Diese Seite wird nicht mehr aktualisiert. Bitte besuchen Sie unsere neue Webpräsenz.
This page is not updated any longer. Please visit our new website.
Non-Funded Research Activity
Boundary Feedback Stabilisation Using Non-Conforming Finite Elements
Project leader:
Prof. Dr. Peter Benner
Max Planck Institut for Dynamics Complex Technical Systems Magdeburg,
Computational Methods in Systems and Control Theory,
Sandtorstr. 1, 39106 Magdeburg, Germany
Tel: +49 (0)391-6110-450
E-mail: benner@mpi-magdeburg.mpg.de
Prof. Dr. Friedhelm Schieweck
Otto-von-Guericke-Universiät Magdeburg,
Institute for Analysis and Numerics,
Postfach 4120, 39106 Magdeburg, Germany
Tel: +49 (0)391-6720135
E-mail: schiewec@ovgu.de
Researcher:
Dr. Jens Saak
Max Planck Institut for Dynamics Complex Technical Systems Magdeburg,
Computational Methods in Systems and Control Theory,
Sandtorstr. 1, 39106 Magdeburg, Germany
Tel: +49 (0)391-6110-216
E-mail: saak@mpi-magdeburg.mpg.de
Dr. Piotr Skrzypacz
Max Planck Institut for Dynamics Complex Technical Systems Magdeburg,
Computational Methods in Systems and Control Theory,
Sandtorstr. 1, 39106 Magdeburg, Germany
Tel: +49 (0)391-67-18211
E-mail: skrzypacz@mpi-magdeburg.mpg.de
Heiko Weichelt
Max Planck Institut for Dynamics Complex Technical Systems Magdeburg,
Computational Methods in Systems and Control Theory,
Sandtorstr. 1, 39106 Magdeburg, Germany
Tel: +49 (0)391-6110-414
E-mail: weichelt@mpi-magdeburg.mpg.de
Duration: since February 2012
Project description:
We are investigating a new finite element method to improve boundary feedback stabilization
techniques of instationary, incompressible flow problems. Since standard finite elements do not
fulfill divergence freeness condition by themselves we cannot guarantee the validity of this condition after solving
the arising linear systems by iterative solvers. We, now, formulate the boundary feedback approach in operator terms
and solve the underlying PDE in each step, where the divergence freeness condition is handled inside the solver.
By using special finite elements we can improve the solver and end up with a fast robust algorithm.
@article{BenSSetal14,
author = {P. Benner and J. Saak and F. Schieweck and P. Skrzypacz and H.~K. Weichelt },
title = {A Non-Conforming Composite Quadrilateral Finite Element Pair for Feedback Stabilization of the {S}tokes Equations },
number = 3,
month = oct,
year = 2014,
journal = {Journal of Numerical Mathematics},
volume = 22,
pages = {191--220},
}