes from the Cholesky decom-

position of P = UUT and K is an orthogonal matrix corresponding to the spectral decomposition
UTQU = KΣ2KT . This yields

TPTT = T−TQT−1 = diag(σ1, . . . , σn).

We partition as follows:

T =

[
WT

TT2

]
and T−1 =

[
V T1

]
,

where WT ∈ Rr×n, V ∈ Rn×r and r represents the reduced order model (ROM) state space
dimension. Then, the ROM coe�cients, obtained by truncation are

(A11, B1, C1, N11) =
(
WTAV,WTB,CV,WTNV

)
.

Type 1 balanced truncation preserves mean square asymptotic stability as shown in Theorem 2.3
in [3].

Theorem 2.2. Let σr 6= σr+1, then the ROM

dXR(t) = A11XR(t)dt+N11XR(t−)dM(t), t ≥ 0, XR(0) = xR,0

is mean square asymptotically stable if

dX(t) = AX(t)dt+NX(t−)dM(t), t ≥ 0, X(0) = x0

is mean square asymptotically stable.

The result in Theorem 2.2 is vital for the existence of the ROM reachability Gramian PR :=∫∞
0

E
[
ΦR(s)B1B

T
1 ΦTR(s)

]
ds which occurs in the H2-type error bound below. Here, ΦR denotes

the fundamental solution of the ROM. The matrix PR ful�lls

A11PR + PRA
T
11 +N11PRN

T
11 · c = −B1B

T
1 .

The following result is proven in Theorem 4.5 and Proposition 4.6 in [5]. For simplicity we assume
to already have a balanced realization (A,B,C,N) with partitions

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
and N =

[
N11 N12

N21 N22

]
(5)

for the next theorem.

Theorem 2.3. Let system (1) with the coe�cients (A,B,C,N) be balanced, i.e. P = Q =
diag(σ1, . . . , σn), and PM the solution to

APM + PMA
T
11 +NPMN

T
11 · c = −BBT1 ,
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then, if x0 = 0 and xR,0 = 0, we have

sup
t∈[0,T ]

E ‖Y (t)− YR(t)‖2 ≤ ε ‖u‖L2
T
,

where YR is the output of the ROM and

ε2 = tr(Σ2(B2B
T
2 + 2PM,2A

T
21)) + tr(Σ2(2N22PM,2N

T
21 + 2N21PM,1N

T
21 −N21PRN

T
21))c,

with Σ2 = diag(σr+1, . . . , σn), PM,1 representing the �rst r and PM,2 being the last n− r rows of
the matrix PM .

If N = 0, then the error bound in Theorem 2.3 coincides with the H2-error bound proven in [1].

For an H∞-type error bound we desire to �nd an arbitrary constant a > 0 such that

‖Y − YR‖L2(Rp) ≤ a tr(Σ2) ‖u‖L2(Rm)

holds for controls u ∈ L2(Rm). For the deterministic case (N = 0), this constant is a = 2, see [1].
Example I.3 in [4] or Example II.2 in [7], respectively, show that such a number a > 0 does not
exist for general matrices N .

2.2 Type 2 balanced truncation

Type 2 BT for stochastic systems is introduced in [7] and there is a more detailed paper [4] with
improved results on that ansatz.
The idea is to replace the reachability Gramian P de�ned by the fundamental solution of the
system in (3) by a matrix P̃ which solves

AT P̃−1 + P̃−1A+NT P̃−1N · c = −P̃−1BBT P̃−1. (6)

This new choice has the disadvantage that P̃ does not allow an energy interpretation like in
Proposition 2.1 (i).
If we set N = 0 in the �rst equation of (4) and in (6), we obtain the same Lyapunov equation
that is used for deterministic BT. Hence, both types of introducing BT for SDEs are possible
generalizations. Unfortunately, there exist no criteria for the existence of a positive de�nite solution
to (6). There are matrices A, B and N such that the reachability Gramian P of type 1 BT is
positive de�nite, but there is no positive de�nite solution to (6), see Example II.5 in [4]. For that
reason, we turn to a more general matrix inequality

AT P̃−1 + P̃−1A+NT P̃−1N · c ≤ −P̃−1BBT P̃−1. (7)

For this inequality we have an existence and uniqueness result from [4].

Lemma 2.4. Suppose that (2) holds, then there is a unique solution P̃ > 0 to inequality (7).

Balancing for the new method means that we diagonalize the positive de�nite solutions to the
second equation in (4) and inequality (7) simultaneously.
Analogous to the type 1 approach, there is an invertible transformation matrix T̃ , so that

(A,B,C,N) 7→
(
T̃AT̃−1, T̃B,CT̃−1, T̃NT̃−1

)
leads to a system with transformed Gramians

T̃ P̃ T̃T = T̃−TQT̃−1 = Σ̃ = diag(σ̃1, . . . , σ̃n) > 0.
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With the partition

T̃ =

[
W̃T

T̃T2

]
and T̃−1 =

[
Ṽ T̃1

]
,

where W̃T ∈ Rr×n, Ṽ ∈ Rn×r, we obtain the ROM coe�cients(
Ã11, B̃1, C̃1, Ñ11

)
=
(
W̃TAṼ , W̃TB,CṼ , W̃TNṼ

)
.

Type 2 balanced truncation preserves mean square asymptotic stability as shown in Theorem II.2
in [4].

Theorem 2.5. Let σ̃r 6= σ̃r+1, then the ROM

dX̃R(t) = Ã11X̃R(t)dt+ Ñ11X̃R(t−)dM(t), t ≥ 0, X̃R(0) = x̃R,0

is mean square asymptotically stable if

dX(t) = AX(t)dt+NX(t−)dM(t), t ≥ 0, X(0) = x0

is mean square asymptotically stable.

The advantage of type 2 BT is the existence of an H∞-type error bound which is in contrast to
the type 1 method. Below, a result from [4] and [7], respectively is stated.

Theorem 2.6. If x0 = 0 and x̃R,0 = 0, then for all T > 0, we have∥∥∥Y − ỸR∥∥∥
L2

T (Rp)
≤ 2(σ̃r+1 + . . .+ σ̃ν) ‖u‖L2

T (Rm) ,

where ỸR is the output of the type 2 approach and σ̃r+1, . . . , σ̃ν are the distinct diagonal entries of
Σ2 = diag(σ̃r+1, . . . , σ̃n) = diag(σ̃r+1I, . . . , σ̃νI).

As mentioned in [4] the existence of an H2-type error bound is an open question which we answer
in the next section.

3 H2-type Error Bound for Type 2 Balanced Truncation

For simplicity of notation, we assume to have balanced realization of system (1) in terms of the
type 2 approach. This balanced realization we denote by (Ã, B̃, C̃, Ñ) in order to distinguish
between the coe�cients of the type 1 and the type 2 ansatz. Since we are in a balanced situation,
P̃ = Q = Σ̃ such that

ÃT Σ̃ + Σ̃Ã+ ÑT Σ̃Ñ · c = −C̃T C̃, (8)

ÃT Σ̃−1 + Σ̃−1Ã+ ÑT Σ̃−1Ñ · c ≤ −Σ̃−1B̃B̃T Σ̃−1, (9)

where c := E
[
M2(1)

]
. Below, we use the following suitable partitions

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, B̃ =

[
B̃1

B̃2

]
, C̃ =

[
C̃1 C̃2

]
, Ñ =

[
Ñ11 Ñ12

Ñ21 Ñ22

]
and Σ̃ =

[
Σ̃1

Σ̃2

]
.

By assuming x0 = 0 and x̃R,0 = 0 we obtain representations for the outputs

Y (t) = C̃X(t) = C̃

∫ t

0

Φ(t, s)B̃u(s)ds and ỸR(t) = C̃1X̃R(t) = C̃1

∫ t

0

Φ̃R(t, s)B̃1u(s)ds,
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where Φ(t, s) = Φ(t)Φ−1(s), t ≥ s ≥ 0 and Φ̃R is the fundamental matrix of the reduced order
system. These representations are proven in Proposition 3.4 in [5]. Some easy rearrangements
yield a �rst error estimate

E
∥∥∥Y (t)− ỸR(t)

∥∥∥
2

= E
∥∥∥∥C̃ ∫ t

0

Φ(t, s)B̃u(s)ds− C̃1

∫ t

0

Φ̃R(t, s)B̃1u(s)ds

∥∥∥∥
2

≤ E
∫ t

0

∥∥∥(C̃Φ(t, s)B̃ − C̃1Φ̃R(t, s)B̃1

)
u(s)

∥∥∥
2
ds

≤ E
∫ t

0

∥∥∥C̃Φ(t, s)B̃ − C̃1Φ̃R(t, s)B̃1

∥∥∥
F
‖u(s)‖2 ds.

By the Cauchy inequality it holds

E
∥∥∥Y (t)− ỸR(t)

∥∥∥
2
≤
(
E
∫ t

0

∥∥∥C̃Φ(t, s)B̃ − C̃1Φ̃R(t, s)B̃1

∥∥∥2
F
ds

) 1
2
(
E
∫ t

0

‖u(s)‖22 ds
) 1

2

.

Following the arguments in Section 4 of [5], we obtain

E
∫ t

0

∥∥∥C̃Φ(t, s)B̃ − C̃1Φ̃R(t, s)B̃1

∥∥∥2
F
ds = E

∫ t

0

∥∥∥C̃Φ(s)B̃ − C̃1Φ̃R(s)B̃1

∥∥∥2
F
ds

≤ E
∫ ∞
0

∥∥∥C̃Φ(s)B̃ − C̃1Φ̃R(s)B̃1

∥∥∥2
F
ds

= tr
(
C̃P C̃T

)
+ tr

(
C̃1P̃RC̃

T
1

)
− 2 tr

(
C̃P̃M C̃

T
1

)
,

where the matrices P , P̃R and P̃M exist by assumption (2) and Theorem 2.5. They are the unique
solutions to

ÃP + PÃT + ÑP ÑT · c = −B̃B̃T (10)

Ã11P̃R + P̃RÃ
T
11 + Ñ11P̃RÑ

T
11 · c = −B̃1B̃

T
1 and (11)

ÃP̃M + P̃M Ã
T
11 + Ñ P̃M Ñ

T
11 · c = −B̃B̃T1 . (12)

Thus, we obtain an error bound

sup
t∈[0,T ]

E
∥∥∥Y (t)− ỸR(t)

∥∥∥
2
≤
(

tr
(
C̃P C̃T

)
+ tr

(
C̃1P̃RC̃

T
1

)
− 2 tr

(
C̃P̃M C̃

T
1

)) 1
2 ‖u‖L2

T
,

which we specify in the next theorem.

Theorem 3.1. Let the realization (Ã, B̃, C̃, Ñ) be balanced in terms of the type 2 approach, then

tr
(
C̃P C̃T + C̃1P̃RC̃

T
1 − 2C̃P̃M C̃

T
1

)
= tr(Σ̃2(B̃2B̃

T
2 + 2P̃M,2Ã

T
21 + 2Ñ22P̃M,2Ñ

T
21 · c+ 2Ñ21P̃M,1Ñ

T
21 · c− Ñ21P̃RÑ

T
21 · c)),

P̃M,1 are the �rst r and P̃M,2 the last n− r rows of P̃M .

Proof. By selecting the left and right upper block of (8), we have

ÃT11Σ̃1 + Σ̃1Ã11 + ÑT
11Σ̃1Ñ11 · c+ ÑT

21Σ̃2Ñ21 · c = −C̃T1 C̃1 (13)

ÃT21Σ̃2 + Σ̃1Ã12 + ÑT
11Σ̃1Ñ12 · c+ ÑT

21Σ̃2Ñ22 · c = −C̃T1 C̃2. (14)
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We introduce the reduced order system observability Gramian which exist by Theorem 2.5

ÃT11Q̃R + Q̃RÃ11 + ÑT
11Q̃RÑ11 · c = −C̃T1 C̃1. (15)

We de�ne

ε̃ :=

√
tr(C̃P C̃T ) + tr(C̃1P̃RC̃T1 )− 2 tr(C̃P̃M C̃T1 ).

Due to the duality between the equations (8) and (10), the identity tr(C̃P C̃T ) = tr(B̃T Σ̃B̃) holds
such that

ε̃2 = tr(B̃T1 Σ̃1B̃1) + tr(B̃T2 Σ̃2B̃2) + tr(C̃1P̃RC̃
T
1 )− 2 tr(C̃1P̃M,1C̃

T
1 )− 2 tr(C̃2P̃M,2C̃

T
1 ), (16)

where we use the partition P̃M =

[
P̃M,1

P̃M,2

]
. We insert equation (14) which yields

− tr(C̃2P̃M,2C̃
T
1 ) = − tr(P̃M,2C̃

T
1 C̃2) = tr(P̃M,2(ÃT21Σ̃2 + Σ̃1Ã12 + ÑT

11Σ̃1Ñ12 · c+ ÑT
21Σ̃2Ñ22 · c))

= tr(Σ̃2(P̃M,2Ã
T
21 + Ñ22P̃M,2Ñ

T
21 · c)) + tr(Σ̃1(Ã12P̃M,2 + Ñ12P̃M,2Ñ

T
11 · c)).

By the upper block of equation (12)

Ã11P̃M,1 + Ã12P̃M,2 + P̃M,1Ã
T
11 + Ñ11P̃M,1Ñ

T
11 · c+ Ñ12P̃M,2Ñ

T
11 · c = −B̃T1 B̃1,

we have

− tr(C̃2P̃M,2C̃
T
1 ) =− tr(Σ̃1(B̃1B̃

T
1 + Ã11P̃M,1 + P̃M,1Ã

T
11 + Ñ11P̃M,1Ñ

T
11 · c))

+ tr(Σ̃2(P̃M,2Ã
T
21 + Ñ22P̃M,2Ñ

T
21 · c)).

Using equation (13), we obtain

tr(Σ̃1(Ã11P̃M,1 + P̃M,1Ã
T
11 + Ñ11P̃M,1Ñ

T
11 · c)) = tr(P̃M,1(Σ̃1Ã11 + ÃT11Σ̃1 + ÑT

11Σ̃1Ñ11 · c))
= − tr(P̃M,1(ÑT

21Σ̃2Ñ21 · c+ C̃T1 C̃1)),

so that

− tr(C̃2P̃M,2C̃
T
1 ) = tr(Σ̃2(P̃M,2Ã

T
21 + Ñ22P̃M,2Ñ

T
21 · c+ Ñ21P̃M,1Ñ

T
21))

− tr(B̃T1 Σ̃1B̃1) + tr(C̃1P̃M,1C̃
T
1 ).

Inserting this result into equation (16) provides

ε̃2 = tr(Σ̃2(B̃2B̃
T
2 + 2P̃M,2Ã

T
21 + 2Ñ22P̃M,2Ñ

T
21 · c+ 2Ñ21P̃M,1Ñ

T
21 · c))

+ tr(C̃1P̃RC̃
T
1 )− tr(B̃T1 Σ̃1B̃1).

With the equations (15) and (11) one obtains tr(C̃1P̃RC̃
T
1 ) = tr(B̃T1 Q̃RB̃1). So, we have

tr(C̃1P̃RC̃
T
1 )− tr(B̃T1 Σ̃1B̃1) = tr(B̃1B̃

T
1 (Q̃R − Σ̃1)).

Equation (11) again yields

tr(C̃1P̃RC̃
T
1 )− tr(B̃T1 Σ̃1B̃1) = − tr((Ã11P̃R + P̃RÃ

T
11 + Ñ11P̃RÑ

T
11 · c)(Q̃R − Σ̃1))

= − tr(P̃R((Q̃R − Σ̃1)Ã11 + ÃT11(Q̃R − Σ̃1)ÑT
11(Q̃R − Σ̃1)Ñ11 · c)).

7



Below, we subtract equation (13) from equation (15) and obtain

tr(C̃1P̃RC̃
T
1 )− tr(B̃T1 Σ̃1B̃1) = − tr(P̃RÑ

T
21Σ̃2Ñ21 · c).

Summarizing the result, we have

ε̃2 = tr(Σ̃2(B̃2B̃
T
2 + 2P̃M,2Ã

T
21 + 2Ñ22P̃M,2Ñ

T
21 · c+ 2Ñ21P̃M,1Ñ

T
21 · c− Ñ21P̃RÑ

T
21 · c)).

4 Conclusion

In this paper, we described two ways to generalize BT for linear controlled SDEs with Lévy
noise, the type 1 and the type 2 ansatz. We discussed the procedures to obtain the ROMs and
summarized all known facts in that �eld including an H2-type error bound, a stability result for
type 1 BT and an H∞-type error bound, a stability result for type 2 BT. As our contribution we
proved an H2-type error bound for the type 2 ansatz.
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