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Abstract

We consider the numerical simulation of an optimal control problem constrained
by the unsteady Stokes-Brinkman equation involving random data. More pre-
cisely, we treat the state, the control, the target (or the desired state), as well
as the viscosity, as analytic functions depending on uncertain parameters. This
allows for a simultaneous generalized polynomial chaos approximation of these
random functions in the stochastic Galerkin finite element method discretization
of the model. The discrete problem yields a prohibitively high dimensional saddle
point system with Kronecker product structure. We develop a new alternating
iterative tensor method for an efficient reduction of this system by the low-rank
Tensor Train representation. Besides, we propose and analyze a robust Schur
complement-based preconditioner for the solution of the saddle-point system.
The performance of our approach is illustrated with extensive numerical exper-
iments based on two- and three-dimensional examples. The developed Tensor
Train scheme reduces the solution storage by two orders of magnitude.
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1 Introduction

The Brinkman model is a parameter-dependent combination of the Darcy and the
Stokes models. It provides a unified approach to model flows of viscous fluids in a
cavity and a porous media. As pointed out in [51], in practical applications, the
location and number of the Darcy-Stokes interfaces might not be known a priori.
Hence, the unified equations represent an advantage over the domain decomposition
methods coupling the Darcy and the Stokes equations [10, 2]. The Brinkman model
is typically applied in oil reservoir modeling [43], computational fuel cell dynamics
[32, 56] or biomedical engineering [48].

The study of finite element-based solvers for the Brinkman model has, on the one
hand, attracted much attention recently [43, 51, 52, 56]. It is a quite challenging task,
essentially due to the high variability in the coefficients of the model, which may take
very high or very small values. This feature adversely affects not only the precondition-
ing of the resulting linear system [51], but also the construction of stable finite element
discretizations [36, 56]. On the other hand, the numerical simulation of optimization
problems constrained by unsteady Brinkman equations has not yet received adequate
attention. Generally speaking, optimization problems constrained by unsteady par-
tial differential equations (PDEs) are a lot more computationally challenging because
one needs to solve a system of PDEs coupled globally in time and space, and time-
stepping methods quickly reach their limitations due to the enormous demand for
storage [41, 49]. Yet, more challenging than the aforementioned are the optimal con-
trol problems constrained by unsteady PDEs involving (countably many) parametric
or uncertain inputs. This class of problems arises because the input parameters of the
model, such as the viscosity or initial condition may be affected by uncertainty due, for
example, to measurement errors, limited data or intrinsic variability in physical phe-
nomenon being modeled. Hence, a convenient way to characterize the uncertainty in
the problem consists in incorporating the uncertain parameters as random variables or
space- and/or time-varying random fields. A major goal of this work is to specifically
study the preconditioning of a linear system resulting from the discretization of the
optimal control problem constrained by the unsteady Stokes-Brinkman flow involving
random data.

In order to numerically simulate the Brinkman optimal control problem with stochas-
tic inputs (SOCP), we assume that the state, the control and the target are analytic
functions depending on some uncertain parameters. This allows for a simultane-
ous generalized polynomial chaos (PCE) approximation of these random functions
[16, 17, 35, 44, 57] in the stochastic Galerkin finite element method (SGFEM) dis-
cretization of the model. However, these problems often lead to prohibitively high
dimensional linear systems with Kronecker product structure.

To reduce the computational complexity, we impose the Kronecker product struc-
ture on the solution as well. More precisely, we seek an approximate solution in a
low-rank tensor product representation, namely, the Tensor Train decomposition [38],
also known as the Matrix Product States [26]. The tensor decomposition concept is
similar to low-rank model reduction techniques, for example, the Proper Orthogonal
Decomposition (POD) [31]. However, the POD solves the full problem in order to de-
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rive a reduced model. For really large-scale systems this is not feasible. Tensor methods
aim to construct directly the reduced solution without a priori information. One of
the most powerful tensor-based algorithms that can effectively accomplish this task
is the alternating iterative method [21, 47, 54]. However, existing alternating solvers
for linear systems require a positive definite matrix. Another novel contributions of
this paper are the extension and adaptation of these algorithms to the saddle-points
optimality system. We refer to [19, 18] for a more detailed overview of tensor methods.

This paper is structured as follows. In Section 2, we present the deterministic Stokes-
Brinkman model. Section 3 introduces the Stokes-Brinkman optimal control problem
with uncertain inputs and gives an overview of the SGFEM. Besides, it establishes the
Kronecker-product structure of the discrete problem. Section 4 presents and analyzes
our preconditioners for the corresponding saddle-point linear systems. In Section 5, we
introduce the Tensor Train decomposition and alternating tensor algorithms, adjust
them to the particular structure of the inverse problem and the Stokes-Brinkman model
and discuss some implementation issues. Section 6 contains numerical results obtained
for two- and three-dimensional examples using our approach. Finally, Section 7 gives
a conclusion and outlines future research goals.

2 Deterministic Brinkman model

Let D ⊂ Rd with d ∈ {1, 2, 3}, be a bounded open set with Lipschitz continuous simply
connected boundary ∂D. Herein, the spatial domain D consists of two parts, namely,
a porous medium Dp and a viscous flow medium Ds. That is, D = Dp ∪Ds. Moreover,
denote byQ the space-time cylinderD×[0, T ] and T = (0, T ]. The generalized unsteady
Brinkman problem reads

∂v(x, t)

∂t
− ν∆v(x, t) +K0(x)v(x, t) +∇p(x, t) = u(x, t), in Q,

−∇ · v(x, t) = 0, on Q,
v(x, t) = h(x, t), on ∂D × T ,
v(x, 0) = v0, in D,

(1)

where v and p are, respectively, the fluid velocity and the fluid pressure, and h is
the boundary condition. The parameter ν represents the fluid viscosity. Moreover,
K0 is the inverse permeability tensor of the medium. We assume here that K0 ∈
L2(D)∩L∞(D) and that the source term u ∈ L2(D). The challenge of this problem is
that the coefficient K0 takes two extreme values: it is very small in the viscous flow
medium Ds so that the PDE behaves like the unsteady Stokes flow, and very big in the
porous medium Dp in which case the PDE behaves like the unsteady Darcy equations.

In this paper, we denote by Hk(D) the Sobolev space of functions on D whose
derivatives up to order k are square-integrable. Hk

0 (D) denotes the closure in Hk(D)
of the set of finitely differentiable functions with compact support in D. For some space
X of functions on D, let L2(0, T ;X ) = L2(0, T )⊗X . The variational formulation of the
Brinkman model (1) can thus be written in following form: find v ∈ L2(0, T ;H1

0 (D)),
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p ∈ L2(0, T ;L2(D)) and ∂tv ∈ L2(0, T ;H−1(D)), such that v|t=0 = v0 and a.e on [0, T ]{
(∂tv(t), w) + B(v(t), w)− C(p(t),div w) = (u,w), ∀w ∈ L2(0, T ;H1

0 (D))

C(div v, q) = 0, ∀q ∈ L2(0, T ;L2(D)),

where
B(v(t), w) = (ν∇v(t),∇w) + (K0(x)v, w),

C(p(t),div w) = (p(t),∇ · w),

and (·, ·) represents the L2 inner product of a pair of functions on D.
For a mixed finite element discretization of the Brinkman problem [36, 48, 51, 56]

in the primal variables v and p, let Vh ⊂ L2(0, T ;H1
0 (D)) and Wh ⊂ L2(0, T ;L2(D))

be finite element spaces with stable elements (i.e. elements that satisfy the inf-sup
condition, e.g. mini elements as discussed in [48]) such that Vh = span{φ1, . . . , φJv}
and Wh = span{ϕ1, . . . , ϕJp}. Performing a Galerkin projection on Vh and Wh and
using implicit Euler for the temporal discretization, while taking into account the
boundary conditions, leads to the following

Mvi −Mvi−1

τ
+ (νK +Mk)vi +BT pi = Mui + gi,

Bvi = 0,
(2)

where B =
[
−
∫
D ϕk∇ · φk′

]
is the discrete divergence operator, K =

[∫
D∇φk : ∇φk′

]
is a matrix representing the vector Laplacian operator, M =

[∫
D φkφk′

]
is the mass

matrix and Mk =
[∫
DK0φkφk′

]
is the matrix associated with the term which involves

the inverse permeability coefficient K0(x), and τ is the size of the time step.

Remark 1. In the special case where Mk = 0 in (2), we get the unsteady Stokes
problem.

3 Brinkman optimal control problem with random data

Suppose now that, even though the fluid viscosity ν is time-independent and spatially
constant but that its value is not known precisely. Instead of guessing a value, we can
model ν as a random variable defined on the complete probability space (Ω,F ,P). This
could be interpreted as a scenario where the volume of fluid moving into a channel is
uncertain due to measurement error in ν or probably some other factors [45]. Here,
Ω is a sample space of events whereas, F denotes a σ-algebra on Ω and is endowed
with an appropriate probability measure P. The corresponding Brinkman velocity and
pressure are consequently also random and the numerical solution of the associated
SOCP is far more challenging. More precisely, the SOCP which we will solve in the
rest of this paper consists in minimizing the cost functional of tracking-type

J =
1

2
||v − v̄||2L2(0,T ;D)⊗L2(Ω) +

α

2
||std(v)||2L2(0,T ;D) +

β

2
||u||2L2(0,T ;D)⊗L2(Ω) (3)
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subject, P-almost surely, to the state equations

∂v(x, t, ω)

∂t
− ν(ω)∆v(x, t, ω) +K0(x)v(x, t, ω) +∇p(x, t, ω) = u(x, t, ω), in Q× Ω,

−∇ · v(x, t, ω) = 0, on Q× Ω,

v(x, t, ω) = h, on ∂D × T × Ω,

v(x, 0, ω) = v0, in D × Ω,

where v, v̄, p : D × T × Ω → R are random fields [6] representing the state (velocity),
the target (or the desired state) and the pressure. The forcing term on the right hand
side u : D × T × Ω → R denotes a random control function. Moreover, the positive
constant β represents the parameter for the penalization of the norm of the control u,
whereas α penalizes the standard deviation std(v) of the state v. Here, we have used
the notation L2(Ω) := L2(Ω,F ,P).

The viscosity ν in the state equations is modeled as a uniformly distributed random
variable of the form

ν(ω) = ν0 + ν1ξ(ω), (4)

with ν0, ν1 ∈ R+ and ξ ∼ U(−1, 1). Furthermore, we assume that the control and the
target satisfy

u, v̄ ∈ L2(D)⊗ L2(T )⊗ L2(Ω), (5)

and that, for some νmin, νmax ∈ R+ satisfying 0 < νmin < νmax < +∞, we have

P (ω ∈ Ω : ν(ξ(ω)) ∈ [νmin, νmax]) = 1. (6)

3.1 A fully discrete problem

Two standard methods are used to discretize the optimal control problem introduced
above - we can either discretize the model first and then optimize the discrete system
(DTO method), or alternatively optimize first before discretizing the resulting opti-
mality system (OTD method). The commutativity of DTO and OTD methods when
applied to optimal control problems constrained by PDEs has been a subject of debate
in recent times (see [33] for an overview). In what follows, we will adopt the DTO
strategy because, for the optimal control problem considered in this paper, it leads to
a symmetric saddle point linear system which fits in nicely with our preconditioning
strategies.

Since our optimal control problem contains random coefficients, the stochastic dis-
cretization could be effected using either a projection-based method (e.g. stochastic
Galerkin method in [44]) or a sampling method (e.g. stochastic collocation method
in [46]). Due to its high convergence rate, the former is our preferred method in this
paper. In order to use this method, we first assume that the pressure p, the state
v, the control u and the target v̄ are analytic functions depending on the uncertain
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parameters. This allows for a simultaneous generalized polynomial chaos (PCE) ap-
proximation of these random functions [16, 44, 6]. Of course, v̄ can equally be modeled
deterministically. Together with the finite element method, the PCE yields an SGFEM
for discretizing both the spatial and stochastic domains. More precisely, p, u, v, and v̄
admit the following respective representations

p(x, t, ω) =

Jp∑
k=1

P∑
j=1

pkj(t)ϕk(x)ψj(ξ(ω)), (7)

u(x, t, ω) =

Jv∑
k=1

P∑
j=1

ukj(t)φk(x)ψj(ξ(ω)),

v(x, t, ω) =

Jv∑
k=1

P∑
j=1

vkj(t)φk(x)ψj(ξ(ω)),

v̄(x, t, ω) =

Jv∑
k=1

P∑
j=1

v̄kj(t)φk(x)ψj(ξ(ω)),

where {ψj}Pj=1 are univariate orthogonal polynomials of order P − 1 satisfying

〈ψ1(ξ)〉 = 1, 〈ψj(ξ)〉 = 0, j > 1, 〈ψj(ξ)ψk(ξ)〉 =
〈
ψ2
j (ξ)

〉
δjk, (8)

with

〈ψj(ξ)〉 =

∫
ω∈Ω

ψj(ξ(ω)) dP(ω) =

∫
ξ∈Γ

ψj(ξ)ρ(ξ) dξ, (9)

where ρ is the density of the random variable ξ and Γ is the support of ρ.
In spirit of [5, 49], we apply to the cost functional the trapezoidal rule for temporal

discretization, and the mini finite elements [48], together with Legendre polynomial
chaos in the SGFEM for spatial and stochastic discretizations [44], to get the following

J (y,u) :=
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u, (10)

where y> =
[
v>1 ,p

>
1 , . . . ,v

>
nt ,p

>
nt

]
∈ RJPnt , J := Jv + Jp, and u> =

[
u>1 , . . . ,u

>
nt

]
denote the long vectors of all time snapshots of the state and control, respectively,

Ma = blkdiag
(

1
2M, 0,M, 0, . . . ,M, 0, 1

2M, 0
)
, M := G0 ⊗M,

Mb = blkdiag
(

1
2Mt, 0,Mt, 0, . . . ,Mt, 0,

1
2Mt, 0

)
, Mt := H0 ⊗M,

M2 = blkdiag
(

1
2M,M, . . . ,M, 1

2M
)
,

(11)

with M the finite element mass matrix, and{
G0 = diag

(〈
ψ2

1(ξ)
〉
,
〈
ψ2

2(ξ)
〉
, . . . ,

〈
ψ2
P (ξ)

〉)
,

H0 = diag
(
0,
〈
ψ2

2(ξ)
〉
, . . . ,

〈
ψ2
P (ξ)

〉)
,

(12)
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where the Kronecker product ⊗ is meant in the usual sense, A⊗B = [AijB].
For an all-at-once discretization of the state equation, we use the implicit Euler

together with SGFEM to get

Ky −Nu = g, (13)

where

K =


L̄
−M̄ L̄

. . .
. . .

−M̄ L̄

 , N =


N
N

. . .

N

 , g =


M̄y0 + g0

1

g0
2
...

g0
nt

 ,
with

N = G0 ⊗N, N =

[
M
0

]
, M̄ = G0 ⊗ τ−1M̄, M̄ =

[
M 0
0 0

]
, (14)

and, in the notation of [45],

L̄ =

[
A BT
B 0

]
(15)

represents an instance of the time-dependent Brinkman problem with

A = G0 ⊗A+G1 ⊗ ν1K, A = τ−1M + ν0K +Mk, B = G0 ⊗B, (16)

and G1(j, j′) = 〈ξψj(ξ)ψj′(ξ)〉 . Note that since we are using Legendre polynomials
for SGFEM discretization, G0 is a diagonal matrix whereas G1 is a tridiagonal matrix
with zeros on the main diagonal (see e.g., [44, 45]). This implies that the matrix B
in (16) is block-diagonal. Furthermore, since the matrices K, M and Mk are positive
definite, we know that A in (16) is sparse and positive definite. However, L̄ is an
indefinite block sparse matrix with sparse blocks.

Later it will be convenient to work with the Kronecker product representations of
the system matrices. To this end, we introduce the identity matrix Int ∈ Rnt×nt , as
well as the matrix

C =


0
−1 0

. . .
. . .

−1 0

 , (17)

and observe then that

K = Int ⊗G0 ⊗
[
A B>

B 0

]
+ Int ⊗G1 ⊗

[
ν1K 0

0 0

]
+ C ⊗G0 ⊗

[
τ−1M 0

0 0

]
, (18)

and

N = Int ⊗G0 ⊗N. (19)
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The structure of the right-hand side is problem-dependent. However, in our experi-
ments we will use y0 = 0 and a static deterministic g0 coming from Dirichlet boundary

conditions, such that g = g0 = e⊗ e1⊗
[
g0
v

g0
p

]
, where e is the vector of all ones, and e1

is the first unit vector.
Now, note from (10) and (13) that the discrete Lagrangian functional of the SOCP

is given by

L :=
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u + λT (−Ky +Nu + g),

where λ is the Lagrange multiplier. Hence, applying the first order conditions to L
yields the Karush-Kuhn-Tucker (KKT) system τM1 0 −KT

0 βτM2 NT

−K N 0


︸ ︷︷ ︸

:=A

 y
u
λ

 =

 b1

0
g

 , (20)

where b1 = τMaȳ, and

M1 = Ma + αMb = D ⊗Gα ⊗ M̄, M2 = D ⊗M = D ⊗G0 ⊗M, (21)

D = diag

(
1

2
, 1 . . . , 1,

1

2

)
∈ Rnt×nt , Gα := G0 + αH0. (22)

We note here that if the desired state is also static and deterministic, then one gets

ȳ = e⊗ e1 ⊗
[
v̄
0

]
.

4 Preconditioning

The KKT coefficient matrix A in (20) is usually ill-conditioned and thus requires a suit-
able preconditioner to solve (20) efficiently. A block-diagonal preconditioner, discussed
in the framework of deterministic unsteady Stokes control problem [50], is written in

the form P1 = blockdiag(M̃1, βM2, S̃1), where S̃1 = 1
τ (K +Ms)M̃1

−1 (
KT +Ms

)T
is the approximate Schur complement, and M̃1 is some perturbation to M1, since the
latter is rank-deficient. Here, the matrix Ms is determined via a ’matching’ argument.
In particular, [50] suggest the following augmentation,

M̃1 =

[
D ⊗Gα ⊗M

D ⊗Gα ⊗
(
‖M‖22τβ

)
I

]
,

where I is the identity of the size of the pressure grid. However, this approach is
tricky. For example, it may be quite suitable for preconditioning of MINRES, which
works with the P−1

1 -scalar product, but perform poorly in the Flexible GMRES, if
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we are to apply P−1
1 approximately. Besides, it is not obvious how to generalize it to

the case when M1 is numerically rank-deficient, i.e. its eigenvalues form a gradually
decaying sequence instead of two distinct clusters. This will occur in the low-rank
tensor methods; consequently, instead ofM1, we will work with its Galerkin projection
in the sequel. More specifically, we proceed next to Section 4.1 to propose another
preconditioner which circumvents this deficiency and yields faster convergence even
with the original sparse M1.

4.1 A block-triangular preconditioner

Our point of departure is to replace the KKT coefficient matrix A in (20) by Ã given
by

Ã := Aρ =

 −KT 0 τM1

NT βτM2 0
0 N −K

 =

[
Φ Υ
Ψ −K

]
,

where

ρ =

 0 0 I
0 I 0
I 0 0

 , Φ =

[
−KT 0
NT βτM2

]
, Υ =

[
τM1

0

]
, Ψ =

[
0
N

]T
.

Note that the matrix ρ swaps the first and third columns of A in the product Aρ; it
swaps the first and third rows of A in the product ρA. Next, observe also that we can
factorize the matrix Ã as follows[

Φ Υ
Ψ −K

]
=

[
I 0

ΨΦ−1 I

] [
Φ Υ
0 −S2

]
,

where

Φ−1 =

[
−K−T 0

1
τβM

−1
2 NTK−T 1

τβM
−1
2

]
, (23)

and S2 = K + ΨΦ−1Υ = K + 1
βNM

−1
2 NTK−TM1. But then, from (14), (19) and

(21), we obtain

NM−1
2 NT = D−1 ⊗G0 ⊗ M̄ = D−1 ⊗

[
τM 0

0 0

]
=: M−1. (24)

Therefore,

S2 = K + ΨΦ−1Υ = K +
1

β
M−1K

−TM1. (25)

We propose to right-precondition Ã with the matrix

PD =

[
Φ Υ
0 −S2

]
. (26)
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This implies that

ÃP−1
D = AρP−1

D = AP−1
2 =

[
I 0

ΨΦ−1 I

]
, (27)

where the right preconditioner P2 for the original KKT matrix A satisfies

P−1
2 = ρP−1

D =

 0 0 −S−1
2

1
βτM

−1
2 NTK−T 1

βτM
−1
2

1
βM

−1
2 NTK−TM1S

−1
2

−K−T 0 −K−T τM1S
−1
2

 . (28)

It can be noticed that (27) immediately implies (AP−1
2 − I)2 = 0; hence, such Krylov

solvers as the generalized minimal residual (GMRES) method will converge in two
iterations if P−1

2 is applied exactly, see e.g. [14, Section 8.1].
The seeming complicated structure of (28) notwithstanding, matrix-vector product

with P−1
2 can be implemented fairly easily. For instance, suppose now that we want

to solve x = P−1
2 y, where x = [x1,x2,x3]T , y = [y1,y2,y3]T . Then, it can easily be

shown that an efficient way to implement the matrix-vector product is
x1 = −S−1

2 y3

x3 = −K−T (y1 − τM1x1)

x2 = τ−1β−1M−1
2 (y2 −NTx3).

(29)

Next, following a state-of-the-art preconditioning strategy in [42], we approximate
the Schur complement S2 in (25) with a matrix of the form

S̃2 = (K +Ml)K
−T (KT +Mr

)
.

= K +MlK
−TMr +Ml +KK−TMr, (30)

where Ml and Mr are determined using also a ’matching’ argument between the
exact Schur complement S2 and the approximation S̃2. More precisely, we ignore the
last two terms in (30) and match the first and second terms with those in (25) to
get Mr = β−1/2M1, and Ml = β−1/2M−1, where M1 and M−1 are as defined,
respectively, in (21) and (24). Hence, we have

S̃2 =

(
K +

1√
β
M−1

)
K−T

(
KT +

1√
β
M1

)
. (31)

For matrix-vector products, the factors
(
K + 1√

β
M−1

)
and

(
KT + 1√

β
M1

)
can

be kept as sums of four Kronecker products, with the first three coming from K
in (18), and the fourth corresponding to M−1 in (24) and M1 in (21), respectively.
However, our ultimate goal is to apply S̃−1

2 , where it appears that solving a linear
system with exact factors is difficult. As a result, we instead approximate them by
one Kronecker-product term: we approximate K by the first term from (18), whereas
we set M1 ≈ Int ⊗ (1 + α)G0 ⊗ M̄ and M−1 ≈ Int ⊗G0 ⊗ M̄ ; therefore,(

K +
1√
β
Mi

)
≈ Int ⊗G0 ⊗

[
A+ ηiM B>

B 0

]
, (32)
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where i ∈ {−1, 1}, and η−1 = 1/
√
β, η1 = (1 + α)/

√
β. Inside alternating tensor

methods (cf. Section 5.5), the matrix Int⊗G0 will be further reduced, but the concept
of the one-term preconditioner remains the same.

4.2 Preconditioning of the forward Stokes-Brinkman problem

In linear systems of the form (32), Int and G0 can be inverted straightforwardly, while
the spatial matrix may require a special treatment. To this end, we can use either
the GMRES or the inexact Uzawa algorithm (see e.g. [50]), together with the block-
triangular preconditioner

Ps =

[
Ã 0
B −S0

]
, (33)

where S0 = BÃ−1B> is the Schur complement and Ã = ν0K+Mk + (τ−1 +η)M with
η = 1√

β
or η = 1+α√

β
. So, we need P−1

s , that is,

P−1
s =

[
Ã−1 0

S−1
0 BÃ−1 −S−1

0

]
. (34)

In what follows, we derive the approximation to the blocks of P−1
s . First, to approx-

imate Ã, we can use algebraic multigrid methods, since Ã is symmetric and positive
definite. Next, we need an approximation to the Schur complement S0. As was pointed
out in [14], the pressure mass matrix is a very effective approximation for S0 in the
case of stationary Stokes equations. However, as we are considering unsteady Stokes-
Brinkman constraint, this does not apply since Ã has an entirely different structure.
Thus, following [50], we proceed to derive the so-called Cahouet-Chabard approxima-
tion to S0 using a technique for the steady Navier-Stokes equation, which is based on
the least squares commutator (see Chapter 8 of [14]) defined by

E := (L)∇−∇(Lp),

where L = (τ−1 + η)I + ∆ +K0 and Lp = (τ−1 + η)Ip + ∆p +K0p is defined similarly
but on the pressure space. As was noted in [50], these operators are only used for
the purpose of deriving matrix preconditioners and no function spaces or boundary
conditions are defined here. Assuming the least squares commutator is small, we obtain
the following discretization of the differential operators

Eh = (M−1Ã)M−1BT −M−1BT (M−1
p Ãp) ≈ 0, (35)

where Ã, B and M are as defined previously, and

Ãp = ν0Kp +Mkp + (τ−1 + η)Mp. (36)

Next, we pre-multiply the expression (35) by BÃ−1M and post-multiply it by Ã−1
p Mp

to obtain

BM−1BT Ã−1
p Mp −BÃ−1BT ≈ 0. (37)
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Now, since BM−1BT is spectrally equivalent to the Laplacian defined on the pressure
space1, Kp, and BÃ−1BT is the sought S0, we obtain

S0 ≈ KpÃ
−1
p Mp. (38)

Hence, from (36) and (38), we have

S−1
0 ≈M−1

p

(
ν0Kp +Mkp + (τ−1 + η)Mp

)
K−1
p . (39)

The inverse of the pressure Laplacian K−1
p is approximated using algebraic multigrid

methods, whereas the use of the Chebyshev semi-iteration will suffice for M−1
p . We

note here that, as pointed out in Chapter 5 of [14], the pressure Laplacian represents
a Neumann problem because the pressure basis functions form a partition of unity.
Indeed, this property is independent of the boundary conditions attached to the flow
problem. To solve the problem of indefiniteness of Kp we just pin a boundary node in
Kp (see, e.g., [8]). Afterwards, we use the AMG package provided by [9].

4.3 Spectral analysis

The effectiveness of the iterative solver for our KKT linear system (20) depends to a
large extent on how well the exact Schur complement is represented by its approxima-
tion. To measure this, we need to consider the eigenvalues of the preconditioned Schur
complement S−1

2 S̃2. We are, however, unable to give a general estimate. Instead, we
restrict our analysis to the regularization parameters.

Theorem 1. If the system matrix K in (18) and its velocity block are invertible, then

cond(S−1
2 S̃2) ≤ (1 + C1β

1/2) if β � 1,

cond(S−1
2 S̃2) ≤ (1 + C2β

−1/2) if β � 1.

Proof. Recall first that if

KT =

[
AT BT

B 0

]
,

where B = Int ⊗G0 ⊗B,

A = Int ⊗G0 ⊗ (ν0K +Mk + τ−1M) + Int ⊗G1 ⊗ ν1K + C ⊗G0 ⊗ τ−1M,

and that both KT and A are non-singular, then

K−T =

[
A−T −A−TBTS−1BA−T A−TBTS−1

S−1BA−T −S−1

]
, (40)

1We may argue that BM−1BT ≈ Kp as follows [14]. At the continuous level, it is clear that
−∇ · ∇ = −∇2. Since in the finite element space, Kp corresponds to the operator −∇2, B
represents a discretization of the negative of the divergence operator, BT corresponds to the
gradient operator and M relates to the identity operator, we see that the approximation of Kp by
BM−1BT is a natural one.

11



and

KK−T =

[
AA−T (I − PK) + PK (AA−T − I)BTS−1

0 I

]
,

where S = BA−TBT , PK = B>S−1BA−T , and I is an identity of suitable sizes, see
e.g. [7]. Notice that PK = P 2

K ; that is, the matrix PK is a projector. From (21) we
have that

β−1M−1K
−TM1 =

[
M? 0
0 0

]
, (41)

where

M? = β−1M−1K11M1, (42)

M−1 = D−1⊗G0⊗M and M1 = D⊗Gα⊗M are the velocity submatrices of M−1 and
M1, as given by in (24) and (21) respectively, and K11 = A−T (I − PK) denotes the
(1,1) block of K−T . Thus, using (42), (41) and (25), we get

S2 = K + β−1M−1K
−TM1 =

[
A? BT

B 0

]
, (43)

where A? = A+M?. Next, observe from (30) that

S̃2 − S2 = β−1/2(M−1 +KK−TM1) =

[
U 0
0 0

]
, (44)

where U = β−1/2
(
M−1 +

(
AA−T (I − PK) + PK

)
M1

)
. Hence, using (40), (43) and

(44), we have

S−1
2 S̃2 =

[
I 0
0 I

]
+

[
A? BT

B 0

]−1 [
U 0
0 0

]
(45)

=

[
I +A−1

? (I − P?)U 0
S−1
? BA−1

? U I

]
,

where S? = BA−1
? B

T and P? = BTS−1
? BA−1

? is another projector. Thus, the
eigenvalues of S−1

2 S̃2 are contained in the set {1} ∪ σ
(
I +A−1

? (I − P?)U
)
, where

σ(X) represents the spectrum of a square matrix X.
Now, if β is small, then the norm ofM? is large2, and henceA? ≈M?. In particular,

we have ‖A−1
? ‖ ≤ C1β. Similarly, the norm of the projector P? is asymptotically β-

independent. Finally, ‖U‖ ≤ C2β
−1/2, and ‖A−1

? (I − P?)U‖ ≤ C3β
1/2. That is,

λ(S−1
2 S̃2) ∈ [1− C3β

1/2, 1 + C3β
1/2]→ {1} when β → 0.

2This means, from (42), that ‖M?‖ = ‖β−1M−1K11M1‖ � ‖A‖, which in turn implies that
β � ‖M−1K11M1‖/‖A‖, where the bound depends on J , nt and other model and discretization
parameters.
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Figure 1: Eigenvalue distribution of the matrix I+A−1
? (I−P?)U using the parameters

ν1 = 0.1, J = 642, P = 4, nt = 4. Left: α = 1 and β is varied. Right: β = 1
and α is varied.
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On the other hand, when β is large, the norm of M? is small, and A? ≈ A, a
matrix independent of β. The only multiplication with β comes from U ; therefore,
‖A−1

? (I − P?)U‖ ≤ C4β
−1/2 → 0 when β → ∞. Again, the matrix S−1

2 S̃2 becomes
well conditioned in β in the limit.

For intermediate β, we expect that S̃2 is still a good approximation to S2, and
do observe that in practice. For small matrices we have illustrated the distribution
of the eigenvalues of I + A−1

? (I − P?)U explicitly in Figure 1. As we can see from
the left figure, as β is varied, the eigenvalues are mostly clustered between 1 and 1.4,
regardless of the value of β. On the other hand, Figure 1 (right) shows that, keeping
β = 1, the eigenvalues of I + A−1

? (I − P?)U are clustered around 1 if 0 ≤ α ≤ 1,
but drastically increase for α > 1. This observation confirms the deterioration in the
performance of our solver as α increases in Section 6.5 below. The scenario α � 1
is not of much practical interest anyway, as this would imply a very low value of the
variance, in which case we lose the point of uncertainty quantification in the problem.

5 Tensor Train solver

To develop an efficient tensor-based iterative solver for our problem, we separate vari-
ables x, ω and t, but not the inner components of x. In what follows, we shall rely
specifically on the Tensor Train (TT) decomposition introduced in [38] to solve our
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linear systems. For our purposes, we proceed to first give a simplified presentation of
the TT decomposition for three independent variables. A detailed discussion on TT
decomposition can be found in recent surveys and books [19, 18, 25].

5.1 Tensor Train decomposition

The first operation we need for high-dimensional data is reshaping. To this end, sup-
pose y is the solution of (20). Its elements can be naturally enumerated by three indices
i, j, k, corresponding to the discretized variables t, ω and x, respectively. Introducing
a multi-index

ijk = (i− 1)PJ + (j − 1)J + k,

we can denote y =
[
y(ijk)

]nt,P,J
i,j,k=1

, and consider y as a three-dimensional tensor with

elements y(i, j, k). The Tensor Train (or simply TT) decomposition aims to approxi-
mate y as follows,

y(i, j, k) ≈
r1,r2∑
s1,s2=1

y(1)
s1 (i)y(2)

s1,s2(j)y(3)
s2 (k) ⇔ y ≈

r1,r2∑
s1,s2=1

y(1)
s1 ⊗ y(2)

s1,s2 ⊗ y(3)
s2 . (46)

The summation indices r1, r2 are called TT ranks, the factors y(m), m = 1, 2, 3 are
called TT blocks and have the sizes y(1) ∈ Rnt×r1 , y(2) ∈ Rr1×P×r2 and y(3) ∈ Rr2×J .
Notice that we can fix some of the indices, e.g. y(2)(j) ∈ Rr1×r2 is a matrix slice,

y
(2)
s1,s2 ∈ RP is a vector, and y

(2)
s1,s2(j) is a scalar. The total number of elements in

all factors is ntr1 + r1Pr2 + r2J = O(Jr + Pr2), where r ≥ r1, r2, since in our case
J ∼ nt � P . Therefore, if r � J , the amount of memory consumed by the TT format
is much less than JPnt, needed for the full vector y.

Particular values of r1, r2 depend on the accuracy we enforce in Eq. (46). Although
it is difficult in general to estimate the TT ranks theoretically, there is a reliable
numerical TT-SVD procedure, which computes a quasi-optimal TT decomposition,
using a sequence of singular value decompositions (SVD) [38].

The complexity of the TT-SVD is O(J2Pnt) when we compress a full tensor. How-
ever, in the course of computations we mostly need to re-compress a tensor, given
already in the TT format, but with (overly) larger ranks. For example, given a matrix

as a sum of Kronecker products, A =
∑R
q=1Aq⊗Bq⊗Cq and a vector y in the format

(46), the matrix-vector product can be written as follows [47, 38],

g = Ay =

r1,r2∑
s1,s2=1

R,R∑
q1,q2=1

(
Aq1y

(1)
s1

)
⊗
(
δq1,q2Bq1y

(2)
s1,s2

)
⊗
(
Cq2y

(3)
s2

)
, (47)

where δq1,q2 = 1 if q1 = q2 and zero otherwise. Similarly, a linear combination y + g
of vectors can be recast to their TT blocks y(m),g(m). Each bracket in the right-hand
side of (47) is a larger TT block, the new rank indices are s′1 = s1q1, s′2 = s2q2,
and hence the TT ranks are Rr1, Rr2. However, g might be approximated accurately
enough with much smaller ranks. When applied to the TT format (47) instead of the
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full tensor, the TT-SVD requires O(JR2r2 + PR3r3) operations. These properties
allow to adopt classical iterative methods such as MINRES or GMRES in an inexact
fashion, keeping all Krylov vectors in the TT format and performing the TT-SVD
re-compression (or TT truncation) [30, 4, 1, 11].

5.2 Alternating iterative methods

Notwithstanding the TT truncation, the Krylov vectors may still develop rather large
TT ranks – much larger than the ranks of the exact solution, in particular. Unless
a very good preconditioner is available, such that the method converges in about 10
iterations, the TT-GMRES approach may become too expensive. For problems of
some special forms, such as the Lyapunov equations, one can employ ADI [53] or
tensor product Krylov methods [29]. For more general problems we have to employ
more general alternating methods [21, 47].

The main idea behind the alternating tensor methods is to reduce the problem
to the elements of a particular TT block and iterate over different TT blocks until
convergence is achieved. In the mathematical community, the concept started with
the Alternating Least Squares (ALS) method used to minimize the misfit of a tensor
by a low-rank tensor model, see the surveys [27, 18]. This was later extended to the
solution of linear systems [21, 40]. In quantum physics, a powerful realization of the
alternation idea is the Density Matrix Renormalization Group (DMRG) algorithm [54],
which is mainly used for eigenvalue problems, but also for linear systems [24]. Later on,
the ALS/DMRG methods were combined with the classical gradient descent iteration:
besides the ALS iteration, the TT blocks are explicitly augmented by the partial TT
format of the residual surrogate. The DMRG algorithm with a single center site [55]
uses the surrogate of the Krylov vector, and the Alternating Minimal Energy (AMEn)
method [13] uses the actual residual, which was later adopted for eigenvalue problems
as well [23, 28]. Details of these algorithms can be found in the corresponding papers.
Here we give a brief idea of the AMEn algorithm, adapted to 3-dimensional tensors,
and then extended for saddle-point systems.

Let us consider a linear system Ay = g, where y is sought in the TT format (46),
and some initial guess for y is given. The ALS method reduces this system to the
elements of a chosen TT block y(m) in the course of iteration m = 1, 2, 3. Using
the multi-indices, we may stretch the TT block to a vector, for example, as follows:

y(2)(s1js2) = y
(2)
s1,s2(j). Notice that the TT format is linear w.r.t. each particular TT

block, i.e. we can write

y = Y1y
(1) = Y2y

(2) = Y3y
(3),
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where the frame matrices Ym, m = 1, 2, 3, are constructed as follows:

Y1 = Int ⊗
r2∑
s2=1

(
y(2)
s2

)>
⊗
(
y(3)
s2

)>
∈ RntPJ×ntr1 ,

Y2 = y(1) ⊗ IP ⊗
(
y(3)

)>
∈ RntPJ×r1Pr2 ,

Y3 =

r1∑
s1=1

y(1)
s1 ⊗ y(2)

s1 ⊗ IJ ∈ RntPJ×r2J .

(48)

Recall from (46) that y
(2)
s2 ∈ Rr1×P and y

(2)
s1 ∈ RP×r2 . In other words, each frame

matrix Ym constitutes the TT format (46) with the block y(m) replaced by the identity
matrix of the corresponding size. These frame matrices are used to project the linear
system. The ALS method updates the TT format by solving the following Galerkin
systems (

Y >1 AY1

)
y(1) = Y >1 g, (49)(

Y >2 AY2

)
y(2) = Y >2 g, (50)(

Y >3 AY3

)
y(3) = Y >3 g, (51)

and so on from the first step. Using the QR decompositions of the properly reshaped
TT blocks, it is easy to make the frame matrices orthogonal, and therefore preserve the
stability of the Galerkin systems, if A is positive definite. For example, it is enough to
make y(1) column-orthogonal and y(3) row-orthogonal to make the whole Y2 (column-
)orthogonal. Since this step is never a bottleneck, we always assume that the frame
matrices are orthogonal, before solving (49)–(51).

However, the convergence of this algorithm is questionable. It is possible that the
systems (49)–(51) remain the same within machine precision in two consecutive itera-
tions, while the true residual of the initial linear system g −Ay is large. The AMEn
algorithm [13] was developed to circumvent this problem. In addition to the solution,
we approximate the residual in the TT format,

g −Ay ≈ z =

ρ1,ρ2∑
ζ1,ζ2=1

z
(1)
ζ1
⊗ z

(2)
ζ1,ζ2

⊗ z
(3)
ζ2
. (52)

A very low accuracy is often sufficient for the residual (in our experiments we use
ρ1 = ρ2 = 2), so we can use the simple ALS method to approximate the residual.
Along the lines of (48), we construct the orthogonal residual frame matrices Zm from
(52) and compute z(m) = Z>m(g − Ay) in a sequence m = 1, 2, 3, and so on. Since
both A and g are given in the TT format, this computation is inexpensive. Moreover,
it is enough to compute z(m) only once after the m-th step of (49)–(51), i.e. perform
one ALS iteration for z whenever the solution changes.

The crucial step now is the enrichment of the solution. Having solved (49), for
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example, we concatenate y(1) and z(1) as follows,

y
(1)
s′1

(i) =

{
y

(1)
s′1

(i), s′1 = 1, . . . , r1,

z
(1)
s′1−r1

(i), s′1 = r1 + 1, . . . , r1 + ρ1,

and so on. The enrichment has a two-fold consequence. First, the residual can be
well approximated in the basis of columns of the frame matrices, which prevents the
Galerkin projection from a premature stagnation. Second, we can start from a low-
rank initial guess and increase the TT ranks gradually, preventing them from becoming
significantly larger than the ranks of the exact solution.

5.3 Block alternating iteration

The AMEn method performs well for positive definite matrices. However, if we try to
solve the KKT system (20) with the saddle-point matrix, the method may fail. The
Galerkin projections (49)–(51) obey the Poincaré Separation Theorem [22, Section 4.3],
and since the spectrum has both positive and negative parts, some of the eigenvalues
may interlace to zero. Consequently, the projected matrices become degenerate and
the calculation stops.

To avoid this problem, we store the state y, control u and adjoint λ vectors in
the shared, or block TT format [12], and preserve the KKT structure in the reduced
system. Suppose that y,u,λ have the same sizes (although this is not the case initially,
we will make it true in the next subsection), and collect them into a long vector
w> = [w>1 ,w

>
2 ,w

>
3 ] = [y>,u>,λ>]. The block TT format for w can now be written

in either of three variants:

wl(i, j, k) =

r1,r2∑
s1,s2=1

w(1)
s1 (i, l)w(2)

s1,s2(j)w(3)
s2 (k), (53)

wl(i, j, k) =

r1,r2∑
s1,s2=1

w(1)
s1 (i)w(2)

s1,s2(j, l)w(3)
s2 (k), (54)

wl(i, j, k) =

r1,r2∑
s1,s2=1

w(1)
s1 (i)w(2)

s1,s2(j)w(3)
s2 (k, l). (55)

The only difference between these three variants is in which TT block the index l
(l = 1, 2, 3) is placed, but we need these different representations in different AMEn
steps, as explained below. It is easy to switch between the representations using SVD
[12]. Given the variant (53), we reshape w(1) to a matrix W (1) ∈ Rnt×3r1 , compute
the truncated SVD, namely, W (1) ≈ UΣV >, where U ∈ Rnt×r′1 , so the elements of U
can be enumerated by two indices, U(i, s′1), i = 1, . . . , nt, s

′
1 = 1, . . . , r′1. Therefore,

w(1) in (54) or (55) can be replaced by U . Then the matrix ΣV > is reshaped to a
matrix R ∈ R3r′1×r1 , indexed as R(ls′1, s1), and multiplied with w(2) as follows:

ŵ
(2)
s′1,s2

(j, l) :=

r1∑
s1=1

R(ls′1, s1)w(2)
s1,s2(j).
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We notice that the result ŵ(2) can overwrite w(2) in (54), since it has the same form.
In the same way, we can convert (54) to (55), or the other way around. Generally, the
TT ranks change after such transformations. However, in the numerical practice the
ranks remain comparatively the same in different block representations.

The transition from one block variant to another is performed routinely in the AMEn
iteration. Note that each of the variants (53)–(55) induces only one frame matrix Wm

of the form (48), since the frame matrices do not depend on l:

W1 = Int ⊗
r2∑
s2=1

(
w(2)
s2

)>
⊗
(
w(3)
s2

)>
,

W2 = w(1) ⊗ IP ⊗
(
w(3)

)>
,

W3 =

r1∑
s1=1

w(1)
s1 ⊗w(2)

s1 ⊗ IJ .

Therefore, to assemble the first reduced system (49) we need the first block represen-
tation (53), for the second system (50) we need (54), and so on. However, each frame
matrix has the column size JPnt, which coincides with the sizes of submatrices of
(20), not the whole KKT matrix. Besides, we need a system of equations w.r.t. the
index l, carried in the TT block under consideration. Thus, a natural generalization
of (49)–(51) is the following,W>

mτM1Wm 0 −W>
mK

>Wm

0 W>
mβτM2Wm W>

mN
>Wm

−W>
mKWm W>

mNWm 0

w(m) =

W>
mτMaȳ

0
W>

mg

 , (56)

for m = 1, 2, 3. After this system is solved, we use the SVD procedure outlined above
to switch to the next block TT representation, compute the residual and enrich the
new w(m) (which does not contain l anymore). The residual is also kept in the block
form, z> = [z>1 , z

>
2 , z

>
3 ], where zl denotes the residual in the l-th row of the KKT

system (20), and is approximated in the appropriate block TT representation. Its
active block is computed as z(m)(l) = Z>m(gl−Al,:w), and then the index l is replaced
to the next TT block by the same SVD procedure.

Since each of the submatrices M1, M2 is symmetric and semidefinite, the same
property is inherited by the corresponding blocks in (56). However, K is the Stokes-
Brinkman matrix, which is indefinite. We could consider the 2 × 2 Stokes-Brinkman
block structure and the 3 × 3 KKT structure on the same level, and solve the 5 × 5
block system. However, the second row of the Stokes-Brinkman matrix has a very
particular meaning, which we can exploit to reduce the complexity in what follows.

5.4 Pressure elimination in the reduced model

The low-rank separation of space and time variables has been used for a while in the
numerical simulation of the Navier-Stokes equation. The Proper Orthogonal Decom-
position (POD) is a well-known approach to model reduction [31]. It reshapes the
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velocity component of the solution to a matrix Y = [y(ij, k)], computes the truncated
SVD Y ≈ UΣV >, and uses the columns of V for the Galerkin reduction of the velocity
operators. If we were solving the continuous equation, we would have a vector-valued
function V = V (x) ∈ Rr, where r is the number of POD terms, and the reduced so-
lution sought in the form y(x, t) ≈ V (x)a(t). Plugging this into the Stokes-Brinkman
equation, and projecting the velocity equation onto V , we have{

da
dt − ν〈V

>,∆V 〉a+ 〈V >,K0V 〉a+ 〈V >,∇p〉 = 〈V >, u〉,
∇ · V a = 0.

Since a(t) is not fixed a priori, from the second row we have∇·V (x) = 0. However, then
in the first row 〈V >,∇p〉 = −〈∇ · V >, p〉 = 0; that is, the reduced model contains no
pressure at all. In the discrete formulation, we have the system (15), and the pressure
part V >B>p is not exactly zero due to the boundary conditions. Nevertheless, it is
often heuristically assumed that its magnitude is small [3]. If it is not the case, there are
nonlinear corrections available [37]. They are important for the POD approach, since
the last step there is the solution of the time-dependent reduced model. However,
the alternating methods are different: we may stop the iteration at the spatial TT
block and return the block TT format of the form (55), instead of (53) in the POD
counterpart. Therefore, we perform the pressure exclusion trick (even if V >B>p is
not small) differently.

When we solve (56) for the spatial TT block (m = 3), we consider the 5× 5 Stokes-
KKT structure

τM̂1 0 0 −Â −B̂>
0 0 0 −B̂ 0

0 0 βτM̂2 N̂> 0

−Â −B̂> N̂ 0 0

−B̂ 0 0 0 0




ŵ(3)(1)
ŵ(3)(2)
ŵ(3)(3)
ŵ(3)(4)
ŵ(3)(5)

 =


b̂1

0
0
ĝv

ĝp

 , (57)

where M̂1 = D̂α ⊗M , M̂2 = D̂0 ⊗M , N̂ = Î0 ⊗M , B̂ = Î0 ⊗B,

Â = Î0 ⊗
(
τ−1M + ν0K +Mk

)
+ Î1 ⊗ ν1K + Ĉ0 ⊗ τ−1M,

the reduced matrices corresponding to the time t and the event ω are computed as

Î0 =W>3 (I ⊗G0)W3, Î1 =W>3 (I ⊗G1)W3, Ĉ0 =W>3 (C ⊗G0)W3,

D̂0 =W>3 (D ⊗G0)W3, D̂α =W>3 (D ⊗Gα)W3,
(58)

whereas the right-hand side parts are

b̂1 =W>3 (De⊗G0e1)⊗ τ v̄,
[
ĝv

ĝp

]
=W>3 (e⊗ e1)⊗

[
g0
v

g0
p

]
,

and W3 =
r1∑
s1=1

w
(1)
s1 ⊗ w

(2)
s1 ∈ RntP×r2 is a chunk of the frame matrix W3. We

had to introduce this chunk and the Kronecker structures above in order to explain
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the preconditioner in the next section. We see that the solution components ŵ(3)(2)
and ŵ(3)(5) denote the state and adjoint pressures, respectively. The new TT block
is assembled from the remaining components only, w(3) =

[
ŵ(3)(1), ŵ(3)(3), ŵ(3)(4)

]
.

For the subsequent AMEn steps (m = 2, 1), we do not assume the pressure components
to be small, but we assume that they will not change significantly. Therefore, their
contributions to the velocity equations can be recast to the right-hand side. More
precisely, we construct the TT formats

δb1 =
∑
s1,s2

w(1)
s1 ⊗G0w

(2)
s1,s2 ⊗B

>ŵ(3)
s2 (5), δg =

∑
s1,s2

w(1)
s1 ⊗G0w

(2)
s1,s2 ⊗B

>ŵ(3)
s2 (2),

and correct the right-hand side of (20) as follows,b1

0
g

 →

b1 + δb1

0
g + δg

 .
After that, we conduct AMEn steps m = 2, 1, 2 with the system of the form (56), where
K contains now only the velocity equation, and hence is positive definite. When we
come back to m = 3, we drop the right-hand side corrections and solve the full system
(57). If we are to stop the iteration, we return the full solution, including ŵ(3)(2) and
ŵ(3)(5). Due to the Galerkin projection, the accuracy depends only on how good the
common TT blocks w(1) and w(2) represent all solution components. Although it is
unclear whether it is allowed in general to ’freeze’ some components, in our numerical
experiments we observed that the solution is accurate enough; that is, the blocks w(1)

and w(2) are computed accurately using only the velocity information.

5.5 Practical implementation

The preconditioner developed in Section 4.1 needs to be adjusted to the local problem
(57). Although the reduced matrices (58) are small, they are dense, and it is impracti-
cal to compute the blocks of (57) explicitly. However, note that all of them are single
Kronecker products except Â. Moreover, if the norms of K and Mk are sufficiently
large, and ν1 is small, then the first term in Â dominates. Therefore, we replace Â by
its first term Î0⊗

(
τ−1M + ν0K +Mk

)
during the preconditioning. This also allows to

avoid the second level of preconditioning for the Stokes-Brinkman system (33). Since

B̂ contains Î0, we can assemble the Stokes-Brinkman matrix in the Kronecker form as
well,

K̂ = Î0 ⊗
[
τ−1M + ν0K +Mk B>

B 0

]
.

In the computation of x3 in an analog of (29), we can solve linear systems with K̂
directly. For two-dimensional cases, this approach is faster than iterations with (33).
In the same way we approximate the factors of the Schur complement (31), e.g.

K̂> + M̂r ≈ Î0 ⊗

[(
1
τ + 1√

β

‖D̂α‖
‖Î0‖

)
M + ν0K +Mk B>

B 0

]
, (59)
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where we approximated M̂r = 1√
β
D̂α⊗M by Î0

‖D̂α‖
‖Î0‖
√
β
⊗M , and D̂α and Î0 are defined

in (58). For three dimensions (Section 6.10), the matrices become more dense, and
we have to use iterative methods, preconditioning the velocity block by a multigrid
cycle. Similar rank-1 approximation is performed for the TT blocks w(1) and w(2).
Although they are smaller than the spatial block, they are still rather large to form
and solve the systems (56) directly. The crucial point here, fortunately, is that the
new preconditioner does not need to invert M1.

6 Numerical experiments

A systematic study of the proposed technique will be conducted on two- and three-
dimensional examples. We first consider the Stokes(-Brinkman) flow constraints on
D = [0, 1]2 with the inflow boundary conditions

v1|x1=0 = x2(1− x2), v2|x1=0 = 0, v|x2=0 = v|x2=1 = 0,

and ‘do-nothing’ boundary conditions at x1 = 1. The velocity operators are dis-
cretized with the mini elements [48] and the pressure operators are discretized with
the piecewise linear finite elements. The stiffness matrices are assembled in FEniCS
1.5.0 package [34]. For the Stokes-Brinkmann equation, the coefficient is chosen as
follows:

K0(x) =

{
K̄0, (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.152,
0, otherwise.

The right-hand side and the initial condition are zeros. The desired state is the deter-
ministic stationary solution of the forward Stokes-Brinkman problem.

The model is characterized by 8 parameters: the spatial grid size J , the number of
time steps nt, the time interval T , regularization parameters α and β, variance ν1, a
threshold for the tensor approximation and the AMEn algorithm ε, and the porosity
coefficient K̄0. For the sake of brevity, we perform 8 experiments, fixing all parameters
to their default values and varying only one of them. The default parameters are the
following: one-dimensional spatial grid size n = 64 (so that J = 29059), time grid
size nt = 210, time interval T = 1, regularization parameters β = 10−6 and α = 1,
variance parameter3 ν1 = 0.1, approximation tolerance ε = 10−6, and pure Stokes
coefficient K̄0 = 0. The mean viscosity is always fixed at ν0 = 1, since the behavior of
the model is the same if ν0 ∼ 1/T , so we can investigate either of these parameters.
The stochastic polynomial degree P = 16.

We investigate several kinds of discrepancies, such as the residual, the misfit w.r.t.
the desired state, and so on. Therefore, it is convenient to introduce a unifying nota-
tion. All errors are measured in the Frobenius norm, i.e. given the reference y? and

3In applications involving highly heterogeneous media, such as subsurface diffusion, the variance of
a random field may be several orders in magnitude. However, a highly viscous fluid is more or
less homogeneous, and the 10% variance is realistic. This is the case in biomedical modeling, for
example.
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Table 1: 2D Stokes, comparison of spatial preconditioners

P1 P2

β Iterations CPU time Iterations CPU time
10−2 1264 6197 194 2015
10−4 738 3700 201 1968
10−6 196 759 108 700
10−8 163 465 72 322

trial y vectors, we compute

E(y,y?) = ‖y − y?‖F /‖y?‖F . (60)

By ’residual’, we mean the maximal relative residual among the KKT system rows:

residual = max
(
E(τM1y −K>λ, τMaȳ); E(τβM2u,N

>λ); E(−Ky +Nu,g)
)
.

Since the KKT matrix is rather ill-conditioned, we also estimate the Frobenius-norm
errors of the state and control components of the solution as follows. For each experi-
ment, we solve the system with two thresholds, ε and 0.1ε. The solution components of
the latter run, denoted as y? and u?, are taken as the reference ones, and the relative
errors are computed by (60).

The complexity indicators are the CPU time, memory consumption and the number
of iterations. The CPU time is measured for a sequential MATLAB R2012b program,
run under Linux at Intel Xeon X5650 CPU with 2.67GHz. The TT algorithms are
implemented within the TT-Toolbox [39]. The memory consumption is reported as
the memory compression ratio by the TT format. It is computed as the number of TT
elements over the total number of degrees of freedom in the solution, i.e.

% Mem =
ntr1 + r1Pr2 + r2J

JPnt
· 100.

By ’iterations’, we mean the total number of FGMRES iterations, spent in solving the
reduced systems (57) for the spatial TT block, in all AMEn steps. The FGMRES is
used with the block-triangular preconditioner (29) for the KKT level only (the Stokes-
like systems (59) are solved directly in two-dimensional examples).

6.1 Performance of the new block-triangular preconditioner

It is illustrative to compare the new preconditioner (29) with the established block-
diagonal preconditioner P1 from [50], mentioned at the beginning of Section 4. We
test P1 using the MINRES method, for the spatial TT block only. The comparison
with P2 (29) is given in Table 1. We see that P2 provides faster convergence in terms
of both iterations and time. Therefore, we use it in all the remaining experiments in
this paper.
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Figure 2: 2D Stokes, experiment with nt. Left: Residual, errors w.r.t. the reference
solutions, and the mean value error w.r.t. the time grid level. Right: CPU
time, total number of iterations in spatial systems, memory compression
ratio.
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6.2 Experiment with nt (Figure 2)

In the first test, we vary the number of time steps from 25 to 212. In addition to
general errors, we report also the convergence of the mean value of the velocity with
the time grid refinement. The mean value is computed over all variables:

〈v〉 =
τ

T

Jv,Jv,nt∑
k,k′,i=1

M(k, k′)D(i, i)y(i, 1, k′) ≈
∫
D

∫
Ω

1

T

∫ T

0

v(x, ω, t)dtdP(ω)dx.

Note that y has the form [v,p] w.r.t. the index k, so that the summation k, k′ =
1, . . . , Jv extracts only the velocity. The reference value 〈v12〉 is computed on the grid
nt = 212. The distance from 〈v〉 decays proportionally to 2−nt , as expected for the
Euler scheme.

The errors grow proportionally to the grid size, since the matrix becomes more ill-
conditioned. However, the CPU times and the numbers of iterations grow only as a
small power of log nt. The behavior of the CPU time is very close to the behavior of
the iterations, while the TT ranks (and hence the memory) are almost stable w.r.t.
nt. This shows that the main reason for the increase in time is the deterioration of the
quality of the preconditioner (since we use the rank-1 approximation (59)). A more
robust (in terms of iterations) preconditioner should also involve the term related
to the time derivative. However, each iteration might become more costly. Future
research is needed to make the preconditioner suitable for extreme parameters.
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Figure 3: 2D Stokes, experiment with T . Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of iterations in spatial systems,
memory compression ratio.
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6.3 Experiment with T (Figure 3)

Since the initial condition is zero, while the desired state is not for any time step, the
time interval influences the model significantly. The smaller is the interval, the larger
the force (in our terminology, control) that must be exerted to drive the system to
the desired state. This is true not only for the physical behavior, but also for the
computational efforts required to solve the system. For T = 0.01, the matrix becomes
too ill-conditioned, and 800 iterations are not enough to compute the spatial TT block
accurately enough. For larger T, both the error and the complexity decrease.

6.4 Experiment with β (Figure 4)

Although there are rigorous mathematical ways to estimate β for a given problem, such
as the L-curve analysis [20] or the discrepancy principle [15], we do not follow them
here for a couple of reasons. First, the value of β may be suggested by the physical
considerations (i.e. the maximal force available). Second, we want to demonstrate
robustness of our approach for as wide range as possible. Therefore, we vary β from
10−12 to 103.

We see that the errors are smaller for smaller β and stabilize at some levels when β
increases. When β is small, the model reconstructs the deterministic Stokes solution
quite accurately, as can be seen from the discrepancy E(v, v̄). In addition, we report
the deviation of the mean solution at the final time from the desired state. This
quantity is much smaller and less dependent on β than the global misfit: since the
initial state is zero, the misfit in the first time steps will always be rather large, but in
the latter steps the systems converges to the stationary solution. From the complexity
figure, we see that the most difficult are the cases with intermediate β. The memory
consumption increases with β, since the solution drives away from the rank-1 desired
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Figure 4: 2D Stokes, experiment with β. Left: Residual and errors w.r.t. the reference
solutions, and the distance to the desired state. Right: CPU time, total
number of iterations in spatial systems, memory compression ratio.
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state.

6.5 Experiment with α (Figure 5)

This parameter is supposed to penalize the standard deviation of the velocity. The
(discrete) deviation is defined as follows,

std(v) =

√√√√ τ

T

Jv,Jv,nt∑
k,k′,i=1

P∑
j=2

M(k, k′)G0(j, j)D(i, i)y2(i, j, k′).

In Fig. 5, we report the relative deviations for two variance parameters, ν1 = 0.1 and
ν1 = 0.9. We see that in both cases the deviation decreases only marginally with α
varying from 10−3 to 102. In particular, for ν1 = 0.1, it seems that the minimization
of ‖v− v̄‖ with a deterministic v̄ delivers v with already a quasi-minimal variance as
well. For larger ν1, the deviation decreases more significantly. We could expect this
effect to develop further for α > 103. However, the preconditioner deteriorates rapidly
with larger α. In particular, for α = 104, the GMRES did not converge below the
threshold ε = 10−6 after 900 iterations. Further investigation is needed to develop
reliable methods for damping the solution variance.

6.6 Experiment with ν1 (Figure 6)

The ratio of maximal and minimal viscosities due to the stochasticity is νmax/νmin =
(1 + ν1)/(1 − ν1). If ν1 � 1, it grows almost linearly, νmax/νmin ≈ 1 + 2ν1. If ν1

is close to 1, the behavior becomes essentially nonlinear, e.g. for ν1 = 0.9 we have
νmax/νmin = 19. The same can be seen in both error and complexity figures. The
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Figure 5: 2D Stokes, experiment with α. Left: Residual and errors w.r.t. the refer-
ence solutions, and the relative standard deviation. Right: CPU time, total
number of iterations in spatial systems, memory compression ratio.
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residuals and errors are almost stable for small ν1, and the standard deviation grows
linearly, while for ν1 > 0.5, all quantities grow faster. In particular, the distance to
the desired state becomes larger since the Stokes system becomes more stiff. All three
complexity indicators grow rapidly as ν1 → 1 as well.

6.7 Experiment with the tensor approximation tolerance (Figure 7)

In experiments with positive definite matrices, it was observed that residuals and errors
decay proportionally to ε. In this problem, this is only the case for ε between 10−4

and 10−5. For smaller tolerances the residual and the control error are approximately
proportional to ε0.5, and the state error almost stagnates. This may be caused by the
indefiniteness of the problem and the pressure exclusion trick. Unfortunately, we are
unable to study their effects separately in the meantime, as the reduced systems (49),
(50) and (51) become degenerate if we try to apply the AMEn to an indefinite system
directly.

6.8 Experiment with n (Figure 8)

The mesh generator in FEniCS is initialized with the number of mesh steps in one
dimension n. The number of degrees of freedom for the pressure is (n+ 1)2, since the
pressure is discretized with linear elements, but together with the cubic mini elements
for two components of the velocity, the total number of DoFs J ≈ 7n2. As in the
time grid test, in addition to the residual and errors w.r.t. the reference solution, we
investigate the error decay w.r.t. the grid refinement. The reference velocity for this
test, 〈v8〉, is the mean value computed at the grid n = 28. The approximation error
decays with the rate n−1.4.
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Figure 6: 2D Stokes, experiment with ν1. Left: Residual and errors w.r.t. the refer-
ence solutions, the relative standard deviation and the distance to the desired
state. Right: CPU time, total number of iterations in spatial systems, mem-
ory compression ratio.
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The most time-consuming stage in the scheme is the solution of the system for the
spatial TT block. The sparsity of the spatial matrix allows its efficient factorization,
such that the CPU time grows proportionally to n2, i.e. linear w.r.t. the total number
of spatial degrees of freedom. Interestingly, the number of iterations, TT ranks and
the residual are smaller for larger n. This is due to the rank-1 approximation used for
the factors of the preconditioner (31). For larger n, the norm of the discrete Laplace
operator becomes larger, and the rank-1 term becomes a better approximation to the
whole matrix.

6.9 Experiment with K̄0 (Figure 9)

Finally, we take K̄0 nonzero and investigate the Stokes-Brinkman model. For some
reasons, with n = 64 and K̄0 > 105, the velocity matrix becomes indefinite. This
might be due to the Gibbs phenomenon of the quadrature rule employed in FEniCS in
computation of the stiffness matrix elements corresponding to the interface of K0(x).
A detailed study would require interfering with the FEniCS source codes and this was
not conducted. As a remedy, we perform this test with n = 128. This produces correct
matrices up to K̄0 = 106.

We see that the scheme is quite robust in the considered range of the coefficient.
The error estimates decay with increasing K̄0, since the system becomes closer to the
Darcy model. The CPU time and the number of iterations show the chaotic behavior,
but this fluctuation is only 10–20% compared to the average values.
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Figure 7: 2D Stokes, experiment with ε. Left: Residual and errors w.r.t. the reference
solutions. Right: CPU time, total number of iterations in spatial systems,
memory compression ratio.
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6.10 3D problem (Figure 10)

Finally, we demonstrate that our approach is suitable for larger 3D problems. We
consider the three-dimensional Stokes-Brinkman problem on the domain [0, 1]× [0, 1]×
[0, 5] as constraints, with the coefficient

K0(x) =

{
104, (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 2.5)2 ≤ 0.12,
0, otherwise,

and the inflow boundary condition v1|x1=0 = x2(1− x2) and zero conditions at other
boundaries. The one-dimensional grid sizes are 16, 16, 32 for x1, x2, x3, respectively,
which results in Jv = 212355 degrees of freedom for the velocity. Other parameters
are the same as in the 2D tests except ν1 = 0.01 and ε = 10−4.

Since the direct elimination is too expensive for such matrices, we used the commutator-
based preconditioner (38) for the Schur complement in the Stokes matrices, and the
velocity matrix was approximated by one V-cycle of the HSL MI20 algebraic multigrid
[9]. The iterative method is two-level. First, we employed the block-triangular pre-
conditioner for the KKT structure in the FGMRES method with unlimited number
of iterations. Second, for all Stokes-like matrices in the preconditioning step, e.g. in
(59), we used another FGMRES method with 50 iterations, preconditioned by (38)
with the multigrid. That many inner iterations are needed because the commutator
preconditioner deteriorates rapidly with the size of the porosity region. The KKT
solver conducted in total 152 iterations, which took 148985 seconds of the CPU time.
Nevertheless, the maximal TT rank of the solution is 8, so the TT format consumed
only 0.2% of the memory required for the full solution. The final residual is 4.1 · 10−4,
and the misfit with the desired state E(v, v̄) = 2.8 · 10−3. The mean and the standard
deviation of the solution at the final time are shown in Fig. 10. We notice a clear
perturbation around the region with nonzero Brinkman coefficient. In particular, the

28



Figure 8: 2D Stokes, experiment with n. Left: Residual and errors w.r.t. the reference
solutions, and the mean value error w.r.t. the spatial grid level. Right: CPU
time, total number of iterations in spatial systems, memory compression
ratio.
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largest deviations are attained at the interface, while in the homogeneous region the
velocity is almost deterministic. The deviation of the pressure grows proportionally
to the mean magnitude (note that the mean pressure is mostly negative, while the
deviation is not, hence the color map in the right middle figure was reversed). The
control exhibits a clear interface around the Brinkman region. Another interesting
feature is that the deviation of the control is larger than its mean.

7 Conclusions and outlook

We have considered a low-rank solution to an optimal control problem constrained
by Stokes-Brinkman with uncertain inputs. The discretized solution can be naturally
indexed by three independent parameters, coming from the spatial, stochastic and
time variables. Each of these parameters can vary in a considerable range, hence the
straightforward storage of the solution consumes a vast amount of memory. By employ-
ing tensor product decomposition methods, we have reduced it by two–three orders of
magnitude. However, the optimal control problem yields a saddle-point linear system,
which requires a special treatment. We have extended the alternating minimal energy
algorithm such that it preserves the saddle-point structure and solves this system ro-
bustly. Moreover, we have proposed a new Schur complement-based preconditioner
which is free from auxiliary perturbations and provides smaller condition numbers of
the preconditioned matrix.

Several directions of future research are possible. A natural extension is to apply
our techniques to the nonlinear Navier-Stokes model. The preconditioner still needs an
improvement, especially for large stochastic variance parameter ν1, variance-penalizing
regularization parameter α and many time steps. More complex models, such as those

29



Figure 9: 2D Stokes-Brinkmann, experiment with K̄0. Left: Residual and errors w.r.t.
the reference solutions. Right: CPU time, total number of iterations in
spatial systems, memory compression ratio.
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with uncertain boundary conditions and random domain, are also a challenging topic
for future investigation.
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Figure 10: 3D Stokes-Brinkman. Left: mean values at the last time step, right: stan-
dard deviations. Top: velocity, middle: pressure, bottom: control.
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